2018高考物理大一轮复习题:第十单元 电磁感应 作业47 Word版含答案
2018高考一轮总复习物理模拟演练第10章电磁感应10-2法拉第电磁感应定律、自感有答案

时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度v0抛出,设在整个过程中棒的方向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小变化情况是( ) A.越来越大B.越来越小C.保持不变D.无法判断答案 C解析当导体切割磁感线时感应电动势的大小为E=Blv,其中v指的是导体沿垂直于磁场方向的分速度大小,对应于本题金属棒水平方向的分速度v0不变,所以导体棒在运动过程中产生的感应电动势大小E=Blv0,大小保持不变。
2.如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来。
若要缩短上述加热时间,下列措施可行的有( )A.减少线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯答案 B解析该装置的工作原理是,线圈内变化的电流产生变化的磁场,从而使金属杯体内产生涡流,再把电能转化为内能,使杯内的水发热。
交流电源的频率一定时,线圈产生的磁场越强,杯体内磁通量变化就越快,产生的涡流就越大,增加线圈的匝数会使线圈产生的磁场增强,而取走线圈中的铁芯会使线圈产生的磁场减弱,故A、D错误。
交流电源的频率增大,杯体内磁通量变化加快,产生的涡流增大,故B正确。
瓷为绝缘材料,不能产生涡流,故C错误。
3.如图所示,在庆祝反法西斯胜利70周年阅兵盛典上,我国预警机“空警—2000”在天安门上空时机翼保持水平,以4.5×102 km/h的速度自东向西飞行。
该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场的竖直分量向下,大小为4.7×10-5 T,则( )A.两翼尖之间的电势差为2.9 VB.两翼尖之间的电势差为1.1 VC.飞机左方翼尖的电势比右方翼尖的电势高D.飞机左方翼尖的电势比右方翼尖的电势低答案 C解析由E=Blv得E=4.7×10-5×50×4.5×1023.6V=0.29 V,故A、B选项均错误;由右手定则可知,飞机左方翼尖的电势比右方翼尖的电势高,C选项正确,D选项错误。
2018《单元滚动检测卷》高考物理(全国通用)精练 第十章 电磁感应

单元滚动检测十 电磁感应考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7题只有一个选项正确,第8~12题有多项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.以下矩形线框在磁场内做的各种运动中,能够产生感应电流的是( )2.如图1所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放线框,它由实线位置下落到虚线位置未发生转动,在此过程中( )图1A.线框中感应电流方向依次为顺时针→逆时针B.线框的磁通量为零时,感应电流却不为零C.线框所受安培力的合力方向依次为向上→向下→向上D.线框所受安培力的合力为零,做自由落体运动3.如图2所示,ef、gh为两水平放置相互平行的金属导轨,ab、cd为搁在导轨上的两金属棒,与导轨接触良好且无摩擦.当一条形磁铁向下靠近导轨时,关于两金属棒的运动情况的描述正确的是( )图2A.不管下端是何极性,两棒均向外相互远离B.不管下端是何极性,两棒均相互靠近C.如果下端是N极,两棒向外运动,如果下端是S极,两极相向靠近D.如果下端是S极,两棒向外运动,如果下端是N极,两棒相向靠近4.如图3,水平桌面上固定有一半径为R的金属细圆环,环面水平,圆环每单位长度的电阻为r;空间有一匀强磁场,磁感应强度大小为B,方向竖直向下;一长度为2R、电阻可忽略的导体棒置于圆环左侧并与环相切,切点为棒的中点.棒在拉力的作用下以恒定加速a从静止开始向右运动,运动过程中棒与圆环接触良好.下列说法正确的是( )图3A.拉力的大小在运动过程中保持不变B.棒通过整个圆环所用的时间为2R aC.棒经过环心时流过棒的电流为B2aR πrD.棒经过环心时所受安培力的大小为8B2R2aRπr图45.在如图4所示的电路中,a、b为两个完全相同的灯泡,L为自感系数较大而电阻不能忽略的线圈,E为电源,S为开关.下列关于两灯泡点亮和熄灭的说法正确的是( ) A.合上开关,b先亮,a后亮;稳定后b比a更亮一些B.合上开关,a先亮,b后亮;稳定后a、b一样亮C.断开开关,a逐渐熄灭、b先变得更亮后再与a同时熄灭D.断开开关,b逐渐熄灭、a先变得更亮后再与b同时熄灭6.如图5所示,光滑导电圆环轨道竖直固定在匀强磁场中,磁场方向与轨道所在平面垂直,导体棒ab的两端可始终不离开轨道无摩擦地滑动,在ab由图示位置释放,直到滑到右侧虚线位置的过程中,关于ab棒中的感应电流情况,正确的是( )图5A.先有从a到b的电流,后有从b到a的电流B.先有从b到a的电流,后有从a到b的电流C.