动能定理经典计算题

动能定理经典计算题
动能定理经典计算题

动能定理经典计算题

动能和动能定理经典试题

例1 一架喷气式飞机,质量m=5×103kg,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力。

例 2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g取10m/s2)

2-7-2

则拉力F 所做的功为( )

A. mgl cos θ

B. mgl (1-cos θ)

C. Fl cos θ

D. Flsin θ

例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为

F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.

例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数2

3

=

μ,g 取10m/s 2。

(1) 试通过计算分析工件在传送带上做怎样的运

2-7-3

θ

F

O

P

Q

l

高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)含解析

高中物理动能与动能定理的基本方法技巧及练习题及练习题(含答案)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求: (1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度; (3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离. 【答案】(1)5m/s ;10m/s ;(2)2 3.510B m L -=?(3)22.510m -? 【解析】 【分析】 【详解】 试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 2 12 h gt = 解得:t=0.40s A 离开桌边的速度A s v t = ,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒: 0()A B mv Mv M m v =++ B 离开桌边的速度v B =10m/s (2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒: 012A mv mv Mv =+ v 1=40m/s 子弹在物块B 中穿行的过程中,由能量守恒 2221111()222 B A B fL Mv mv M m v = +-+① 子弹在物块A 中穿行的过程中,由能量守恒 222 01111()222 A A fL mv mv M M v =--+②

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

物理动能与动能定理练习题含答案及解析

物理动能与动能定理练习题含答案及解析 一、高中物理精讲专题测试动能与动能定理 1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=?的光滑直轨道AC 上的B 点由静止开始下滑,到达 C 点后进入半径为5m R =,圆心角为53θ=?的圆弧形光滑轨道C D ,过D 点后滑入倾 角为α(α可以在075α?剟 范围内调节)、动摩擦因数为 3 μ=的足够长的草地轨道DE 。已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到 C 点的距离为0=10m L ,10m/s g =。求: (1)滑草车经过轨道D 点时对轨道D 点的压力大小; (2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式; (3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。 【答案】(1)3000N ;(2) 3sin cos 32 t αα= ??+ ? ?? ;(3)见解析 【解析】 【分析】 【详解】 (1)根据几何关系可知CD 间的高度差 ()CD 1cos532m H R =-?= 从B 到D 点,由动能定理得 ()20CD D 1 sin 5302 mg L H mv ?+=- 解得 D 102m/s v = 对D 点,设滑草车受到的支持力D F ,由牛顿第二定律 2 D D v F mg m R -= 解得

D 3000N F = 由牛顿第三定律得,滑草车对轨道的压力为3000N 。 (2)滑草车在草地轨道DE 向上运动时,受到的合外力为 sin cos F mg mg αμα=+合 由牛顿第二定律得,向上运动的加速度大小为 sin cos F a g g m αμα= =+合 因此滑草车第一次在草地轨道DE 向上运动的时间为 D sin cos v t g g αμα = + 代入数据解得 t = ?? (3)选取小车运动方向为正方向。 ①当0α=时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得 []01sin (1cos )+=00f mg L R W θθ+-- 代入数据解得 16000J f W =- 故当0α=时,滑草车在斜面上克服摩擦力做的功为 6000J W =克1 ②当030α<≤?时,则 sin cos g g αμα≤ 滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为 2D 22(sin cos ) v x g g αμα=+ 摩擦力做功为 22cos f W mg x μα=-? 联立解得 2f W = 故当030α<≤?时,滑草车在斜面上克服摩擦力做的功为 2W = 克 ③当3075α?<≤?时 sin cos g g αμα>

高考物理动能定理的综合应用技巧小结及练习题及解析

高考物理动能定理的综合应用技巧小结及练习题及解析 一、高中物理精讲专题测试动能定理的综合应用 1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求: (1)滑雪运动员沿山坡下滑时的加速度大小a; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f; (3)滑雪运动员在全过程中克服阻力做的功W f. 【答案】(1)4m/s2(2)f = 70N (3)1.75×104J 【解析】 【分析】 (1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度. (2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】 (1)根据匀变速直线运动规律得:x=1 at2 2 解得:a=4m/s2 (2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma 解得:f=70N (3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】 解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功. 2.如图所示,AC为光滑的水平桌面,轻弹簧的一端固定在A端的竖直墙壁上.质量 的小物块将弹簧的另一端压缩到B点,之后由静止释放,离开弹簧后从C点水平1 m kg

