2013新人教八年级数学上册期末考试试题

合集下载

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列各运算中,正确的是()A .a³·a²=a 6B .(-4a³)²=16a 6C .a 6÷a²=a³D .(a -1)²=a²-13.若分式23xx +有意义,则x 的取值范围是()A .x≠3B .x≠-3C .x >3D .x >-34.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A+∠B =220°,则∠1+∠2+∠3=()A .140°B .180°C .220°D .320°5.如果229x kxy y -+是一个完全平方式,那么k 的值是()A .3B .±6C .6D .±36.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A .30°B .30°或150°C .60°或150°D .60°或120°7.已知11x y-=3,则代数式232x xy y x xy y +---的值是()A .72-B .112-C .92D .348.下列各式从左到右的变形中,属于因式分解的是()A .m (a+b )=ma+mbB .a 2+4a ﹣21=a (a+4)﹣21C .x 2﹣1=(x+1)(x ﹣1)D .x 2+16﹣y 2=(x+y )(x ﹣y )+169.如图,35AOB ∠=︒,C 为OB 上的定点,M ,N 分别为射线OA 、OB 上的动点.当CM MN +的值最小时,OCM ∠的度数为()A .35︒B .20︒C .45︒D .55︒10.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .83{74y x y x -=-=B .83{74y x y y -=-=C .83{74y x y x -=--=-D .83{74y x y x -=-=-二、填空题11.当=a ____________时,分式44a a --的值为零.12.若点M (m ,﹣1)关于x 轴的对称点是N (2,n ),则m+n 的值是_____.13.如图,OP 平分∠AOB,∠AOP=15º,PC ∥OA,PD ⊥OA 于D,PC =10,则PD =_________.14.1301(2)(3.14)|1|2π-⎛⎫-++--+= ⎪⎝⎭_________.15.如图,ABC ADE △≌△,点D 落在BC 上,且70EDC ∠=︒,则BAD ∠的度数等于_________.16.若关于x 的方程2222x m x x++=--的解为正数,则m 的取值范围是_______.17.把长方形OABC 放在如图所示的平面直角坐标系中,点F 、E 分别在边OA 和AB 上,若点F (0,3),点C (9,0),且∠FEC =90°,EF =EC ,则点E 的坐标为_____.18.若85,a bab +==-,则()2a b -=___________.19.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且24ABC S cm = ,则阴影部分的面积为____2cm.20.如图,在第1个1A BC 中,30B ∠=︒,1A B CB =;在边1A B 上任取一点D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D ;在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第3个23A A E △,按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是________.三、解答题21.计算题:(1)因式分解:229()4()a x y b y x -+-;(2)计算:203)(2)---+-;(3)解分式方程:23193xx x +=--;(4)先化简-+⎛⎫-÷ ⎪+-⎝⎭223a 2a 11a 2a 4,然后从2-,1-,1,2中选择一个合适的整数作为a 的值代入求值.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?24.如图,直角坐标系中,ABC 的三个顶点的坐标分别为(2,1),(1,3),(3,2)--.(1)在图中作出ABC 关于x 轴对称的A B C ''' ,并写出点A '的坐标为________,点B '的坐标为_______,点C '的坐标为_______;(2)求ABC 的面积;25.如图:已知在ABC 中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .试判断CDE 的形状,并说明理由.26.已知:如图,点C 、D ,在线段AB 上,且AC =BD ,AE=BF ,ED ⊥AB ,FC ⊥AB .求证:AE ∥BF .27.如图1,2OA =,4OB =,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC △.(1)求C 点的坐标.(2)如图2,P 为y 轴负半轴上一个动点,当P 点沿y 轴负半轴向下运动时,以P 为顶点,PA 为腰作等腰Rt APD ,过D 作DE x ⊥轴于E 点,求OP DE -的值.参考答案1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D不符合题意.故选:A.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【详解】a3·a2=a5,故A选项错误;(-4a3)2=16a6,故B选项正确;a6÷a2=a4,故C选项错误;(a-1)2=a2-2a+1,故D选项错误.故选:B.【点睛】掌握同底数幂的运算法则.3.B【分析】直接利用分式有意义的条件分析得出答案.【详解】 分式23xx+有意义,∴x的取值范围为:3x≠-.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.C【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.【详解】解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.5.B【分析】根据完全平方式得出k=±2×1×3,求出即可.【详解】∵x2−kxy+9y2是一个完全平方式,∴x2−kxy+9y2=x2±2•x•3y+(3y)2,即k=±6,故选:B.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a2+2ab+b2和a2−2ab +b2.6.B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.7.D【分析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.8.C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.9.B【分析】作点C 关于OA 的对称点E ,作EN ⊥OC 交OA 于点M ,此时CM+MN=EM+MN=EN 最短,进而根据∠AOB=35°,和直角三角形两个锐角互余即可求解.【详解】解:如图:作点C关于OA的对称点E,过点E作EN⊥OC于点N,交OA于点M,∴ME=MC,∴CM+MN=EM+MN=EN,根据垂线段最短,EN最短,∵∠AOB=35°,∠ENO=CFM=90°,∴∠OMN=55°,∠OCF=55°,∴∠EMF=∠OMN=55°,∴∠E=∠MCE=35°,∴∠OCM=∠OCF-∠MCE=20°.故选:B.【点睛】本题考查了轴对称-最短路线问题,熟知直角三角形的两个锐角互余是解题关键.10.D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,83 74y xy x-=⎧⎨-=-⎩故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.-4【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式44aa--的值为零,∴4=0a-.解得:=4a,所以=4a±当=4a时,分式无意义,故舍去.综上所述,=4a-.故答案为:-4.【点睛】考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.12.3【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M(m,﹣1)关于x轴的对称点是N(2,n),∴m=2,n=1,∴m+n=3.故答案为:3.13.5【详解】解:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,∴∠AOB=2∠AOP=2×15°=30°,∵PC∥OA,∴∠PCE=∠AOB=30°,∴PE=12PC=12×10=5,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE=5.故答案为:5.14.4--【分析】根据有理数的乘方运算法则、负整数指数幂运算法则、零次幂运算法则和绝对值运算进行计算求值即可.【详解】解:原式=﹣8+2+1﹣1)=﹣4故答案为:4--.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、绝对值、实数的运算,熟练掌握和运算法则是解答的关键.15.70︒【分析】直接利用全等三角形的性质得出AB=AD ,∠B=∠ADE ,进而利用已知得出答案.【详解】解:∵△ABC ≌△ADE ,∴AB=AD ,∠B=∠ADE ,∴∠B=∠ADB ,∴∠BDA=∠ADE ,∵∠EDC=70°,∴∠BDA=∠ADE=12×(180°-70°)=55°.∴∠BAD=180°-55°-55°=70°,故答案为:70°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角和对应边是解题关键.16.6m <且0m ≠【分析】根据分式方程的解法,解出x ,再根据题意列出不等式求解即可.【详解】解:∵2222x mx x ++=--去分母得:2()2(2)x m x -+=-解得:63mx -=因为方程的解为正数,∴603m->∴6m <,又∵2x ≠,∴623m-≠∴0m ≠,∴m 的取值范围为:6m <且0m ≠故答案为:6m <且0m ≠.