始终有从b到a的电流D.始终没有电流产生7.如图6所示,一导体圆环位于纸面内,O为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM 可绕O转动,M端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R.杆OM以匀角速度ω逆时针转动,t=0时恰好在图示位置.规定从a到b流经电阻R的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流随ωt变化的图象是( )图68.两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g,如图7所示.现将金属棒从弹簧原长位置由静止释放,则( )图7A.金属棒在最低点的加速度小于gB.回路中产生的总热量等于金属棒重力势能的减小量C.当弹簧弹力等于金属棒的重力时,金属棒下落速度最大D.金属棒在以后运动过程中的最大高度一定低于静止释放时的高度9.如图8所示,一个水平放置的“∠”形光滑导轨固定在磁感应强度为B的匀强磁场中,ab是粗细、材料与导轨完全相同的足够长的导体棒,导体棒与导轨接触良好.在外力作用下,导体棒以恒定速度v向右平动,以导体棒在图中所示位置的时刻为计时起点,则回路中感应电动势E、感应电流I、导体棒所受外力的功率P和回路中产生的焦耳热Q随时间t变化的图象中正确的是( )图810.如图9所示,水平放置的光滑平行金属导轨,左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20cm的光滑圆弧导轨相接.导轨宽度为20cm,电阻不计.导轨所在空间有竖直方向的匀强磁场,磁感应强度B=0.5T.一根垂直导轨放置的质量m=60g、电阻R=1Ω、长为L的导体棒ab,用长也为20cm的绝缘细线悬挂,导体棒恰好与导轨接触.当闭合开关S后,导体棒沿圆弧摆动,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态.当导体棒ab速度最大时,细线与竖直方向的夹角θ=53°(sin53°=0.8,g=10m/s2),则( )图9A.磁场方向一定竖直向上B.电源的电动势E=8.0VC.导体棒在摆动过程中所受安培力F=8ND.导体棒摆动过程中的最大动能为0.08J11.如图10所示,竖直光滑导轨上端接入一定值电阻R,C1和C2是半径都为a的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C1中磁场的磁感应强度随时间按B1=b+kt(k>0)变化,C2中磁场的磁感应强度恒为B2,一质量为m、电阻为r、长度为L的金属杆AB穿过区域C2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则( )图10A .通过金属杆的电流大小为mgB 2LB .通过金属杆的电流方向为从B 到AC .定值电阻的阻值为R =-r2πkB 2a 3mg D .整个电路的热功率P =πkamg2B 212.如图11甲所示,电阻不计且间距L =1m 的光滑平行金属导轨竖直放置,上端接一阻值R =2Ω的电阻,虚线OO ′下方有垂直于导轨平面向里的匀强磁场,现将质量m =0.1kg 、电阻不计的金属杆ab 从OO ′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平,已知杆ab 进入磁场时的速度v 0=1m/s ,下落0.3 m 的过程中加速度a 与下落距离h 的关系图象如图乙所示,g 取10 m/s 2,则( )图11A .匀强磁场的磁感应强度为2TB .杆ab 下落0.3m 时金属杆的速度为1m/sC .杆ab 下落0.3m 的过程中R 上产生的热量为0.2JD .杆ab 下落0.3m 的过程中通过R 的电荷量为0.25C第Ⅱ卷(非选择题,共52分)二、非选择题(共52分)13.(6分)如图12所示,将一条形磁铁从螺线管拔出的过程中,穿过螺线管的磁通量变化情况是__________,螺线管中产生的感应电流的磁感线方向是________(俯视图),条形磁铁受到螺线管的作用力方向是__________,螺线管受到条形磁铁的作用力方向是____________.图1214.(6分)如图13所示,正方形线框abcd的边长为l,向右通过宽为L的匀强磁场,且l<L,则在线框进入过程中穿过线框的磁通量变化情况是________,感应电流的磁场对磁通量变化起__________作用,线框中感应电流方向是______;在线框移出磁场的过程中穿过线框的磁通量变化情况是________,感应电流的磁场对磁通量变化起________作用,线框中感应电流方向是__________.图1315.(8分)如图14甲所示,光滑导轨宽0.4m,ab为金属棒,均匀变化的磁场垂直穿过轨道平面,磁场的变化情况如图乙所示,金属棒ab的电阻为1Ω,导轨电阻不计.t=0时刻,ab棒从导轨最左端,以v=1m/s的速度向右匀速运动,求1s末回路中的感应电流及金属棒ab受到的安培力.