第5章 亲和层析

第5章亲和层析

一、亲和层析的特点:①待分离物质与配基专一性结合,分辨率高,操作简单,通过一次性操作即可得到较高纯度的分离物质。②具有浓缩作用,可以从含量很低的溶液中得到高浓度的样品,有的纯化倍数达几千倍。③利用生物学的特异性进行分离,所以分离条件比较温和,能够很好地保持样品原有的生物学性质。

二、基本原理:生物大分子的识别功能:①酶:底物、抑制剂底物类物;②抗体:抗原、病毒细胞;

③激素:受体;④外源凝集素:糖蛋白、表面受体蛋白;⑤核酸:互补碱基链段、组蛋白。

1 配基:亲和层析介质的配基有很多,归纳起来主要有以下几类:①有机小分子类主要有苯基类、烷基类、氨基酸类、核苷酸类等。②生物大分子类主要有酶类、抑制剂类、蛋白质、抗原抗体类等。③染料主要有蓝色葡聚糖、荧光染料等。

2 载体:纤维素、葡聚糖凝胶、聚丙烯酰胺凝胶、多孔玻璃、琼脂糖凝胶、聚丙烯酰胺-琼脂糖凝胶。

3 活化剂:(最常用的几种活化剂)溴化氰(CNBr)、环氧氯丙烷、1,4-丁二醚、戊二醛、高碘酸盐等。

三、亲和层析介质的制备:

1 配基的选择(配基必备条件):①能与活化剂的活化基团发生偶联作用,偶联后不影响配基和目标分子的专一结合特性。②专一亲和性要强,能有效地分离目标分子。③配基与目标分子结合后,在一定条件下能够被解吸附,且不破坏目标分子的生物活性。④在分离过程中配基与目标分子无空间阻碍。常用的配基:①酶:底物、底物类似物、抑制剂、辅因子(辅酶、金属离子等);②抗体----抗原、病毒、细胞、激素、维生素----受体蛋白、载体蛋白;③外源凝集素----多糖化合物、糖蛋白、细胞表面受体蛋白、细胞;④核酸----互补碱基链段、组蛋白、核酸聚合物、核酸结合蛋白。

2 载体的选择(理想载体的特性):①不溶于水,但具有高度亲水性。②具有多孔网状结构和良好的流动性和渗透性。③机械性能良好,在一定静水压下不变形。④有足够数量的化学基团与大量的配基相偶联。⑤化学惰性,无或微弱的非特异性吸附作用。⑥有良好的物理和化学的稳定性。常用的载体:纤维素、葡聚糖凝胶、聚丙烯酰胺凝胶、多孔玻璃、琼脂糖凝胶、交联琼脂糖凝胶、聚丙烯酰胺-琼脂糖凝胶。凝胶类载体的特点:①凝胶介质上的羟基容易被多种活化剂活化,引入不同的基团。②具有大孔性和亲水性,凝胶内部的羟基得到活化,有较高的活化效率。③刚性较好,珠状结构对流动向的阻力最小,分离效率高。

④非特异吸附极低,理化性质较稳定。

理化性质稳定性的要求:①在较广的pH范围内正常工作;②对去污剂、解离试剂保持稳定;③用0.1mol /L NaOH或0.1mol/L HCl处理2~3h不引起凝胶颗粒的变化;④不被乙醇、丙酮等有机试剂所破坏;⑤能耐受6mol/L盐酸胍或7 mol/L尿素处理;⑥吸附剂能够再生并重复使用。

3 活化剂的选择与偶联反应:(1)以生物大分子为配基的偶联反应:

①溴化氰活化载体与蛋白质配基偶联反应

②环氧氯丙烷活化载体与蛋白质配基偶联反应

(2)活化载体“接臂”:

①短臂(未接臂)亲和介质

②长臂(接臂)亲和介质

4 封闭:①在弱碱性pH下过夜或在Tris—HCl缓冲液(pH8)中2h被水解。②加入过量的小分子伯氨基试剂封闭多余的活化基团。③封闭的试剂有乙醇胺、葡萄糖胺、甘氨酸、谷氨酸、甘露糖等。