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.17.(6,6)【分析】根据矩形的性质得到AB =OC =9,∠FAE =∠B =90°,根据余角的性质得到∠AFE =∠CEB ,根据全等三角形的性质得到AF =BE ,AE =BC ,设AF =BE =x ,列方程即可得到结论.【详解】解:∵点F (0,3),点C (9,0),∴OF =3,OC =9,∵四边形ABCO 是矩形,∴AB =OC =9,∠FAE =∠B =90°,∵∠FEC =90°,∴∠AEF+∠AFE =∠AEF+∠CEB =90°,∴∠AFE =∠CEB ,∵EF =EC ,∴△AEF ≌△BCE (AAS ),∴AF =BE ,AE =BC ,设AF =BE =x ,∴AO =BC =AE =x+3,∴x+3+x =9,∴x =3,∴AE =BC =6,∴点E 的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了全等三角形的判定和性质,矩形的性质,坐标与图形性质,证全等三角形是本题的关键,也是本题的难点.18.84【详解】解:把8a b +=两边平方得:222264a b a b ab +=++=(),将5ab =-代入得:2274a b +=,则原式=222741084a b ab +-=+=,故答案为:84.19.1【分析】根据三角形中线把三角形分成两个面积相等的三角形得出11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,进而求得11,22BCE ABC BEF BCE S S S S == ,然后代入数据进行计算求解即可【详解】解:∵点D 、E 分别是边BC 、AD 的中点∴11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,∴1122BCE BDE CDE ABD ACD S S S S S =+==+ 12ABC S =△∵点F 是CE 的中点111222BEF BCE ABC S S S ∴==⨯ 14ABC S =△24cm ABC S = 2141cm 4BEF S ∴=⨯= 故答案为:1【点睛】本题考查了三角形中线的性质和三角形面积的应用,熟知三角形中线平分三角形面积是解题的关键.20.11752n -⎛⎫⨯︒⎪⎝⎭【分析】先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的底角度数.【详解】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C=1802B ︒-∠=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°;同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的底角度数是(12)n-1×75°.故答案为:(12)n-1×75°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.21.(1)()()()3232x y a b a b -+-;(2)(3)4x =-;(4)21a a --,a=-1时,原式=32【分析】(1)先提公因式(x ﹣y ),再利用平方差公式分解因式即可;(2)分别利用平方差公式、完全平方公式、零指数幂运算法则进行计算即可解答;(3)根据分式方程的解法步骤:化为整式方程、解方程、检验、写结论进行求解即可;(4)先通分化简括号内分式,再将除法算式化为乘法,同时分子、分母因式分解,约分化简原式,再代入使分式有意义的数值计算即可解答.【详解】(1)解:原式229()4()a x yb x y =---()(32)(32)x y a b a b =-+-解:原式207(141=---+=(3)解:方程两边都乘以()(33)x x +-,去分母得:23(3)9x x x ++=-去括号得:22339x x x ++=-移项、合并同类项得:312x =-化系数为1得:4x =-检验:当4x =-时,(3)(3)0x x +-≠所以4x =-是原分式方程的解(4)解:原式223(2)(2)2(1)a a a a a +-+-=⋅+-21a a -=-当2a =-,2,1时,分式无意义当1a =-时,原式123112--=--.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)12;(2)见解析.【分析】(1)本题是工程问题,也就是总工作量、效率与时间问题,根据题意,规定时间就是甲单独需要的时间,所以设规定时间是x 天,那么甲单独完成的时间就是x 天,乙单独完成的时间为2x ,甲乙一天的工作效率分别为1x ,12x ,甲、乙两工程队合作6天的工作量表示为6(1x +12x ),甲又单独干了3天表示为3x,没交代具体工作量是多少的情况下,一般是总工作量为1,所以列方程6(1x +12x )+3x=1;(2)由(1)可以知道甲乙分别单独做需要的时间,用工作量除以两队合作一天的工作效率就是二者合作所用的时间,就可以进一步求出所需的工资款,作出判断,是否够用.【详解】(1)设规定时间是x 天,根据题意得6(1x +12x )+3x =1,解得x=12,经检验:x=12是原方程的解.答:该县要求完成这项工程规定的时间是12天;(2)由(1)知,由甲工程队单独做需12天,乙工程队单独做需24天,则甲乙两工程队合作需要的天数是1÷(112+124)=8(天),所需工程工资款为(5+3)×8=64万>63万,故该县准备的工程工资款不够用.24.(1)见解析,'(2,1)A -,'(1,3)B --,'(3,2)C --;(2)3.5【分析】(1)根据关于x 轴对称的点的坐标特征写出A '、B '、C '的坐标,再描点顺次连接即可;(2)根据网格特点和割补法求图形的面积的方法求解即可.【详解】解:(1)如图,A B C ''' 为所作,'(2,1),'(1,3),'(3,2)A B C -----,故答案为:(2,﹣1),(﹣1,﹣3),(﹣3,﹣2);(2)如图,ABC ADB BEC CFAADEF S S S S S ∆∆=--- 矩形11125231215222=⨯-⨯⨯-⨯⨯-⨯⨯3.5=.【点睛】本题考查轴对称与坐标变换、三角形面积公式,解答的关键是掌握平面直角坐标系内轴对称与坐标变换规律,会利用割补法求解不规则图形的面积.25.等腰直角三角形,理由见解析【分析】根据等腰直角三角形的性质求出∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE ,再利用“边角边”证明△ACE 和△BCD 全等,根据全等三角形对应边相等可得CD=CE ,全等三角形对应角相等可得∠ACE=∠BCD ,再求出∠DCE=90°,从而得解.【详解】证明:CDE 是等腰直角三角形.理由如下:90ACB ︒∠=,AC BC =,45B BAC ∴∠=∠=︒,AE AB ⊥ ,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE △和BCD △中,AE BD B CAE AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴≅ CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒ ,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴ 是等腰直角三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.26.答案见解析.【分析】先由HL 证明两直角三角形全等,对应角相等,再由内错角相等两直线平行即可得证.【详解】∵ED ⊥AB ,FC ⊥AB ,∴∠DEA =∠FCB =90°,又∵AC =BD ,∴AD =BC ,在Rt △AED 和Rt △BFC 中,AE BF AD BC =⎧⎨=⎩,∴Rt △AED ≌Rt △BFC (HL )∴∠A =∠B ,∴AE ∥BF.27.(1)点C 的坐标为(6,2)--;(2)OP DE 2-=【分析】(1)如图1,过C 作CM ⊥x 轴于M 点,则可以求出△MAC ≌△OBA ,可得CM=OA=2,MA=OB=4,即可得到结论;(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,利用三角形全等的判定定理可得△AOP ≌△PQD ,进一步可得PQ=OA=2,即OP-DE=2.【详解】解:(1)如图1,过C 作CM ⊥x 轴于M 点.∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA .在△MAC 和△OBA 中,∵∠CMA=∠AOB=90°,∠MAC=∠OBA ,AC=AB ,∴△MAC ≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C 的坐标为(-6,-2).(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,∴OP-DE=OP-OQ=PQ .∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP .在△AOP 和△PQD 中,∵∠AOP=∠PQD=90°,∠OAP=∠QPD ,AP=PD ,∴△AOP ≌△PQD(AAS),∴PQ=OA=2,即OP-DE=2.【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,关键还要巧妙作出辅助线,再结合坐标轴才能解出,本题难度较大.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试题一、单选题1.要使分式7x x -有意义,则x 的取值范围是( ) A .7x = B .7x > C .7x < D .7x ≠2.下列图形中不是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .428x x x =B .235m m m +=C .933x x x ÷=D .32264()a b a b -=-4.下列命题中,不正确的是( )A .有一个外角是120°的等腰三角形是等边三角形B .一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形C .等腰三角形的对称轴是底边上的中线D .等边三角形有3条对称轴5.