图1416.(8分)如图15甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5m,电阻不计,左端通过导线与阻值R=2Ω的电阻连接,右端通过导线与阻值R L=4Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2m,有一阻值r=2Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中).CDFE区域内磁场的磁感应强度B 随时间变化图象如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:图15(1)通过小灯泡的电流;(2)金属棒PQ在磁场区域中运动的速度大小.17.(12分)如图16所示,电阻不计的“∠”形足够长且平行的导轨,间距L=1m,导轨倾斜部分的倾角θ=53°,并与定值电阻R相连,整个空间存在着B=5T、方向垂直倾斜导轨平面向上的匀强磁场.金属棒ab、cd的阻值R ab=R cd=R,cd棒质量m=1kg,ab棒光滑,cd与导轨间动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力,g取10m/s2,sin53°=0.8,cos53°=0.6,求:图16(1)ab棒由静止释放,当滑至某一位置时,cd棒恰好开始滑动,求这一时刻ab棒中的电流;(2)若ab棒无论从多高的位置释放,cd棒都不动,分析ab棒质量应满足的条件;(3)若cd棒与导轨间的动摩擦因数μ≠0.3,ab棒无论质量多大、从多高的位置释放,cd棒始终不动,求cd棒与导轨间的动摩擦因数μ应满足的条件.18.(12分)如图17所示,倾角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场Ⅰ仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场Ⅱ仅分布在倾斜轨道平面所在区域,方面垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2,图17(1)求导体棒cd沿斜轨道下滑的最大速度的大小;(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时间记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.答案精析1.B 2.B 3.B 4.D 5.A 6.D7.C 8.AD 9.AC 10.BD 11.BCD 12.AD 13.减小 逆时针 竖直向下 竖直向上14.增大 阻碍 逆时针(abcda ) 减小 阻碍 顺时针(adcba )15.1.6A 1.28N ,方向向左解析 Φ的变化有两个原因,一是B 的变化,二是面积S 的变化,显然这两个因素都应当考虑在内,所以有E ==S +BlvΔΦΔt ΔBΔt 又=2T/s.ΔBΔt 在1s 末,B =2T ,S =lvt =0.4×1×1m 2=0.4m 2所以1s 末,E =S +Blv =1.6V ,ΔBΔt 此时回路中的电流I ==1.6AE R 根据楞次定律与右手定则可判断出电流方向为逆时针方向金属棒ab 受到的安培力为F =BIl =2×1.6×0.4N =1.28N ,方向向左.16.(1)0.1A (2)1m/s解析 (1)在t =0至t =4s 内,金属棒PQ 保持静止,磁场变化导致电路中产生感应电动势.电路为r 与R 并联,再与R L 串联,电路的总电阻R 总=R L +=5ΩRrR +r 此时感应电动势E ==dl =0.5×2×0.5V =0.5VΔΦΔt ΔBΔt 通过小灯泡的电流为:I ==0.1A.ER 总(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R 与R L 并联,再与r 串联,此时电路的总电阻R 总′=r +=(2+)Ω=ΩRR L R +R L 4×24+2103由于灯泡中电流不变,所以灯泡的电流I L =I =0.1A ,则流过金属棒的电流为I ′=I L +I R =I L +=0.3AR L I L R 电动势E ′=I ′R 总′=Bdv解得棒PQ 在磁场区域中运动的速度大小v =1m/s.17.(1)3.34A (2)m ab ≤2.08kg (3)μ≥0.75解析 (1)ab 棒沿导轨滑下切割磁感线产生的感应电流的方向是b →a ,通过cd 棒的电流方向是c →d ,cd 棒刚要开始滑动时,其受力分析如图所示.由平衡条件得:BI cd L cos53°=F f ,由摩擦力公式得:F f =μF N ,F N =mg +BI cd L sin53°,联立以上三式,得I cd ≈1.67A,I ab =2I cd =3.34A.