5 亲和介质的技术指标:①配基偶联量(μmol/g 或μmol/ml)。②样品吸附量(mg/s或mg/ml)。

③化学稳定性抗氧化物,配基不降解。④耐酸碱如pH3~10。

三、亲和层析实验操作:(1)亲和层析实验流程:亲和层析介质——预处理——装柱、平衡与上样品

——洗去未吸附杂质——洗脱、收集洗脱峰。(2)吸附条件的选择:①层析柱(吸附容量、待分离物质的总量);②平衡缓冲液(pH和pI、上样体积、温度和流速等因素);③多次吸附,使纯化对象与配基充分作用。(3)洗脱条件的选择:①竞争性洗脱;②离子强度洗脱;③pH+离子强度洗脱;④变性剂洗脱;⑤化学断裂。(4)洗脱方式:①一步洗脱:非选择性洗脱;②分步洗脱:选择性洗脱;③梯度洗脱:选择性洗脱,洗脱液浓度梯度变化。(5)亲和介质的处理:①0.5—1.0 mol/L NaCl中性盐处理,除去离子性较强的杂质。②异丙醇处理,除去疏水性较强的杂质。③6 mol/L 脲处理,除去中性分子杂质。④6mol/L 盐酸胍处理,除去中性分子杂质。(6)亲和层析介质的保存:亲和层析介质一般保存于溶胀状态,保存温度4~8℃,不可冷冻,否则会破坏凝胶的珠状结构。在保存溶液中加入20%的乙醇或0.02%的硫柳汞以防止长菌。活化的rhiol-Sepharose 4B或thiopropyl-Sepharose 6B带巯基的介质不能用硫柳汞。

四、影响亲和层析的主要因素:①样液体积的影响;②流速的影响;③柱长的影响;④温度的影响。

五、应用实例:(1)GSH-Sepharose 4B亲和层析分离谷胱甘肽转硫酶;(2)CHOM-Sepharose 4B亲和层析分离胰蛋白酶。

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

GST亲和层析介质使用说明书

GST亲和层析介质使用说明书 一、简介 GST亲和层析介质(GST Agarose)是专门设计用于纯化谷胱甘肽S-转移酶(GST)融合蛋白、其它谷胱甘肽转移酶以及与谷胱甘肽有亲和作用蛋白的分离介质,一步分离就可得到高纯度的GST融合目标蛋白,纯化条件温和,可以保证蛋白的活性。 本产品是自主设计合成的GST琼脂糖凝胶,具有优良的物理和化学稳定性,使用寿命长,操作方便,批次重复性好,易于放大,是研发与生产的理想选择。 二、性能参数 三、适用范围 分离谷胱甘肽S-转移酶(GST)融合蛋白、其它谷胱甘肽转移酶以及与谷胱甘肽有亲和作用的蛋白。 四、操作说明 1. 缓冲液配制 缓冲液A(平衡缓冲液):10mM Na2HPO4,1.8mM KH2PO4,140mM NaCl,2.7mM KCl,调节pH值至8.0。 缓冲液B(洗脱缓冲液):10mM Glutathione(还原型),50mM Tris-HCl,调节pH值至8.0。因Glutathione易氧化,需现用现配。 (注:各种溶液配制完毕后,最好进行脱气处理,0.45 μm滤膜过滤备用)。 2. 样品预处理:

按每克湿重菌体/2~5ml平衡缓冲液的比例充分悬浮离心收集的菌体;600w功率,每循环超声3s,冷却3s,循环99×3次,破碎菌体;4℃、15000rpm离心15m,收集上清液,或用0.45μm滤膜过滤。 3. 装柱: 聚苯乙烯层析柱 1) 将层析柱固定在铁架台或层析架上,封闭层析柱下端出口,向柱内充入纯水,排开层析柱内空气,先将垫片完全浸没于水面下方,在保持水平的状态下,小心推向底部,避免垫片下方滞留气泡。 2) 打开层析柱下端出口,排出柱中纯水;在液面低至距垫片1~1.5cm高度时封闭下端出口,用移液枪按需要量吸取介质,或用玻璃棒紧靠柱子内壁引流,将介质加入到层析柱中;静置30min,让介质自然沉降。 3) 从上端管口将另一垫片缓慢推至介质沉降平面,使介质表面保持水平状态,注意避免垫片与介质接触面滞留气泡(如对实验结果要求不严,也可不放入上垫片,以提高流速)。 4) 在使用一段时间后,如果层析柱流速减慢,可先用小镊子沿边缘将垫片推翻,夹出垫片,倒出介质,清洗或更换新的垫片后,按2)、3)所述 玻璃层析柱 1) 将层析柱洗净后垂直固定到铁架台上;向柱中加入蒸馏水,排开柱子中的空气,在蒸馏水排尽以前,关闭柱子出口,在柱内保留5~8cm高度的蒸馏水。 2) 先将介质混匀,用移液枪按需要量吸取介质,或用玻璃棒紧靠柱子内壁引流,将介质加入到层析柱中;静置30min,让介质自然沉降。 3) 从上端管口将转换杆出液端缓慢推至介质沉降平面,使介质表面保持水平状态,注意避免转换杆与介质接触面间滞留气泡。 4) 在使用一段时间后,如果流速减慢,可先卸下上转换杆,将介质倒出,再取出下转换接头中滤网,清洗或更换后重新装柱。 4. 过柱: 1) 用10倍介质体积缓冲液A过柱,平衡介质;