动能 动能定理基础习题归类

动能动能定理基础习题 一、深刻理解动能定理 1.一辆汽车一辆汽车以v1=6m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6m,如果汽车以v2=8m/s的速度行驶,在同样路面上急刹车后滑行的距离s2应为() A.6.4m B.5.6m C.7.2m D.10.8m 2.一子弹以水平速度v射入一树干中,射入深度为S. 设子弹在树中运动所受阻力是恒定的,那么子弹以v/2的速度水平射入树干中,射入深度是() A. S B. S/2 C. 2 2S D.S/4 3、关于物体的动能,下列说法中正确的是() A.一个物体的动能可能小于零B.一个物体的动能与参考系的选取无关 C.动能相同的物体速度一定相同D.两质量相同的物体,若动能相同,其速度不一定相同 4、关于公式W=E k2-E k1= E k,下述正确的是() A、功就是动能,动能就是功 B、功可以变为能,能可以变为功 C、动能变化的多少可以用功来量度 D、功是物体能量的量度 5. 光滑水平面上的物体,在水平恒力F作用下,由静止开始运动. 经过路程L1速度达到 v,又经过路程L2速度达到2v,则在L1和L2两段路程中,F对物体所做功之比为() A. 1:1 B. 1:2 C.1:3 D.1:4 6.下列说法中正确的是() A. 物体所受合外力对物体做功多,物体的动能就一定大 B. 物体所受合外力对物体做正功,物体的动能就一定增大 C. 物体所受合外力对物体做正功,物体的动能有可能减小 D. 物体所受合外力对物体做功多,物体的动能的变化量就一定大 7、下列关于运动物体所受合外力和动能变化的关系正确的是() A、如果物体所受合外力为零,则合外力对物体做的功一定为零 B、如果合外力对物体所做的功为零,则合外力一定为零 C、物体在合外力作用下做变速运动,动能一定发生变化 D、物体的动能不变,所受合外力一定为零 二、应用动能定理求变力做功 8.如图,物体沿一圆面从A点无初速度的滑下,滑至圆面的最低点B时 速度为6m/s,求这个过程中物体克服阻力做的功。 (已知物体质量m为1kg , 半径为R =5m , g=10m/s2)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

动能定理和机械能守恒定律练习题(附标准答案)

动能定理和机械能守恒定律练习题 一、单选题(每题3分) 考点一:动能与功一样,是标量,不受速度方向的影响 1、(10年广东学业水平测试题)某同学投掷铅球.每次出手时,铅球速度的大小相等,但方向与水平面的夹角不同.关于出手时铅球的动能,下列判断正确的是( ) A.夹角越大,动能越大 B .夹角越大,动能越小 C .夹角为45o时,动能最大 D .动能的大小与夹角无关 2、一个质量为0.3kg 的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后速度大小与碰撞前相同。则碰撞前后小球速度变化量的大小△v 和碰撞过程中墙对小球做功的大小W 为( ) ①0=?υ ②s m /12=?υ ③0=W ④8.10=W J A 、①③ B 、①④ C 、②③ D、②④ 考点二:对动能定理的理解:动力做正功使物体动能增大,阻力做负功使物体动能减少,它们共同作用的结果,导致了物体动能的变化 3、关于做功和物体动能变化的关系,正确的是( ) A 、只有动力对物体做功时,物体动能可能减少 B 、物体克服阻力做功时,它的动能一定减少 C、动力和阻力都对物体做功,物体的动能一定变化 D 、外力对物体做功的代数和等于物体的末动能和初动能之差 考点三:动能定理的简单计算: W 总=Ek2-E k1,即外力对物体所做的总功等于物体动能的变化(末减初) 4.(10年广东学业水平测试)水平地面上,一运动物体在10 N 摩擦力的作用下,前进5 m 后停止,在这一过程中物体的动能改变了( ) A .10 J B.25 J C.50 J D .100 J 5、一质量为2kg 的滑块,以4m/s 的速度在光滑的水平面上滑动,从某一时刻起,给滑块施加一个与运动方向相同的水平力,经过一段时间,滑块的速度大小变为5m/s ,则在这段时间里,水平力做的功为( ) A 、9J B 、16J C、25J D 、41J 6、一学生用100N 的力将质量为0.5kg 的球以8m /s 的初速度沿水平方向踢出20m 远,则这个学生对球做的功是( ) A、200J B 、16J C 、1000J D、无法确定 7、如图,在高为H 的平台上以初速 抛出一个质量为m 的小球,不计空气阻力,当它到达离抛出点的竖直距离为h 的B 时,小球的动能增量为( ) A 、2021υm +mgH B 、202 1υm +mgh C 、mgH mgh - D、mgh 8、质量不等但有相同初速度的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则下列判断正确的是( ) A 、质量大的物体滑行距离大 B、质量小的物体滑行距离大 C 、它们滑行的距离一样大 D 、质量小的滑行时间短 考点四:动能定理的简单应用:几个常见的模型 9、(子弹打木块)如上图,一颗0.1k g子弹以500m/s 的速度打穿第一块固定木板后速度变为