满足下列条件的三条线段,,a b c 能构成三角形的是( )A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =6.在平面直角坐标系中,点A (-2,3)关于y 轴对称的点的坐标( )A .(2,3)B .(2,-3)C .(-2,-3)D .(3,2) 7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( ) A .360480140x x =- B .360480140x x=- C .360480140x x += D .360480140x x -= 8.已知:如图,∠1=∠2,则不一定能使∠ABD∠∠ACD 的条件是( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 9.如图,∠ABC 中,12AB BC AC ===cm ,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2cm/s .当点N 第一次到达B 点时,M 、N 同时停止运动.点M 、N 运动( )s 后,可得到等边三角形∠AMN .A .4B .6C .8D .不能确定 10.如图,已知∠1=∠2,要得到结论ABC∠ADC ,不能添加的条件是( )A . BC =DCB .∠ACB =∠ACDC .AB =AD D .∠B =∠D二、填空题11.数据0.000000005用科学记数法表示为______.12.当x =______时,分式21628x x --的值为0.13.因式分解ab 3-4ab =_____.14.已知2m a =,32n b =,m ,n 为正整数,则5102m n +=______.15.化简:()2184416x x x ⎛⎫-⋅+= ⎪--⎝⎭__________. 16.如图,∠AEB∠∠DFC ,AE∠CB ,DF∠BC ,垂足分别为E 、F ,且AE=DF ,若∠C=28°,则∠A=__________.17.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.18.若方程4x 2+(m+1)x+1=0的左边可以写成一个完全平方式,则m 的值为__. 19.如图,在∠ABC 中,14AB =,8BC =,AM 平分∠BAC ,15BAM ∠=︒,点D 、E 分别为线段AM 、AB 上的动点,则BD DE +的最小值是______.20.如图,已知30PMQ ∠=︒,点123,,A A A ...在射线MQ 上,点123,,B B B ...均在射线MP 上,112223334,,A B A A B A A B A △△△...均为等边三角形,若11MA =,则202120212022A B Az △的边长为__________.三、解答题21.先化简再求值22121(1)24x x x x ++-÷+-,其中x= -3.22.解方程:21133x x x x =+++.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD =PE .(不写作法,保留作图痕迹)25.如图,在∠ABC 中,D 是AB 上一点,CF//AB ,DF 交AC 于点E ,DE EF =.(1)求证:ADE CFE ≌(2)若5AB =,3CF =,求BD 的长.26.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,∠ABC 的顶点均在格点上,点 C 的坐标为(0,-1),(1)写出A,B 两点的坐标;(2)画出∠ABC 关于y 轴对称的∠A1B1C1;(3)求出∠ABC 的面积.27.如图,已知点D,E分别是ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∠BC.(1)求证:ABC是等腰三角形(2)作∠ACE的平分线交AF于点G,若40∠=,求∠AGC的度数.B28.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?29.列方程解应用题:一批学生志愿者去距学校8km的老人院参加志愿服务活动,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知骑车学生的速度是汽车速度的一半,求骑车学生的速度.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:∠已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.∠计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.D【分析】直接利用分式有意义的条件分析得出答案. 【详解】解:要使分式7x x -有意义, 则70x -≠,解得:7x ≠.故选:D .【点睛】本题主要考查了分式有意义的条件,正确把握定义是解题关键.2.B【分析】根据轴对称图形的定义,即可一一判定.【详解】解:等腰三角形、等腰梯形、矩形都是轴对称图形,直角三角形不一定是轴对称图形,故选:B .【点睛】本题考查了轴对称图形的定义,轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴.3.B【分析】计算出各个选项中的式子的结果,本题得以解决.【详解】2428x x x =,故选项A 错误;235m m m +=,故选项B 正确;936x x x ÷=,故选项C 错误;32264()a b a b -=,故选项D 错误;故选B .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.C【分析】根据等边三角形的判定定理、轴对称图形的概念判断即可.【详解】解:A 、一个三角形的外角是120°,则内角为60°,∠这个等腰三角形是等边三角形,本选项说法正确,不符合题意;B 、一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形,本选项说法正确,不符合题意;C 、等腰三角形的对称轴是底边上的中线所在的直线,本选项说法错误,符合题意;D 、等边三角形有3条对称轴,本选项说法正确,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断以及等边三角形的判定,轴对称图形的概念等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6.A【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点A (-2,3)关于y 轴对称点的坐标是(2,3).故选:A .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-, 故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.8.B【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A 、∠∠1=∠2,AD 为公共边,若AB=AC ,则∠ABD∠∠ACD (SAS );故A 不符合题意;B 、∠∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定∠ABD∠∠ACD ;故B 符合题意;C 、∠∠1=∠2,AD 为公共边,若∠B=∠C ,则∠ABD∠∠ACD (AAS );故C 不符合题意;D 、∠∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则∠ABD∠∠ACD (ASA );故D 不符合题意.故选:B .9.A【分析】设点M ,N 运动t 秒时,得到等边三角形AMN ,表示出AM ,AN 的长,根据60A ∠=︒ ,只要AM AN =,三角形AMN 就是等边三角形.【详解】解:设点M ,N 运动t 秒时,得到等边三角形AMN ,如图所示,则AM t =,2BN t =, ∠12AB BC AC ===,∠122AN AB BN t =-=-,∠AMN ∆是等边三角形,∠AM AN =,即122t t =-,解得4t =,∠点M ,N 运动4秒时,得到等边三角形AMN .故选:A【点睛】本题考查了等边三角形的性质和判定,根据题意分析出AM AN =时得到等边三角形AMN 是解题的关键.10.A【分析】根据全等三角形的判定方法,逐项判断即可求解.【详解】解:根据题意得:AC AC = ,∠1=∠2,A 、当BC =DC 时,是边边角,不能得到结论ABC∠ADC ,故本选项符合题意;B 、当∠ACB =∠ACD 时,是角边角,能得到结论ABC∠ADC ,故本选项不符合题意; C 、当AB =AD 时,是边角边,能得到结论ABC∠ADC ,故本选项不符合题意; D 、当∠B =∠D 时,是角角边,能得到结论ABC∠ADC ,故本选项不符合题意; 故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.11.9510-⨯【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为10n a -⨯(1≤|a|< 10, n 为正整数)的形式,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n 就是负几.【详解】解:90.0000000052 10-=⨯,故选:B .【点睛】此题主要考查了用科学记数法表示绝对值小于1的数,一般形式为10n a -⨯(1≤|a|< 10, n 为正整数), n 为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键.12.-4【分析】根据分式等于0可知2160x -=,且280x -≠.求出x 即可.【详解】根据题意可知2160280x x ⎧-=⎨-≠⎩,解得:4x =-.故答案为:-4.【点睛】本题考查分式的值为零的条件:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.13.ab (b+2)(b -2).【详解】试题解析:ab 3-4ab=ab (b 2-4)=ab (b+2)(b -2).考点:提公因式法与公式支的综合运用.14.52a b【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:∠2m=a ,32n=b=25n ,m ,n 为正整数,∠25m+10n=(2m)5×(25n)2=a5b2,故答案是:a5b2.