亲和层析基本知识亲和层析法是利用生物大分子与某些对应的专一

一、亲和层析基本知识 亲和层析法是利用生物大分子与某些对应的专 一分子特异识别和可逆结合的特性而建立起来的一 种生物大分子纯化方法,也叫做生物亲和或生物特 异性亲和色谱。这种特异可逆结合的物质很多,如 抗原与抗体、底物与酶、激素与受体等,他们间的 这种特异亲和能力又叫亲和力。 亲和色谱中,一对互相识别的分子互称对方为 配体,如激素可认为是受体的配体,受体也可以认 为是激素的配体。 其他组分不产生这种专一性的结合,而直接流出色谱柱。然后,便可以利用洗脱剂将吸附在柱中的生物大分子洗脱下来。 亲和色谱法具有高度的专一性,而且色谱过程简单、快速,是一种理想的有效分离纯化生物大分子的手段。 二、固相载体的选择 对于一个成功的亲和色谱分离来说,一个重要的因素就是选择合适的固体载体。一个理想的载体,首先它必须尽可能少地同被分离的物质进行相互作用,以避免非特异的吸附作用。因此,优先选用的是中性聚合物,例如,琼脂糖或聚丙烯酰胺凝胶。其次,载体必须具有良好的通透性,即使在亲和剂键合在它的表面之后也必须保持这种特性。连接亲和剂的先决条件是有足够量的某些化学基团存在,这些基团在不影响载体的结构,也不影响被连接的亲和剂的条件下被活化或衍生。载体在结合亲和剂后,必须在机械性能和化学性质上具有稳定性,而且在改变pH、离子强度、温度以及变性剂的条件下也应该稳定。载体必须有大的孔网结构,允许大分子物质自由出入。再者,载体的组成大小也应均匀。高孔度对于大分子物质的分离是个重要的条件,它的主要作用是提供欲分离的物质与配体间的接触机会。配体大多结合在载体的孔内部,孔太小,生物大分子进不去,即使配体偶联率很高,结合生物大分子的量也不会太大。这不是我们所希望的。一般常用的载体有纤维素、葡聚糖凝胶、琼脂糖凝胶、聚丙烯酰胺凝胶和多孔玻璃等。 三、配体的选择 亲和层析的固体基质具有一个与之共价相连的特殊结合分子(如配位体),连接后的配体对互补分子的亲和力不会改变。配体是发生亲和反应的功能部位,也是载体和被亲和分子

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

镍离子金属鳌合亲和层析介质(Ni-NTA)说明

镍离子金属鳌合亲和层析介质(Ni-NTA)说明书 一、简介 金属螯合亲和层析介质,又称固定金属离子亲和色谱,其原理是利用蛋白质表面的一些氨基酸,如组氨酸能与多种过渡金属离子如Cu2+,Zn2+,Ni2+,Co2+,Fe3+发生特殊的相互作用,能够吸附富含这类氨基酸的蛋白质,从而达到分离纯化的目的。因此,偶联这些金属离子的琼脂糖凝胶就能够选择性地分离出这些含有多个组氨酸的蛋白以及对金属离子有吸附作用的多肽、蛋白和核苷酸。半胱氨酸和色氨酸也能与固定金属离子结合,但这种结合力要远小于组氨酸残基与金属离子的结合力。 镍NTA亲和层析介质(Ni-NTA )具有特异性好、流速快的优点,颗粒粒度均匀,粒径小,并且螯合镍更稳定,能耐受更高的还原剂,物理和化学稳定性好,批次重复性好。本产品已经螯合好镍离子,使用更方便。 二、性能参数: 特点基团密度高,载量大,分辨率高,使用方便 基质6%的交联琼脂糖凝胶 配体 Ni2+ 配体密度20-40μmol /ml 吸附载量15mg蛋白/ml 介质颗粒大小45-165μm 最大流速600cm/h pH范围3-10,在位清洗时pH范围可到2-11 保存温度+4-8℃ 保存液体20%乙醇 三、适用范围 分离带His标签的重组蛋白及能被金属离子吸附的多肽、蛋白、核苷酸、磷酸化蛋白。四、应用实例 实验名称:Ni-NTA 分离带His标签的重组蛋白 实验步骤: 1、Ni-NTA 装柱,1.6×20cm,柱床体积为10ml; 2、用缓冲液1平衡2~5个床体积,流速为2ml/min; 3、将20ml细胞破碎液(50mM PBS,pH7.4,0.5M NaCl)0.45μm滤膜过滤,上样,流速为 1ml/min;