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

最新动能定理练习题(附答案)

A 动能定理练习题 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向 上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:2201122 mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出, 在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →: k W E ∑=?”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. v m v 'O A → A B →

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案).docx

高中物理动能与动能定理解题技巧及经典题型及练习题( 含答案 ) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在 A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=1.0m 的圆环剪去了左 上角 120°的圆弧, MN 为其竖直直径,P 点到桌面的竖直距离是h=2.4m。用质量为 m=0.2kg 的物块将弹簧由 B 点缓慢压缩至 C 点后由静止释放,弹簧在 C 点时储存的弹性势能 E p=3.2J,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数μ=0.4,重力加速度 g 值取 10m/s 2,不计空气阻力,求∶ (1)物块通过 P 点的速度大小; (2)物块经过轨道最高点M 时对轨道的压力大小; (3)C、D 两点间的距离; 【答案】 (1)8m/s ;(2)4.8N; (3)2m 【解析】 【分析】 【详解】 (1)通过 P 点时,由几何关系可知,速度方向与水平方向夹角为60o,则 v y22gh sin 60o v y v 整理可得,物块通过P 点的速度 v8m/s (2)从 P 到 M 点的过程中,机械能守恒 1mv2 =mgR(1cos60o )+1mv M2 22 在最高点时根据牛顿第二定律 mv M2 F N mg R 整理得 F N4.8N 根据牛顿第三定律可知,物块对轨道的压力大小为 4.8N

(3)从 D 到 P 物块做平抛运动,因此 v D v cos60o4m/s 从 C 到 D 的过程中,根据能量守恒定律 E p mgx 1 mv D2 2 C、D 两点间的距离 x 2m 2.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D,处于自然长度的轻质弹簧一 端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L=8m。质量 m=1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面 数μ=0.25, g 取 10m/s 2, sin37 =0°.6, cos37°=0.8。求: PO 间的动摩擦因(1)物块第一次接触弹簧时速度的大小 (2)若弹簧的最大压缩量 d=0.5m,求弹簧的最大弹性势能 (3)物块与弹簧接触多少次,反弹后从O 点沿斜面上升的最大距离第一次小于0.5m 【答案】( 1) 8m/s (2) 35J(3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得: mgL sin mgL cos 1 mv2 2 解得物块第一次接触弹簧时物体的速度的大小为: v2gL sin cos8 m/s (2)物块由O 到将弹簧压缩至最短的过程中,重力势能和动能减少、弹簧的弹性势能增 加,由能量守恒定律可得弹簧的最大弹性势能E p E p 1 mv2mgd sin35 J 2 (3)物块第一次接触弹簧后,物体从O 点沿斜面上升的最大距离s1,由动能定理得: mgs1mgs1 cos0 1 mv2 2 解得: s14m