【点睛】本题主要考查了幂的乘方运算以及同底数幂的乘法运算,解题的关键是正确掌握相关运算法则.15.1【分析】先将小括号内的式子进行通分计算,然后再算括号外面的.【详解】解:218()(4)416x x x -⋅+-- 48(4)(4)(4)x x x x +-=⋅++- 4(4)(4)(4)x x x x -=⋅++- 1=,故答案为:1.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.16.62°【详解】∠∠AEB∠∠DFC ,∠∠C=∠B=28°,∠AE∠CB ,∠∠AEB=90°,∠∠A=62°.故答案为62°.17.6【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:∠一个正多边形的一个内角是120º,∠这个正多边形的一个外角为:180º-120º=60º,∠多边形的外角和为360º,∠360º÷60º =6,则这个多边形是六边形.故答案为:6.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.-5或3【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∠4x 2+(m+1)x+1可以写成一个完全平方式,∠4x 2+(m+1)x+1=(2x±1)2=4x 2±4x+1,∠m+1=±4,解得:m =-5或3,故答案为:-5或3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.19.7【分析】作E关于AM的对称点E',连接DE',根据角平分线的性质以及轴对称的性质,垂线段最短,进而根据含30度角的直角三角形的性质求解即可.【详解】∴如图,作E关于AM的对称点E′,连接DE′,∠ED=E′D∠BD+DE≥BE′,当B,D,E′共线,且BE′∠AC时,BD+DE最小∠AM平分∠BAC,∠E′在AC上,∠AM平分∠BAC,∠BAM=15°,∠∠BAE′=30°∠AB=14,BE′∠AC∠BE′=12AB=7故答案为:7.【点睛】本题考查了角平分线的定义,轴对称的性质求最短距离,垂线段最短,含30度角的直角三角形的性质,正确的作出图形是解题的关键.20.22020.【详解】解:∠∠A1B1A2为等边三角形,∠∠B1A1A2=60°,∠∠PMQ=30°,∠∠MB1A1=∠B1A1A2-∠PMQ=30°,∠∠MB1A1=∠PMQ,∠A 1B 1=MA 1=1,同理可得:A 2B 2=MA 2=2,A 3B 3=MA 3=4=22,A 4B 4=MA 4=23,…∠∠A 2021B 2021A 2022的边长=22020,故答案为:22020.21.52. 【详解】原式221(1)2(2)(2)x x x x x +-+=÷++- 21(2)(2)·2(1)x x x x x ++-=++ 21x x -=+. 当3x =-时,原式325312--==-+ 22.32x =- 【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+, 解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验. 23.135度.【详解】试题分析:首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.解:设这个多边形边数为n ,则(n ﹣2)•180=360+720,解得:n=8,∠这个多边形的每个内角都相等,∠它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.24.见解析.【分析】作线段DE 的垂直平分线MN ,作∠ABC 的角平分线BO 交MN 于点P ,点P 即为所求.【详解】如图,点P 即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键.25.(1)见解析(2)2BD =【分析】(1)由题意易得,A ECF ADE F ∠=∠∠=∠,然后问题可求证;(2)由(1)可得3AD CF ==,然后问题可求解.(1)证明:∠CF//AB ,∠,A ECF ADE F ∠=∠∠=∠,在ADE ∆和CFE ∆中,A ECF ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ADE CFE ≌(AAS );(2)解:∠ADE CFE ∆∆≌,CF=3,∠3AD CF ==,∠532BD AB AD =-=-=.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质及判定是解题的关键.26.(1) A (-1,2),B (-3,1).(2)见解析;(3)见解析【分析】(1)根据 A ,B 的位置写出坐标即可;(2)分别画出 A ,B ,C 的对应点 A 1,B 1,C 1 即可;利用分割法求面积即可;【详解】(1)由题意 A (-1,2),B (-3,1).(2)如图∠A1B1C1 即为所求.(3)S ABC =3×3 -12×1×2 -12×1×3 -12×2×3= 3.527.(1)证明见解析;(2)70AGC ∠=【分析】(1)根据角平分线的定义,得到∠DAF=∠CAF ,又根据//BC AF ,得到∠DAF=∠ABC ,∠CAG=∠ACB ,进一步得到∠ABC=∠ACB ,即可证明ABC 是等腰三角形;(2)在ACG 中,分别求得ACG ∠和CAG ∠的度数,利用三角形内角和求解即可.【详解】(1)证明:∠AF 是∠DAC 的角平分线∠∠DAF=∠CAF又∠//BC AF∠∠DAF=∠ABC ,∠CAG=∠ACB∠∠ABC=∠ACB∠AB=AC∠ABC 是等腰三角形(2)∠CG 是∠ACE 的角平分线∠∠ACG=∠ECG又∠40B ∠=,∠ACB=∠B∠40ACB ∠= ∠∠ACG=∠ECG=()118040702⨯-= 又∠∠CAG=∠ACB∠∠AGC=180407070--=【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等相关知识点,牢记知识点是解题关键.28.10米【分析】设原计划每天铺设管道x 米,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【详解】解:设原计划每天铺设管道x 米, 依题意得:12030012027(120%)x x-+=+, 解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.考点:分式方程的应用.29.骑车学生的速度16㎞/h .【分析】设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h ,根据骑车所用时间- 15分钟=汽车所用时间,列方程x x 81842,解方程即可. 【详解】解:设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h,根据题意得:x x 81842, 方程两边都乘以4x 得:x 3216, 解得16x =,经检验得16x =是原方程的根,且符合题意,答:骑车学生的速度16㎞/h .【点睛】本题考查列分式方程解行程问题应用题,掌握列分式方程解行程问题应用题方法与步骤,抓住等量关系:骑车所用时间- 15分钟=汽车所用时间列方程是解题关键.30.(1)B;(2)∠3;∠21 40.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)∠把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;∠利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)∠∠x2﹣4y2=(x+2y)(x﹣2y),∠12=4(x﹣2y)得:x﹣2y=3;∠原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+120)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.当1x =时,下列分式没有意义的是()A .1x x +B .1xx -C .1x x-D .1x x +3.下列各组数可能是一个三角形的边长的是()A .4,4,9B .4,5,6C .2,6,8D .1,2,34.某病毒的直径约为80~120纳米,1纳米=91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是()A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米5.六边形的外角和是()A .360°B .540°C .720°D .900°6.下列计算正确的是()A .224x x x +=B .()222x y x y -=-C .()326=x yx y D .235()x x x -⋅=7.计算11x x x +-的结果为()A .1B .x C .1x D .2x x +8.已知7a b +=,8a b -=则22a b -的值是()A .11B .15C .56D .609.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④若AC=4BE ,则S △ABC =8S △BDE 其中正确的有()A .1个B .2个C .3个D .4个二、填空题11.因式分解:4x 2﹣9=_____.12.点M (-5,3)关于x 轴对称的点N 的坐标是________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.15.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若CD =8,点E 是AB 上一动点,DE 的最小值为_________.16.分式3232a b c 与246a b a b c-的最简公分母是_____.17.把一副三角板按如图所示的方式放置,则图中钝角α是______o .三、解答题18.计算:2202001()(1)(4)2π----+-.19.解分式方程:3211x x x +=--20.先化简,再求值:1x x +÷(x -1x ),其中x=3.21.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法).(2)在(1)的条件下,连接AE ,若∠B =45°,求∠AEC 的度数.22.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.23.