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

亲和层析柱使用说明

亲和层析柱使用说明货号 名称规格说明DS0101 亲和层析柱1ml 含1个空管柱,上下盖和2个筛板(亲水性,孔径50um) DS0103 亲和层析柱3ml DS0106 亲和层析柱6ml DS0110 亲和层析柱10ml DS0130 亲和层析柱30ml DS0150 亲和层析柱50ml 一、产品说明 亲和层析是利用生物分子间所具有的专一亲和力而设计的层析技术。它是利用生物分子间 存在很多特异性的相互作用(如抗原和抗体、酶 和底物或抑制剂、激素和受体等),通过将具有 亲和力的两个分子中的一个固定在不溶性基质 上,利用分子间亲和力的特异性和可逆性,对另 一个分子进行分离纯化。 提供的亲和层析柱工具可应用于如下方面: ①纯化重组蛋白;②纯化抗原和抗体;③纯化多 肽;④纯化DNA;⑤糖蛋白的纯化;⑥纯化磷酸 化蛋白和肽;⑦DNA 结合蛋白的纯化;⑧去除内毒素,等。 亲和层析柱空柱管的材质为医疗级的聚丙烯,这种工程材料通过大量的应用证明具有清洁无毒,不与生物分子结合和低溶解度的优点。 亲和层析柱空柱所用的筛板是选用纯净的UHWM-PE(超高分子量聚乙烯)为原料,经独特的工艺加工而成,具有亲水性。筛板在装填时安置在填料基质的上下端,以阻挡昂贵的基质渗出。亲水性筛板采用了领先的亲水性UHWM-PE 生产技术,该筛板能保证使用重力法时的流速为1-2ml/分钟或1-2滴/秒。同时,该筛板和其它同类产品相比,不会由于亲水性基团的引入而对蛋白质产生吸附。另外,该亲水性筛板在使用过程中不易形成气泡,气泡会使流速降低,液体通过基质不均匀。

二、产品应用 1,抗体纯化 纯化抗体一般用Protein A作为纯化的配体,也可以用Protein G或Protein L或异源性抗体作为配体。 2,小分子物质提取(以提取黄曲霉毒素M1为例) 试样通过免疫亲和柱时,黄曲霉毒素M1被提取。亲和柱内含有的黄曲霉毒素M1特异性单克隆抗体交联在固体支持物上,当样品通过亲和柱时,抗体选择性的与黄曲霉毒素M1(抗原)键合,形成抗体一抗原复合体。用水洗柱除去柱内杂质,然后用洗脱剂洗脱吸附在柱上的黄曲霉毒素M1,收集洗脱液。用带有荧光检测器的高效液相色谱仪测定洗脱液中黄曲霉毒素M1含量。 3,重组蛋白纯化 近年来,随着生物技术,特别是基因工程技术的迅猛发展,重组蛋白表达和纯化越来越容易。常用的重组蛋白表达策略是把蛋白与亲和标签融合表达,利用亲和标签一步纯化出目标蛋白。此方法无需了解蛋白质的生化特性或生理活性,就可通过带标签的重组融合蛋白选择性地与层析基质上的配体结合,从而得以纯化任何蛋白质。此方法与常规的层析方法不同之处在于,无需针对不同的蛋白质开发特定的配体和方法。采用保护蛋白质结构和功能完整性的温和条件,可一步亲和层析从粗提物中纯化出重组蛋白,纯度可达90%以上。 亲和标签已成为后基因组学时代纯化重组蛋白常用手段。亲和标签系统一般具有以下特征:(a)一步的吸附纯化;(b)对三级结构和生物活性影响小;(c)可方便且专一的去除以产生天然蛋白质;(d)在纯化过程中重组蛋白的分析简便准确;(e)适用于大量的不同蛋白质。但是没有哪个标签是完美的,只能根据实际需要去自己筛选,下表是分的标签以及纯化的方案。