2021年高中物理动能定理经典计算题和答案

动能和动能定理经典试题 欧阳光明(2021.03.07) 例 1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以 6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运 动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为() A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) 2-7-2

A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过 O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________. 例7如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数23=μ,g 取 10m/s 2。 (1) 试通过计算分析工件在传送带上做怎样的运动? (2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?. 例8如图4所示,AB 为1/4圆弧轨道,半径 为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处 的摩擦系数为μ=1/15,今有质量m=1kg 的物 体,自A 点从静止起下滑到C 点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。 例9电动机通过一条绳子吊起质量为8kg 的物体。绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止 2-7-3 θ F O P Q l 2-7-4

动能定理练习题(答案)

动能定理练习题(参考答案) 一、选择题 1. 【答案】A 【解析】试题分析:受力分析,找到能影响动能变化的是那几个物理量,然后观测这几个物理量的变化即可。 木箱受力如图所示: 木箱在移动的过程中有两个力做功,拉力做正功,摩擦力做负功, 根据动能定理可知即: ,所以动能小于拉力做的功,故A 正确;无法比较动能与摩擦力 做功的大小,CD 错误。 故选A 点睛:正确受力分析,知道木箱在运动过程中有那几个力做功且分别做什么功,然后利用动能定理求解末动能的大小。 (错题,无答案) 2. 【答案】 B 【解析】 由v -t 图象可知:a A ∶a B =2∶1,又由F =ma ,m A ∶m B =2∶1,可得F A ∶F B =4∶1;又由题图中面积关系可知A 、B 位移之比x A ∶x B =1∶2,由做功公式W =Fx ,可得W A ∶W B =2∶1,故选B 。 3. 【答案】C 【解析】设W 弹为弹力对物体做的功,因为克服摩擦力做的功为μmgx ,由动能定理得W 弹-μmgx =12 mv 2-0,得W 弹=12 mv 2+μmgx 。 4. 【答案】ABD 【解析】因小车以恒定的功率运动,故此过程小车电动机做功为W =Pt =F f v max t ,A 、B 均正确;由动能定理 可得W -F f l =12mv 2max -12mv 20,得:W =12mv 2max -12 mv 20+F f l ,故D 正确,C 错误。 5. 【答案】AD 【解析】将汽车的速度沿着平行绳子和垂直绳子方向正交分解,如图所示: 物体的速度为:v 物=v 0cos 30°= 2 v 0,可知物体做变速运动,故A 正确,B 错误。 当θ=90°时,物体速度为零;根据动能定理,知W F -mgh =38mv 02,W F =mgh +38mv 02故D 正确。所以AD 正确

人教版高中物理必修二动能定理计算题专项训练.doc

桑水 高中物理学习材料 桑水制作 物理必修2动能定理计算题专项训练 1如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭 并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2 ) 2一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m / s.人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于多少(g 取10m /s 2 ). 3质量m=10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为多大? 4质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。求:(1)物体的初速度多大?(2)物体和平面间的摩擦系数为多大? (3) 拉力F 的大小?(g 取102 m s /) 5一辆汽车质量为m ,从静止开始起动,沿水平面前进了距离s 后,就达到了最大行驶速度m ax v .设汽车的牵引力功率保持不变,所受阻力为车重的k 倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间. h H

6一辆汽车的质量为5×103㎏,该汽车从静止开始以恒定的功率在平直公路上行驶,经过40S,前进400m 速度达到最大值,如果汽车受的阻力始终为车重的0.05倍,问车的最大速度是多少?(取g=10m/s2) 7一质量M=0.5kg的物体,以v m s 4 =/的初速度沿水平桌面上滑过S=0.7m的路程后落到地面,已知 桌面高h=0.8m,着地点距桌沿的水平距离S m 1 12 =.,求物体与桌面间的摩擦系数是多少?(g取102 m s/) 8如图所示,半径R=1m的1/4圆弧导轨与水平面相接,从圆弧导轨顶端A,静止释放一个质量为m=20g 的小木块,测得其滑至底端B时速度V B=3m/s,以后沿水平导轨滑行BC=3m而停止.求:(1)在圆弧轨道上克服摩擦力做的功? (2)BC段轨道的动摩擦因数为多少? 9如图所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对 物体的动摩擦因数相同,求动摩擦因数μ. 10如图所示,物体自倾角为θ、长为L的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s,则物体与斜面间的动摩擦因数为多少。 11如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足 桑水