(2)ab 棒沿足够长的导轨下滑时,最大安培力只能等于自身重力沿导轨方向的分力,有F A =m ab g sin53°,cd 棒所受最大安培力应为F A ,要使cd 棒不能滑动,需F A cos53°1212≤μ(mg +F A sin53°),12由以上两式联立解得m ab ≤2.08kg,(3)ab 棒下滑,cd 棒始终不动,有F A ′cos53°≤μ(mg +F A ′sin53°),解得μ≥=F A ′cos53°mg +F A ′sin53°cos53°mg F A ′+sin53°当ab 棒质量无限大,在无限长导轨上最终一定匀速运动,安培力F A 趋于无穷大,cd 棒所受安培力F A ′亦趋于无穷大,有μ≥=0.75.cos53°sin53°18.(1)1m/s (2)1C (3)B =88-t2解析 (1)作出cd 棒的侧视平面图,cd 棒加速下滑,安培力逐渐增大,加速度逐渐减小,加速度减少到零时速度增大到最大v m ,此时cd 棒所受合力为零,此后cd 棒匀速下滑.匀速时对cd 棒受力分析,如图所示.沿导轨方向有F 2=mg sin θ感应电动势E =B 2Lv m感应电流I =E2R安培力F 2=B 2IL得最大速度v m ==1m/s.2mgR sin θB 2L 2(2)设cd 棒下滑距离为x 时,ab 棒产生的焦耳热Q ,此时回路中总焦耳热为2Q .根据能量守恒定律,有mgx sin θ=mv +2Q 122m 解得下滑距离x ==1m12mv 2m +2Q mg sin θ根据法拉第电磁感应定律,感应电动势平均值===,感应电流的平E ΔΦΔt B 2·ΔS Δt B 2Lx Δt 均值=I E2R通过cd 棒横截面的电荷量q =·Δt ==1C.I B 2Lx2R (3)若回路中没有感应电流,则cd 棒匀加速下滑,加速度a =g sin θ=5m/s 2初始状态回路中磁通量Φ0=B 0L ·hsin θ一段时间t 后,cd 棒下滑距离Δx =at 212此时回路中磁通量Φ=BL (-Δx )hsin θ回路中没有感应电流,则ΔΦ=Φ-Φ0=0,即Φ=Φ0由上可得磁感应强度B =B 0·h sin θh sin θ-12at 2代入数据得,磁感应强度B 随时间t 变化的关系式为B =. 88-t 2。
2018版高考物理(全国通用)大一轮复习讲义文档:第十章电磁感应第2讲含答案

第2讲法拉第电磁感应定律、自感和涡流一、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n错误!,其中n为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =错误!。
(4)说明:①当ΔΦ仅由B的变化引起时,则E=n ΔB·SΔt;当ΔΦ仅由S的变化引起时,则E=n错误!;当ΔΦ由B、S的变化同时引起时,则E=n错误!≠n错误!.②磁通量的变化率错误!是Φ-t图象上某点切线的斜率.二、导体切割磁感线产生的感应电动势1.公式E=Blv的使用条件(1)匀强磁场.(2)B、l、v三者相互垂直.2.“瞬时性"的理解(1)若v为瞬时速度,则E为瞬时感应电动势.(2)若v为平均速度,则E为平均感应电动势.3.切割的“有效长度”公式中的l为有效切割长度,即导体在与v垂直的方向上的投影长度.图1中有效长度分别为:图1甲图:沿v1方向运动时,l=错误!;沿v2方向运动时,l=错误!·sin β;乙图:沿v1方向运动时,l=错误!;沿v2方向运动时,l=0;丙图:沿v1方向运动时,l=错误!R;沿v2方向运动时,l=0;沿v3方向运动时,l=R。
4.“相对性”的理解E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.三、自感和涡流现象1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L错误!。
(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.(4)自感现象“阻碍"作用的理解:①流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.②流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.线圈就相当于电源,它提供的电流从原来的I L逐渐变小.2.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.(3)涡流的利用:冶炼金属的高频感应炉利用强大的涡流产生焦耳热使金属熔化;家用电磁炉也是利用涡流原理制成的.(4)涡流的减少:各种电机和变压器中,用涂有绝缘漆的硅钢片叠加成的铁芯,以减少涡流.1.判断下列说法是否正确.(1)线圈中磁通量越大,产生的感应电动势越大.(×)(2)线圈中磁通量变化越大,产生的感应电动势越大.( ×)(3)线圈中磁通量变化越快,产生的感应电动势越大.( √)(4)线圈中的电流越大,自感系数也越大.( ×)(5)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.(√)2.(人教版选修3-2P17第1题改编)将闭合多匝线圈置于仅随时间变化的磁场中,关于线圈中产生的感应电动势和感应电流,下列表述正确的是()A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同答案C3.