Ni柱亲和层析纯化poly-his变性重组蛋白的标准操作规程

Ni柱亲和层析纯化poly-his变性重组蛋白的标准操作规程(编号:066)1、目的及适用范围 利用Ni2+鳌合层析纯化体外表达的带有His标签的包涵体重组蛋白。 2、主要仪器 超声破碎仪、冷冻离心机、Ni柱、垂直混匀仪 3、主要试剂 3.1 裂解Buffer:50mM Tris,5mM EDTA,0.8%NaCl,pH8.5 3.2 变性剂:6M盐酸胍,2mM EDTA, 50mM Tris,10mM DTT,pH8.5 3.3 Buffer B:8M尿素,0.1M NaH2PO4,10mM Tris,pH8.0 3.4 Buffer C:8M尿素,0.1M NaH2PO4,10mM Tris,pH6.3 3.5 Buffer D:8M尿素,0.1M NaH2PO4,10mM Tris,pH5.9 3.6 Buffer E:8M尿素,0.1M NaH2PO4,10mM Tris,pH 4.5 4、相关的预处理 Ni柱的预处理: 4.1用5个柱体积的无菌水冲洗柱子; 4.2用5个柱体积的0.1M NiSO4冲洗柱子,使柱子挂Ni; 4.3用5个柱体积的无菌水冲洗柱子,除去多余的Ni; 4.4用5个柱体积的酸性Buffer冲洗柱子(使柱子变得疏松); 4.5用5个柱体积的Buffer B平衡柱子。 5、操作步骤 5.1蛋白的纯化 5.1.1大肠杆菌诱导表达目的蛋白; 5.1.2 4500rpm,离心10-15min,收集菌体; 5.1.3用裂解buffer重悬菌体,8000rpm离心10min,弃上清,收集菌体; 5.1.4 将菌体用裂解buffer重悬,超声破碎菌体; 5.1.5 4℃,12000rpm离心15min,弃上清; 5.1.6 将沉淀用PBST洗涤,4℃,12000rpm离心10min,重复1次; 135

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。 (1)表面预处理法 将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇(甲氧基硅烷选择甲醇,乙氧基硅烷选择乙醇)、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值,除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 (2)直接添加方法 将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂具体使用方法 (1)预处理填料法 将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

偶联剂的运用

1.钛酸酯偶联剂 钛酸酯偶联剂的分子可以划分为六个功能区,它们在偶联机制中分别发挥各自的作用。六个功能区如下图所示: 功能区①(RO)m -起无机物与钛偶联。 钛酸酯偶联剂通过它的烷氧基直接和填料或颜料表面所吸附的微量羧基或羟基进行化学作用而偶联。 由于功能区①基团的差异开发了不同类型偶联剂,每种类型对填料表面的含水量有选择性,各类型特点: 1、单烷氧基型; 单烷氧基钛酸酯在无机粉末和基体树脂的界面上产生化学结合,它所具有的极其独特的性能是在无机粉末的表面形成单分子膜,而在界面上不存在多分子膜。 因为依然具有钛酸酯的化学结构,所以在过剩的偶联剂存在下,使表面能变化,粘度大幅度降低,在基体树脂相由于偶联剂的三官能基和酯基转移反应,可使钛酸酯分子偶联,这就便于钛酸酯分子的变型和填充聚合物体系的选用。 该类偶联剂(除焦磷酸型外)特别适合于不含游离水,只含化学键合水或物理键合水的干燥填充剂体系,如碳酸钙、水合氧化铝等。 2、单烷氧基焦磷酸酯型: 该类钛酸酯适合于含湿量较高的填充剂体系,如陶土、滑石粉等,在这些体系中,除单烷氧基与填充剂表面的羟基反应形成偶联外,焦磷酸酯基还可以分解形成磷酸酯基,结合一部份水。 i-单烷氧脂肪酸酯型

ii-单烷氧磷酸酯型 iii-单烷氧焦磷酸酯型 3、配位型: 可以避免四价钛酸酯在某些体系中的副反应。如在聚酯中的酯交换反应,在环氧树脂中与羟基的反应,在聚氨酯中与聚醇或异氰酸酯的反应等。该类偶联剂在许多填充剂体系中都适用,有良好的偶联效果,其偶联机理和单烷氧基型类似。 4、螫合型: 该类偶联剂适用于高湿填充剂和含水聚合物体系,如湿法二氧化硅、陶土、滑石粉、硅酸铝、水处理玻璃纤维、灯黑等,在高湿体系中,一般的单烷氧基型钛酸酯由于水解稳定性较差,偶联效果不高,而该型具有极好的水解稳定性,在此状态下,显示良好的偶联效果。 氧乙酸螯合型 乙二醇螯合型 功能区② -(--O……)--具有酯基转移和交联功能。 该区可与带羧基的聚合物发生酯交换反应,或与环氧树脂中的羧基进行酯化反应,使填充剂、钛酸酯和聚合物三者交联。 酯交换反应性受以下几个因素支配: 1、钛酸酯分子与无机物偶联部份的化学结构;