如图1所示,边长为a 的正方形中有一个边长为b 的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S 1,如图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1,S 2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A 沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为1cm/s,当到达终点时停止运动,设它们的运动时间为t秒,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP.(2)求证:点P、Q在运动的过程中,∠CMQ的度数不变化,并求出∠CMQ的度数.(3)当t为何值时△PBQ是直角三角形?25.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.26.如图,∠DAB=∠CAE,AD=AB,AC=AE.(1)求证△ABE≌△ADC;(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.27.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案1.D【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键.2.B【分析】由分式有意义的条件分母不能为零判断即可.【详解】1x x ,当x=1时,分母为零,分式无意义.故选B.【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件.3.B【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【详解】解:A 、4+4<9,不能组成三角形,故此选项不符合题意;B 、5+4>6,能组成三角形,故此选项符合题意;C 、2+6=8,不能组成三角形,故此选项不符合题意;D 、1+2=3,不能组成三角形,故此选项不符合题意.故选:B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米=110×10-9米=1.1×10-7米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A【分析】根据多边形外角和都是360°即可得出答案.【详解】∵多边形的外角和都是360°,∴六边形的外角和是360°.故选:A.【点睛】本题主要考查多边形外角和,掌握多边形外角和都是360°是解题的关键.6.D【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【详解】x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选:D.【点睛】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.7.A【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【详解】解:原式=11111 x x xx x x x++--===.故选:A.考点:分式的加减法【点睛】本题主要考查分式的加减运算,掌握运算法则是解题关键.8.C【分析】直接利用平方差公式将a2-b2分解为(a+b)(a-b),代入数据后即可得出结论.【详解】解:∵a+b=7,a-b=8,∴a2-b2=(a+b)(a-b)=7×8=56.故选:C.【点睛】本题考查了平方差公式的应用,公式法因式分解.解题的关键是利用平方差公式将a2-b2分解为(a+b)(a-b).9.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.B【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【详解】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.(2x+3)(2x﹣3).【分析】根据平方差公式进行分解即可.【详解】原式=22(2)3x -=(2x+3)(2x ﹣3),故答案为(2x+3)(2x ﹣3).12.(-5,-3).【详解】根据平面直角坐标系内关于x 轴对称,纵坐标互为相反数,横坐标不变,点M (-5,3)关于y 轴的对称点为(-5,-3).13.20【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.14.③【分析】根据全等三角形的判定可即可求解.【详解】解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.【点睛】本题考查了全等三角形的条件,解题的关键是需要注意的是只靠一个角或两条边不能等得到全等.15.8【分析】过点D 作DE ⊥AB 于E ,根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,再根据角平分线的性质即可求解.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,∵∠C =90°,AD 平分∠BAC ,CD =8,∴DE=CD=8,故答案为:8.16.6a 3b 4c【分析】取各分式分母中系数的最小公倍数与各字母因式最高次幂的乘积作公分母,叫最简公分母.【详解】解:先分离出两个分式的分母2a 3b 2c,6a 2b 4c ,其中a 、b 、c 的最高次幂分别为3、4、1故分式3232a b c ,246a b a b c-的最简公分母是6a 3b 4c .故答案为6a 3b 4c.17.105【分析】利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°-30°-45°=105°,故答案为105.18.4【分析】原式分别化简21()2=4--,2020(1)=1-,0(=14)π-,然后再进行加减运算即可得到答案.【详解】解:2202001()(1)(4)2π----+-=4﹣1+1=419.1x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:3211x x x +=--去分母得,()321x x +-=,解得,1x =-,经检验,1x =-是原方程的解.所以,原方程的解为:1x =-.20.11x -;12【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.【详解】解:1x x+÷(x -1x )=211x x x x +-÷=()()111x x x x x +⨯+-=11x -当x=3时,原式=131-=12.21.(1)作图见解析(2)90°【分析】(1)依据垂直平分线的作图方法,即可得到边AB 的垂直平分线DE ;(2)依据垂直平分线的性质,即可得到∠BAE=∠B ,再根据三角形外角性质,即可得到∠AEC 的度数.(1)如图所示DE 为所求;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =45°,∵AEC ∠是ABE ∆的外角,∴∠AEC =∠EAB ﹢∠B =90°.【点睛】本题主要考查了线段垂直平分线的的性质以及基本作图,解决问题的关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.(1)证明见解析;(2)∠D=75°【分析】(1)易证得ABE DCF△≌△,即可得AB CD=;(2)易证得ABE DCF△≌△,即可得AB CD=,又由AB=CF,∠B=30°,即可证得△ABE 是等腰三角形,解答即可.【详解】证明:(1)∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∠A=∠D∠C=∠B AE=DF,∴ABE DCF AAS≌().∴AB=.(2)解:∵ABE DCF△≌△,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.【点睛】本题考查全等三角形问题和等腰三角形的性质,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.23.(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)216.【分析】(1)直接计算两个图形的面积即可;(2)根据两个图形面积相等可得(a+b)(a-b)=a2-b2;(3)从左到右依次利用平方差公式即可求解.【详解】解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.(1)证明见解析(2)证明见解析;∠CMQ=60°(3)当第43秒或第83秒时,△PBQ为直角三形【分析】(1)利用等边三角形的性质可知AB=AC,∠B=∠CAP=60°,结合AP=BQ即可得证;(2)由△APC≌△BQA知∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(3)可用t分别表示出BP和BQ,分∠PQB=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值.(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠CAP=60°,又AP=BQ,∴△ABQ≌△CAP(SAS).(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,又∠CMQ=∠ACP﹢∠CAM∴∠CMQ=∠BAQ﹢∠CAM=∠BAC=60°.(3)由题意知AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4﹣t=2t,解得t=4 3;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,即t=2(4﹣t),解得t=8 3;综上所述,当第43秒或第83秒时,△PBQ为直角三形.25.(1)商场两次共购进这种运动服600套;(2)240【分析】(1)设商场第一次购进x套运动服,则第二次购进2x套运动服,抓住每套进价多了10元列分式方程求解即可.(2)求出两次购进运动服的进价,根据“第二批售完后获利比第一批售完后获利多12000元”可列出一元一次方程得解.【详解】(1)设商场第一次购进x套运动服,由题意得:680003200010 2x x-=.