动能定理练习题附标准答案.doc

动能定理练习题 1、一质量为 1kg 的物体被人用手由静止向上提高 1m ,这时物体的速度是 2m/s ,求: (1) 物体克服重力做功 . (2)合外力对物体做功 . (3)手对物体做功 . v 解: (1) m 由 A 到 B : W G mgh 10J B m 克服重力做功 1 W 克G W G 10J (2) m 由 A 到 B ,根据动能定理 2: W 1 mv 2 0 2J h N 2 (3) m 由 A 到 B : W W G W F W F 12J A mg 2、一个人站在距地面高 h = 15m 处,将一个质量为 m = 100g 的石块以 v 0 = 10m/s 的速度斜向 上抛出 . (1) 若不计空气阻力,求石块落地时的速度 v. (2) 若石块落地时速度的大小为 v t = 19m/s ,求石块克服空气阻力做的功 W. 解: (1) m 由 A 到 B :根据动能定理: mgh 1 2 1 2 v 20m/s m v 0 mv 2 mv 0 2 (2) m 由 A 到 B ,根据动能定理 3: A B 1 1 mg h mgh 2 2 W 1.95J v W mv t mv 0 2 2 3a 、运动员踢球的平均作用力为 200N ,把一个静止的质量为 1kg 的球以 10m/s 的速度踢出, 在水平面上运动 60m 后停下 . 求运动员对球做的功? 3b 、如果运动员踢球时球以 10m/s 迎面飞来, 踢出速度仍为 10m/s ,则运动员对球做功为多少? 解: v 0 (3a)球由 O 到 A ,根据动能定理 4 v 0 0 v 0 : m 1 W mv 02 0 50J O A B 2 O A A B (3b) 球在运动员踢球的过程中,根据动能定理 5 : N N 1 mv 2 1 mv 2 W 2 2 F f mg mg 1 不能写成: W G mgh 10J . 在没有特别说明的情况下, W G 默认解释为重力所做的功,而在这个过程中重 力所做的功为负 . 2 也可以简写成: “ m : A B : Q WE k ”,其中 WE k 表示动能定理 . 3 此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功 . 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 .

高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k =),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) | — 例3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv=12m/s C. W=0 D. W= 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 22 0- 《 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 2-7-3 θ F O & Q l h H 2-7-2

动能定理练习题附答案

动能定理 1、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求: (1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解: (1) m 由A 到B :根据动能定理: 22 1122 mgH mv mv =- v ∴(2)变力i . (3) m 由B 到C ,根据动能定理: 2f 1 02mgh W mv +=- ()2 f 012W mv m g H h ∴=--+ (4) m 由B 到C : f cos180W f h =?? () 2022mv mg H h f h ++∴= 提示:此题可有A 到C 全程列动能定理,可以试试! 2、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解: (1) m 由1状态到2状态:根据动能定理1: 2111 cos0cos18002Fs mgs mv μ+=- 3.74m/s v ∴= (2) m 由1状态到3状态2:根据动能定理: v t v f

1cos0cos18000Fs mgs μ+=- 100m s ∴= 3、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解: (1) m 由A 到C 3:根据动能定理: f 00mgR W +=- f 8J W mgR ∴=-=- (2) m 由B 到C : f cos180W m g x μ=?? 0.2μ∴= 4、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解4: (1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =?=? 1000N f ∴= (2)汽车由静止到达最大速度的过程中: 6F 1.210J W P t =?=? (2)汽车由静止到达最大速度的过程中,由动能定理: 2 F m 1cos18002 W f l mv +??=- 800m l ∴= 5.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接, . A A f

相关文档
最新文档