(推荐)蛋白纯化-Ni亲和层析柱法

Ni亲和层析柱法纯化带组氨酸标签的重组蛋白 纯化设备: 纯化仪:?KTA purifier(GE Healthcare, Uppsala, Sweden) Ni亲和层析柱:HisTrap TM HP-5 mL (GE Healthcare, , Uppsala, Sweden) 试剂: 所有上柱的试剂均需经0.2 μM孔径过滤器过滤并超声波震荡除气处理方可使用。 Binding Buffer:20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 5 mM 咪唑 Elution Buffer:20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 500 mM 咪唑 Stripping Buffer: 20 mM Na2HPO4-NaH2PO4, pH 7.4, 500 mM NaCl, 50 mM EDTA 20%乙醇:200 mL无水乙醇,加蒸馏水定容至1L 0.1M NiSO4: 称取2.6284g NiSO4·6H2O,加蒸馏水溶解,定容至100 mL 操作步骤: 1 样品前处理 取诱导后菌液50 mL,4℃、5000 rpmin离心10 min收集菌体,以25 mL Binding Buffer 重悬菌体,冰浴下超声波破碎至澄清,4℃、12000 rpmin离心25 min,取上清,经0.2 μM 孔径过滤器过滤后待用。 2 Ni柱前处理 上样前,使用10倍柱体积的Binding Buffer以5 mL/min的流速平衡镍柱。 3 上样 经离心、过滤处理后的样品以1 mL/min的流速通过衡流泵加载到平衡后的Ni柱上,收集穿透液,可反复上样以提高样品的挂柱效率。 4 平衡上样后的Ni柱 将已结合目的蛋白的Ni柱回接到?KTA pur ifier上,用10倍柱体积的Binding Buffer 以5 mL/min的流速再次平衡镍柱以去除未结合上的蛋白。 5 梯度洗脱 以梯度的Elution Buffer/Binding Buffer混合液洗脱Ni柱(梯度的界定因蛋白而不同,可经预实验确定),流速为5 mL/min,并监测OD280值,收集蛋白吸收峰对应的洗脱液

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

偶联剂在涂料中的应用

偶联剂在涂料中的应用 1、应用机理: 偶联剂和表面活性剂的区别: 在涂料制造过程中,需要将属于亲水的极性物质颜、填料分散到属于疏水的非极性物质有机基料中去。为了增加无机物与有机高分子之间的亲合性,一般要用偶联剂或其它表面活性剂等处理无机物的表面,使它由亲水变为疏水性,从而促进无机物和有机物之间的界面结合。 偶联剂和表面活性剂在分子结构和应用性能方面有些相似,但也有差别。二者都是由亲水和疏水两种基团组成。表面活性剂通过分子中亲水基团定向吸附在无机颜、填料表面形成单分子层,这是一种物理吸附现象,从而提高颜填料在基料中的分散性和润湿性,因此仅是物理吸附,所以表面活性剂有迁移现象影响光泽,外观和附着力。偶联剂是通过化学反应和无机颜填料表面进行偶联结合并和高分子基料进行交联,把两种不同性质的物质结合起来,起桥梁作用,从结合强度,提高颜、填料在基料中的分散程序以及降低界面自由能的幅度,偶联剂都大大胜过表面活性剂。 (2)偶联剂的偶联机理: 关于偶联剂的作用机理,一般认为是在单烷氧钛酸酯偶联剂中只有一个异丙氧基团是能和无机物偶联的水解基团,因此就可以在无机颜、填料的表面形成单分子层相比之下,钛酸酯偶联剂更能紧密地把无机颜产填料和有机高分子材料连接起来,充分发挥每个钛酸酯分子的作用。因此,用量小、效果大。由于钛酸酯偶联剂以单分子状态包复在无机颜、填料表面取代原来吸附的微量水分及气体,同时通过分子中长碳链疏水性非水介基闭,增加了和有机高分子基料的相容性,降低界面的自由能,从而有利于粉体聚集体被有机高分子基料所润湿和分散。 2、实用研究 鉴于钛酸酯偶联剂在涂料工业中的应用前景非常广阔。国内一些单位正在研制、生产钛酸酯偶联剂,在钙、塑材料方面已经有一定程序的应用和发展,涂料品种结构正由低档向中、高档产品发展。涂料品种正由传统的溶剂型涂料逐步向水性高固体分子溶剂,粉末和无机涂料方向发展,除明显提高涂料的装饰性和保护性外,又要求涂料向高效能、多功能、特效和专用方向发展,需要各种各样新型功能涂料。由于钛酸酯偶联剂独特的结构和多品种、多功能的特性。虽然用量少,却能满足涂料多方面的性能要求。 钛酸酯偶联剂应用在涂料中的研究,国外报导得较多,国内研究尚未大量投入。我公司联合国内部分大专院校及研究单位,投入较大科技力量,做了大量的工作,以各类钛酸酯偶联剂为主,辅以多种添加剂,推出了系列十余品种的涂料、油墨、专用助剂,堪与进口助剂比美,价格适中。 3、应用功能: 由于钛酸酯偶联剂分子结构中6个不同的功能区的特点,可以根据涂料工业的需要设计出不同基团的钛酸酯偶联剂,使其成为特定的,或兼有多种功能的偶联剂,赋于涂料\油墨具有如下功能。 (1)良好的分散润湿功能,能明显提高大部分无机与有机颜、填料在有机基料中的分散性,对炭黑、酞箐兰、铁红、中铬黄等分散也特有效。 (2)防沉性能好,提高贮存稳定性。 (3)有助磨作用,能缩短研磨道数和时间,同样研磨时间可使粒子研磨得更细。 (4)能增加漆膜对基材的附着力,提高漆膜对各种金属,玻璃及无机材料的粘结性,改善耐磨擦性,提高冲击强度,增加柔软性。