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为32000200=160(元),第二批运动服的进价为68000400=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为240.26.(1)见解析;(2)150°.【分析】(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.【详解】解:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE在△ABE和△ADC中AB AD BAE DAC AE AC ⎧⎪∠=∠⎨⎪⎩==∴△ABE ≌△ADC ;(2)设AB 与OD 交于点F∵△ABE ≌△ADC∴∠ABE=∠D∵∠BFO=∠DFA∴∠BOF=180°-∠ABE -∠BFO=180°-∠D -∠DFA=∠DAB=30°∴∠BOC=180°-∠BOF=150°27.(1)证明见解析;(2)BE=AF ,证明见解析.【分析】(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、∠EBD=∠FAD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△BDE ≌△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD 、BD=AD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△EDB ≌△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF .【详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC ,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点D 为BC 的中点,∴AD=12BC=BD ,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF .在△BDE 和△ADF 中,EBD FADBD AD BDE ADF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△ADF (ASA ),∴BE=AF ;(2)BE=AF ,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA .在△EDB 和△FDA 中,EBD FADBD AD EDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB ≌△FDA (ASA ),∴BE=AF .。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、选择题(本大题共10小题,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A BC D2.观察图中尺规作图痕迹,下列说法错误的是()A .OE 平分∠AOB B .点C ,D 到OE 的距离不一定相等C .OC =ODD .点E 到OA ,OB 的距离一定相等3.如图所示,线段AC 的垂直平分线交AB 于点D ,∠A =43°,则∠BDC 的度数为()A .90°B .60°C .86°D .43°4.若分式11x -有意义,则x 的取值范围是()A .x ≠1B .x =1C .x >1D .x <15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线.如果∠ABP =20°,∠ACP =50°,那么∠A +∠P 的度数为()A .70°B .80°C .90°D .100°6.已知三角形的三边长分别为2,a -1,4,则化简a -3+a -7的结果为()A .2a -10B .10-2aC .4D .-47.在算式(x +m )(x -n )的积中不含x 的一次项,则m ,n 一定满足()A .互为倒数B .互为相反数C .相等D .mn =08.若2a =3b =4c ,且abc ≠0,则2a bc b+-的值是()A .2B .-2C .3D .-39.若分式方程31x x +=1mx ++2无解,则m 的值是()A .-1B .-3C .0D .-210.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是()A .4800x =500020x -B .4800x =500020x +C .480020x -=5000xD .480020x +=5000x二、填空题(本大题共4小题,每小题3分,满分12分)11.若a 2-b 2=4,则(a -b )2(a +b )2=.12.如图,已知AB ∥CF ,E 为DF 的中点,若AB =11cm ,CF =5cm ,则BD =.13.如图,在△ABC 中,∠A =40°,∠B =72°,CE 平分∠ACB ,CD ⊥AB 于点D ,DF ⊥CE ,则∠CDF =.14.设a =192×918,b =8882-302,c =10532-7472,则a ,b ,c 按从小到大的顺序排列,结果是.三、(本大题共9小题,满分78分)15.(8分)(1)计算:1-2a b a b -+÷222244a b a ab b -++;(2)解分式方程:269x -+13x-=0.16.(8分)先化简,再求值:22211x x x ++--1x x -,其中x =-2.17.(8分)对于代数式12x -和321x +,你能找到一个合适的x 值,使它们的值相等吗?写出你的解题过程.18.(8分)如图,已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:M 是BE 的中点.19.(8分)如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A1B1C1沿x轴方向向左平移3个单位长度后得到△A2B2C2,写出顶点A2,B2,C2的坐标.20.(8分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.求高速公路没有开通之前,长途客车的平均速度.21.(10分)如图,已知等腰△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.22.(10分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?23.(10分)如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A,D)上一动点,EF⊥BC于点F.(1)若∠B =40°,∠DEF =10°,求∠C 的度数.(2)当E 在AD 上移动时,∠B ,∠C ,∠DEF 之间存在怎样的等量关系?请写出这个等量关系,并说明理由.参考答案1.D 2.B 3.C 4.A 5.C6.C7.C8.B9.B10.B11.1612.613.74°14.a <c <b15.解:(1)原式=1-2a b a b -+·2()2()()a b a b a b ++-=1-2a b b a ++=2()a b a b a b +-++=-b a b+.(2)去分母,得6-x -3=0.解得x =3.经检验x =3是增根,分式方程无解.16.解:原式=2()(1)(1)1x x x ++--1x x -=11x x +--1x x -=11x -.当x =-2时,原式=121--=-13.17.解:能.根据题意,令12x -=321x +,则有2x +1=3(x -2).解得x =7.经检验,x =7是12x -=321x +的解.即当x =7时,两代数式的值相等.18.证明:连接BD .∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°.∴BD =FD ,△BDE 为等腰三角形.又∵DM ⊥BC ,∴M 是BF 的中点.19.解:(1)如图所示,△A 1B 1C 1,即为所求.(2)如图所示,△A 2B 2C 2,即为所求,点A 2(-3,-1),B 2(0,-2),C 2(-2,-4).20.解:设高速公路没有开通之前,长途客车的平均速度为x km/h ,由题意,得180x -1801()50x+%=1,解得x =60.经检验,x =60是原方程的解.∴高速公路没有开通之前,长途客车的平均速度为60km/h .21.解:(1)∠ABE =∠ACD .理由:在△ABE 和△ACD 中,AB AC A A AE AD ⎧⎪⎨⎪∠∠⎩=,=,=,∴△ABE ≌△ACD (SAS ).∴∠ABE =∠ACD .(2)证明:连接AF .∵AB =AC ,∴∠ABC =∠ACB .由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB .∴FB =FC .∴点F 在线段BC 的垂直平分线上.∵AB =AC ,∴点A 在线段BC 的垂直平分线上.∴过点A ,F 的直线垂直平分线段BC .22.解:(1)设乙队单独做需要a 天才能完成任务,由题意,得30a +(140+1a)×20=1.解得a =100.经检验,a =100是原方程的解,且符合题意.∴乙队单独做需要100天才能完成任务.(2)由题意得40x +100y =1,且x <15,y <70,且x ,y 为正整数,y =100-52x <70,则x >12.∴x =13或14.当x =13时,y =100-52x 不是整数,应舍去;当x =14时,y =100-52x =65,符合条件.∴甲队做了14天,乙队做了65天.23.解:(1)∵EF ⊥BC ,∠DEF =10°,∴∠EDF =80°.∴∠B =40°,∴∠BAD =∠EDF -∠B =80°-40°=40°.∵AD 平分∠BAC ,∴∠BAC =80°.∴∠C =180°-40°-80°=60°.(2)∠C -∠B =2∠DEF .理由如下:∵EF ⊥BC ,∴∠EDF =90°-∠DEF .∵∠EDF =∠B +∠BAD ,∴∠BAD =90°-∠DEF -∠B .∵AD 平分∠BAC ,∴∠BAC =2∠BAD =180°-2∠DEF -2∠B .∴∠B +180°-2∠DEF -2∠B +∠C =180°.∴∠C -∠B =2∠DEF .。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。