亲和层析技术

亲和层析技术 (一)原理 亲和层析是一种吸附层析,抗原(或抗体)和相应的抗体(或抗原)发生特异性结合,而这种结合在一定的条件下又是可逆的。所以将抗原(或抗体)固相化后,就可以使存在液相中的相应抗体(或抗原)选择性地结合在固相载体上,借以与液相中的其他蛋白质分开,达到分离提纯的目的。 此法具有高效、快速、简便等优点。 (二)载体的基本要求和选择 理想的载体应具有下列基本条件:①不溶于水,但高度亲水;②惰性物质,非特异性吸附少;③具有相当量的化学基团可供活化;④理化性质稳定;⑤机械性能好,具有一定的颗粒形式以保持一定的流速;⑥通透性好,最好为多孔的网状结构,使大分子能自由通过;⑦能抵抗微生物和醇的作用。 可以做为固相载体的有皂土、玻璃微球、石英微球、羟磷酸钙、氧化铝、聚丙烯酰胺凝胶、淀粉凝胶、葡聚糖凝胶、纤维素和琼脂糖。在这些载体中,皂土、玻璃微球等吸附能力弱,且不能防止非特异性吸附。纤维素的非特异性吸附强。聚丙稀酰胺凝胶是目前的首选优良载体。 琼脂糖凝胶的优点是亲水性强,理化性质稳定,不受细菌和酶的作用,具有疏松的网状结构,在缓冲液离子浓度大于0.05Mol/L时,对蛋白质几乎没有非特异性吸附。琼脂糖凝胶极易被溴化氢活化,活化后性质稳定,能经受层析的各种条件,如0.1Mol/L NaOH或1Mol/L HCl处理2h~3h及蛋白质变性剂7Mol/L尿素或6Mol/L盐酸胍处理,不引起性质改变,故易于再生和反复使用。 琼脂糖凝胶微球的商品名为Sepharose,含糖浓度为2%、4%、6%时分别称为2B、4B、6B。因为Sepharose 4B的结构比6B疏松,而吸附容量比2B大,所以4B应用最广。 (三)试剂与配制 1.Sepharose 4B 2.CNBr(剧毒)

偶联剂的种类、特点及应用

偶联剂的种类、特点及应用 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。偶联剂分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能、光性能等。偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐老化性能,并且能减小NR用量,从而降低成本。偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯的偶联剂等,目前应用范围最广的是硅烷偶联剂和钛酸酯偶联剂。 1 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早的偶联剂。由于其独特的性能及新产品的不断问世,使其应用领域逐渐扩大,已成为有机硅工业的重要分支。它是近年来发展较快的一类有机硅产品,其品种繁多,结构新颖,仅已知结构的产品就有百余种。1945年前后由美国联碳(UC)和道康宁(DOW CORNING)等公司开发和公布了一系列具有典型结构的硅烷偶联剂;1955年又由UC公司首次提出了含氨基的硅烷偶联剂;从1959年开始陆续出现了一系列改性氨基硅烷偶联剂;20世纪60年代初期出现的含过氧基硅烷偶联剂和60年代末期出现的具有重氮和叠氮结 构的硅烷偶联剂,又大大丰富了硅烷偶联剂的品种。近几十年来,随着玻璃纤维增强塑料的发展,促进了各种偶联剂的研究与开发。改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂的合成与应用就是这一时期的主要成果。我国于20世纪60年代中期开始研制硅烷偶联剂。首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂。 1.1 结构和作用机理 硅烷偶联剂的通式为RNSIX(4-N),式中R为非水解的、可与高分子聚合物结合的有机官能团。根据高分子聚合物的不同性质,R应与聚合物分子有较强的亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等。X为可水解基团,遇水溶液、空气中的水分或无机物表面吸附的水分均可引起分解,与无机物表面有较好的反应性。典型的X基团有烷氧基、芳氧基、酰基、氯基等;最常用的则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物。由于氯硅烷在偶联反应中生成有腐蚀性的副产物氯化氢,因此要酌情使用。 近年来,相对分子质量较大和具有特种官能团的硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等。LAWRENCE等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中的甲基硅烷氧端基水解生成的硅羟基与碳纤维表面 的羟基官能团进行键合,结果复合材料的拉伸强度和模量提高,空气孔隙率下降。早在1947年美国JOHNSHOPKINS大学的WITTRW等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面的研究中发现,用含有能与树脂反应的硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强 度可提高2倍以上。他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键。这是人们第一次从分子的角度解释表面处理剂在界面中的状态。