人教版八年级上册数学期末考试卷及答案【全面】

人教版八年级上册数学期末考试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤- 3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4) 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、A6、A7、B8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、13、32或424、10.5、656、三、解答题(本大题共6小题,共72分)1、x=12、x+2;当1x =-时,原式=1.3、8k ≥-且0k ≠.4、略(2)∠EBC=25°5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

人教版八年级数学上册期末测试题及答案解析(共三套)

人教版八年级数学上册期末测试题(一)(时间:120分分值:120分)一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等2.(2分)下列各式中,正确的是()A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m8 3.(2分)计算(x﹣3y)(x+3y)的结果是()A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y24.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.55.(2分)若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个7.(2分)若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.48.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A.0 B.1 C.2 D.39.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、填空题(每题3分,共30分)11.(3分)当a时,分式有意义.12.(3分)计算:3x2•(﹣2xy3)=,(3x﹣1)(2x+1)=.13.(3分)多项式x2+2mx+64是完全平方式,则m=.14.(3分)若a+b=4,ab=3,则a2+b2=.15.(3分)用科学记数法表示0.00000012为.16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=.17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB=度.18.(3分)若实数x满足,则的值=.19.(3分)某市在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有篇.(不少于90分者为优秀)20.(3分)如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是.三、解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.22.(8分)解方程:(1)(2).23.(6分)先化简,再求值:(﹣)÷,其中x=3.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD 于F.求证:∠1=∠2.27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.参考答案与试题解析一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等【考点】全等三角形的判定.【分析】根据全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选D.【点评】本题主要考查全等三角形的判定,熟练掌握判定定理是解题的关键.2.(2分)下列各式中,正确的是()A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m8【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项计算后利用排除法求解.【解答】解:A、应为y3•y2=y5,故本选项错误;B、应为(a3)3=a9,故本选项错误;C、(﹣x2)3=﹣x6,正确;D、应为﹣(﹣m2)4=﹣m8,故本选项错误.故选C.【点评】本题考查同底数幂的乘法的性质,幂的乘方的性质,熟练掌握运算性质是解题的关键.3.(2分)计算(x﹣3y)(x+3y)的结果是()A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y2【考点】平方差公式.【分析】直接利用平方差公式计算即可.【解答】解:(x﹣3y)(x+3y),=x2﹣(3y)2,=x2﹣9y2.故选C.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.4.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.5.(2分)若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.【考点】同类项;解二元一次方程组.【分析】根据同类项的定义,即所含字母相同,且相同字母的指数也相同,相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得.故选:B.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形既是轴对称图形又是中心对称图形,第二个图形既是轴对称图形又是中心对称图形,第三个图形不是轴对称图形,是中心对称图形,第四个图形是轴对称图形,不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2分)若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.8.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A.0 B.1 C.2 D.3【考点】全等三角形的判定.【分析】根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD【解答】解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC,∴△ABE≌△ACD(AAS).故选C.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.9.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL.逐条判断即可.【解答】解:A、边不是两角的夹边,不符合ASA;B、角不是两边的夹角,不符合SAS;C、角不是两边的夹角,不符合SAS;D、符合ASA能判定三角形全等;仔细分析以上四个选项,只有D是正确的.故选:D.【点评】重点考查了全等三角形的判定.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【考点】线段垂直平分线的性质.【分析】求△ABC的周长,已经知道AE=3cm,则知道AB=6cm,只需求得BC+AC即可,根据线段垂直平分线的性质得AD=BD,于是BC+AC等于△ADC的周长,答案可得.【解答】解:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9+2×3=15cm,故选:C.【点评】此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对线段进行等效转移时解答本题的关键.二、填空题(每题3分,共30分)11.(3分)当a≠﹣时,分式有意义.【考点】分式有意义的条件.【分析】根据分式有意义的条件可得2a+3≠0,再解即可.【解答】解:由题意得:2a+3≠0,解得:a≠﹣,故答案为:≠﹣.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.(3分)计算:3x2•(﹣2xy3)=﹣6x3y3,(3x﹣1)(2x+1)=6x2+x﹣1.【考点】多项式乘多项式;单项式乘多项式.【分析】第一题按单项式乘单项式的法则计算,第二题按多项式乘多项式的法则计算.【解答】解:3x2•(﹣2xy3)=﹣6x3y3,(3x﹣1)(2x+1)=6x2+3x﹣2x﹣1=6x2+x﹣1.【点评】本题主要考查了单项式乘单项式、多项式乘多项式的运算,要熟练掌握单项式乘单项式的法则和多项式乘多项式的法则.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.13.(3分)多项式x2+2mx+64是完全平方式,则m=±8.【考点】完全平方式.【分析】根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍.【解答】解:∵x2+2mx+64是完全平方式,∴2mx=±2•x•8,∴m=±8.【点评】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解.14.(3分)若a+b=4,ab=3,则a2+b2=10.【考点】完全平方公式.【专题】计算题.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:∵a+b=4,ab=3,∴a2+b2=(a+b)2﹣2ab,=42﹣2×3,=16﹣6,=10.故答案为:10.【点评】本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用.15.(3分)用科学记数法表示0.00000012为 1.2×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7.故答案为1.2×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=36°.【考点】等腰三角形的性质.【分析】设∠ABD=x,根据等边对等角的性质求出∠A,∠C=∠BDC=∠ABC,再根据三角形的一个外角等于与它不相邻的两个内角的和用x表示出∠C,然后利用三角形的内角和定理列式进行计算即可得解.【解答】解:设∠ABD=x,∵BC=AD,∴∠A=∠ABD=x,∵BD=BC,∴∠C=∠BDC,根据三角形的外角性质,∠BDC=∠A+∠ABD=2x,∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠=180°,即x+2x+2x=180°,解得x=36°,即∠ABD=36°.故答案为:36°.【点评】本题主要考查了等腰三角形的性质,主要利用了等边对等角的性质,三角形的内角和定理,三角形外角性质,是基础题,熟记性质是解题的关键.17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB=60度.【考点】线段垂直平分线的性质.【分析】根据垂直平分线上的点到线段两端的距离相等和30°的角所对的直角边是斜边的一半解答.【解答】解:如图,因为PC⊥AB则∠ACP=90°又因为AC=BC则AC=AB=×4=2cm在Rt△PAC中,∠APC=30°所以∠APB=2×30°=60°.【点评】本题主要考查了线段的垂直平分线上的性质和30°的角所对的直角边是斜边的一半.18.(3分)若实数x满足,则的值=7.【考点】完全平方公式.【专题】计算题.【分析】先根据完全平方公式变形得到x2+=(x+)2﹣2,然后把满足代入计算即可.【解答】解:x2+=(x+)2﹣2=32﹣2=7.故答案为7.【点评】本题考查了完全平方公式:(x±y)2=x2±2xy+y2.也考查了代数式的变形能力以及整体思想的运用.19.(3分)某市在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有15篇.(不少于90分者为优秀)【考点】频数(率)分布直方图.【专题】图表型.【分析】根据题意可得不少于90分者为优秀,读图可得分数低于90分的作文篇数.再根据作文的总篇数为60,计算可得被评为优秀的论文的篇数.【解答】解:由图可知:优秀作文的频数=60﹣3﹣9﹣21﹣12=15篇;故答案为15.【点评】本题属于统计内容,考查分析频数分布直方图和频数的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.20.(3分)如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是S=1.55.【考点】列代数式.【分析】通风面积是拉开长度与窗高的乘积.【解答】解:活动窗扇的通风面积S米2)与拉开长度b(米)的关系是S=1.55b.故答案是:S=1.55.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.三、解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b);(2)a2+6ab+9b2=(a+3b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.22.(8分)解方程:(1)(2).【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x=3代入计算可得.【解答】解:原式=[﹣]•=•=,当x=3时,原式==3.【点评】本题主要考查分式的化简求值,熟练掌握分数的混合运算顺序和运算法则是解题的关键.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,则s=;△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.【考点】角平分线的性质.【分析】先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,从而得出BD=CD.【解答】证明:∵PB⊥BA,PC⊥CA,在Rt△PAB,Rt△PAC中,∵PB=PC,PA=PA,∴Rt△PAB≌Rt△PAC,∴∠APB=∠APC,又D是PA上一点,PD=PD,PB=PC,∴△PBD≌△PCD,∴BD=CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD 于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.【点评】本题考查了全等三角形的判定和性质;由全等得对应角相等是一种很重要的方法,也是解决本题的关键.27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知,利用SAS判定△ACF≌△ADF,从而得到对应角相等,再根据同位角相等两直线平行,得到DF∥BC;(2)已知DF∥BC,AC⊥BC,则GF⊥AC,再根据角平分线上的点到角两边的距离相等得到FG=EF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.在△ACF和△ADF中,∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.②证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.【点评】此题考查了学生以全等三角形的判定及平行线的判定的理解及掌握.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.人教版八年级数学上册期末测试题(二)(时间:120分分值:120分)一、选择题:(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)8.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A.B.C.D.12.(3分)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二、填空题:(每空3分,共18分)13.(3分)分解因式:x3﹣4x2﹣12x=.14.(3分)若分式方程:有增根,则k=.15.(3分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)16.(3分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.17.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.(3分)已知2+=22×,3+=32×,4+=42×,…,若10+=102×(a,b为正整数),则a+b=.三.解答下列各题:(本题共7题,共66分)19.(9分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.20.(9分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.21.(9分)解方程:=.22.(9分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.23.(9分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.24.(9分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.(12分)如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:BE=CG.参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【考点】三角形的稳定性.【专题】存在型.【分析】根据三角形的稳定性进行解答即可.【解答】解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.【分析】A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.【解答】解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.【点评】此题考查了整式的有关运算公式和性质,属基础题.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 【考点】整式的混合运算.【专题】计算题.【分析】根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.【解答】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x故选C.【点评】本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6 D.x2﹣5x+6=(x+2)(x+3)【考点】因式分解的意义.【专题】因式分解.【分析】根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.【点评】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0【考点】分式有意义的条件.【专题】计算题.【分析】根据分式有意义的条件进行解答.【解答】解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.【点评】本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤【考点】负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.【专题】计算题.【分析】分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.【解答】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.【点评】本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的 2.5倍,乘坐私家车上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
C
D