亲和层析预装柱和填料选择指南

18-1121-86Edition AG Affinity CHROMATOGRAPHY columns AND media Product profile

Ordering Information

Affinity Chromatography (AC) Affinity Chromatography separates proteins on the basis of a reversible interaction between a protein (or group of proteins)and a specific ligand attached to a chromatographic matrix. Affinity Chromatography can be used whenever a suitable ligand is available. The target protein(s) is specifically and reversibly bound by a complementary binding substance (ligand). The sample is applied under conditions that favour specific binding to the ligand. Unbound material is washed away, and the bound target protein is recovered by changing conditions to those favouring desorption.Desorption is performed specifically, using a competitive ligand,or non specifically, by changing the pH, ionic strength or polarity.Proteins are concentrated during binding and collected in a purified, concentrated form. The key stages in a separation are shown in Figure 1. Affinity Chromatography may also be used to remove specific contaminants, for example Benzamidine Sepharose FF (high sub)removes serine proteases such as trypsin, thrombin and factor Xa,and Blue Sepharose HP removes albumin. Media selection Parameters such as scale of purification and commercial availability of affinity matrices should be considered when selecting affinity media. HiTrap affinity columns are ideal for method optimization or small scale purification of target proteins using well established protocols. Affinity media can be prepared by coupling a ligand to a selected gel matrix. HiTrap NHS-activated HP is designed specifically to facilitate this process and is supplied with a recommended coupling procedure for coupling primary amines. For separations of glycoproteins and polysaccharides, media screening may be required to select the correct specificity. Figure 1. Typical affinity separation. Immunoglobulins While protein A and protein G affinity media are similar in many respects, their specificities for IgG differ. Protein G affinity media are the better choice for general purpose capture of antibodies since they bind IgG from a broader range of eukaryotic species and bind more subclasses of IgG. Species-specific examples include stronger binding of polyclonal IgG from cow, sheep and horse to protein G. Polyclonal rat IgG, human IgG 3 and mouse IgG 1 are bound by protein G but not by protein A. Generally,protein G has greater affinity for IgG and minimal binding of albumin resulting in cleaner preparations and greater yield.Conversely, protein A may be the better choice for isolating certain subclasses of IgG or for removing cross-species IgG contaminants from horse or foetal calf serum, for example.Purification of human and mouse IgM is possible by the use of HiTrap IgM Purification HP 1 ml column. The thiophilic adsorption media with 2-mercaptopyridine coupled to Sepharose HP is designed for one-step purification protocol resulting in 80–95%pure IgM. Purification of IgY from egg yolk is easily performed using HiTrap IgY Purification HP 5 ml column. The purity is over 70% in one-step using this special designed medium. Fusion proteins Expression of fusion proteins is needed when larger quantities of target protein are required for further characterization. We offer products to facilitate every step in this process, from choosing the correct expression system through to selecting the most suitable purification solution for GST and His-tagged proteins. Purification of a glutathione S-transferase fusion protein is simple, using mild elution conditions that minimize the risk of damage to the functionality of the target protein. The GST-tag is easily detected and can be removed in one-step if required.For routine purification of larger quantities of GST-tagged proteins, GSTrap FF, prepacked HiTrap 1 ml and 5 ml columns with Glutathione Sepharose 4 FF and HisTrap or HiTrap Chelating HP , for His-tagged proteins, provide the ideal solution.The columns are compatible with ?KTAdesign chromatography systems to ensure reproducible results under optimized conditions. Optimization parameters 1.Select correct specificity for target protein. 2.Follow manufacturer’s recommendations for binding and elution conditions. 3.Select optimum flow rate for sample application to achieve efficient binding. 4.Select optimum flow rate for elution to maximize recovery. 5.Select maximum flow rate for column regeneration to minimize run times. adsorption of sample and flow through of wash away unbound elute bound

相关文档
最新文档