2013--2014学年度八年级 (上)数学期末测试
一、选择题(每小题3分,共36分)
1.下列平面图形中,不是轴对称图形的是 ( )

2.下列运算中,正确的是( )
A、 (x2)3=x5 B、3x2÷2x=x C、 x3·x3=x6 D、(x+y2)2=x2+y4
3.已知:在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:DC=9:7,则D到
AB边的距离为 ( )
A.18 B.16 C.14 D.12
4.下列各式由左边到右边的变形中,是分解因式的为( )
A、a (x + y) =a x + a y B、x2-4x+4=x(x-4)+4
C、10x2-5x=5x(2x-1) D、x2-16+3x=(x-4)(x+4)+3x
5.如图,CFBE,,,四点在一条直线上,,,DACFEB再添一个条
件仍不能证明⊿ABC≌⊿DEF的是( )
A.AB=DE B..DF∥AC
C.∠E=∠ABC D.AB∥DE
6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、6

7.已知m6x,3nx,则2mnx的值为( )
A、9 B、 12 C、 43 D、34
8.已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是 ( )
A.3 B. 4 C.5 D.6

(第8题) (第9题) (第10题)
9.如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,那么在结论
①△AOD≌△BOC ;②△APC≌△BPD;③点P在∠AOB的平分线上.其中正确的是 ( )
A.只有① B. 只有② C. 只有①② D. ①②③

A
B
E
C

F

D
O
D
C
A
B

P

A
B
D

C

E
α
γ

β

A
B
F

E
C

D
10.如图,D,E分别是△ABC的边BC,AC,上的点,若AB=AC,AD=AE,则 ( )
A.当∠B为定值时,∠CDE为定值 B.当∠α为定值时,∠CDE为定值
C.当∠β为定值时,∠CDE为定值 D.当∠γ为定值时,∠CDE为定值
11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )
A、14 B、18 C、24 D、18或24
12.若分式方程xaxax321有增根,则a的值是( )
A.1 B.0 C.—1 D.—2
二、填空题(每小题3分,共24分)
13.用科学记数法表示—0.000 000 0314= .
14.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD= °

15.如图,D,E是边BC上的两点,AD=AE,请你再添加一个条件: 使△ABE≌△ACD
16.计算(-3a3)·(-2a2)=________________
17.已知,2,522bababa那么22ba .
18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.
19.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,

则△ABC的周长为__________cm.
20.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,
CF平分∠ACB,CF,BE交于点P,AC=4cm,BC=3cm,

AB=5cm,则△CPB的面积为 2cm

三、解答题(本大题共60分)
21.①(5分) 因式分解: 33abba

B
A
C
D

E

A
C
B

F
E

P

(第20题)

A
D
B
E
C
B
D E C

A

(第14题)
(第15题) (第19题)
② (5分)化简求值:)24(32522222baababbaba其中5.0,3ba
22.(5分)如图,A、B、C三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要
使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)

23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,
与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

24.(8分)如图,BD平分∠MBN,A,C分别为BM,BN上的点,且BC>BA,E为BD上
的一点,AE=CE,求证 ∠BAE+∠BCE=180°

25.(8分) 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

C
A
B
·

·
·

A
B C N
D
E
M
A
A
D
B
E

F
C

求△ABC各角的度数.
26.(10分)如图,已知AC⊥CB,DB⊥CB,AB⊥DE,AB=DE,E是BC的中点.
(1)观察并猜想BD和BC有何数量关系?并证明你猜想的结论.
(2)若BD=6cm,求AC的长.

27.(12分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE于点F,
DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.
2013--2014学年度八年级 (上)数学期末测试3参考答案
一、选择题(每小题3分,共36分)
ACACACBBDACD
二、填空题(每小题3分,共24分)
13.-3.14×610
14.25°
15.∠B=∠C
16.65a
17.9
18.50
19.19cm
20.1.5

三、解答题(本大题共60分)

21.①(5分) 因式分解: 33abba
=ab(2a-2b)=ab(a+b)(a-b)
② (5分)化简求值:)24(32522222baababbaba其中5.0,3ba
解:原式=)24(32522222baababbaba=ab(5a-b)=138.5
22.答案略
23.设江水的流速为x千米/时,则可列方程
xx306030
100

解得:x=7.5
答:江水的流速为7.5千米/时.
24.提示(过E点分别BA与BC的垂线,即可证明)
25.∠A=36°,∠ABC=∠C=72°
26.解(1)BD和BC相等。
理由如下:(提示:可证明△ABC与△EDB全等)
(2)AC=3cm
27.证明:(1)因为AF平分∠CAB
所以
∠CAF=∠DAF

在△CAF和△DAF中
AF=AF,∠CAF=∠DAF,AD=AC
所以
△CAF≌△DAF

所以
∠ACF=∠ADF

又因为
∠ACB=90°,CE⊥AB

所以
∠ACF+∠ECB=90°,∠B+∠ECB=90°

所以∠ACF=∠B
所以∠ADF=∠B
所以DF∥BC

2)因为DF∥BC

所以
∠AGD=∠ACB=90°

所以FG⊥AC
又因为AF平分∠CAB,CE⊥AB于点E
所以
FG=FE

相关文档
最新文档