(人教版选修3-2P21第4题改编)如图2所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN. 第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc 边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则()图2A.Q1>Q2,q1=q2B.Q1>Q2,q1>q2C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2答案A解析由Q=I2Rt得,Q1=错误!2Rt=错误!×错误!=错误!,同理,Q2=错误!,又因为L ab>L bc,故Q1>Q2。
2018年高考物理一轮复习 第十章 电磁感应 第四讲 电磁感应中的动力学和能量问题课时作业

第四讲 电磁感应中的动力学和能量问题[A 组·基础题]一、单项选择题1.(2017·陕西宝鸡模拟)如图所示,足够长的U 形光滑金属导轨与水平面成θ角,其中MN 与PQ 平行且间距为L ,导轨间连接一个电阻为R 的灯泡,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.一质量为m 的金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,金属棒ab 接入电路的电阻为r ,当流经金属棒ab 某一横截面的电荷量为q 时,金属棒ab 的速度大小为v ,则金属棒ab 在由静止开始沿导轨下滑到速度达到v 的过程中(未达到最大速度)( )A .金属棒ab 做匀加速直线运动B .金属棒ab 两端的电压始终为rR +rBlv C .灯泡的亮度先逐渐变亮后保持不变 D .回路中产生的焦耳热为mgq R +r BL sin θ-12mv 2解析:对金属棒受力分析,有mg sin θ-F 安=ma ,F 安=B 2L 2vr +R,随着速度的增大,加速度逐渐减小,金属棒做加速度减小的变加速直线运动,A 错误;金属棒两端的电压为路端电压,并且运动过程中速度在变化,末速度为v ,所以B 错误;因为该过程没有达到最大速度,所以灯泡的亮度一直变亮,C 错误;设金属棒运动过程的位移为x ,由q =ΔΦr +R =BLxr +R ,解得x =R +r q BL ,对运动过程应用动能定理有mgx ·sin θ-Q =12mv 2,解得回路产生的热量Q =mgx ·sin θ-12mv 2=mgq r +R BL sin θ-12mv 2,D 正确.答案:D2.(2017·广东珠海模拟)如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,N 、Q 两点间接一个阻值为R 的电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、电阻也为R 的金属棒从高度为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好,则金属棒穿过磁场区域的过程中( )A .金属棒两端的最大电压为12BL 2ghB .金属棒在磁场中的运动时间为2d ghC .克服安培力所做的功为mghD .右端的电阻R 产生的焦耳热为12(mgh +μmgd )解析:金属棒刚进入磁场时的速度最大,此时金属棒产生的电动势最大,mgh =12mv 2,解得v =2gh ,电动势E =BLv =BL 2gh ,金属棒两端的电压为路端电压,U =E 2=BL22gh ,A 正确;金属棒在磁场中做加速度减小的减速运动,不是匀减速运动,无法求其运动时间,B 错误;对金属棒运动全过程应用动能定理得,mgh -W 克安-μmg ·d =0,所以克服安培力做功小于mgh ,C 错误;由上式解得Q =W 克安=mgh -μmgd ,右端电阻R 产生的焦耳热Q R =12(mgh-μmgd ),D 错误.答案:A 二、多项选择题3.如图所示,倾角为θ的平行金属导轨宽度为L ,电阻不计,底端接有阻值为R 的定值电阻,处在与导轨平面垂直向上的磁感应强度为B 的匀强磁场中.有一质量为m 、长也为L 的导体棒始终与导轨垂直且接触良好,导体棒的电阻为r ,它与导轨之间的动摩擦因数为μ,现让导体棒从导轨底部以平行于斜面的速度v 0向上滑行,上滑的最大距离为s ,滑回底端的速度为v ,下列说法正确的是( )A .把运动导体棒视为电源,其最大输出功率为(BLv 0R +r)2R B .导体棒从开始到滑到最大高度的过程所用时间为2sv 0C .整个过程产生的焦耳热为12mv 02-12mv 2-2μmgs cos θD .导体棒上滑和下滑过程中,电阻R 产生的焦耳热相等解析:刚开始上滑时速度最大,导体棒产生的感应电动势最大,输出的功率最大.最大感应电流为I =BLv 0R +r ,导体棒最大输出功率为P =I 2R =(BLv 0R +r)2R ,故A 正确.导体棒从开始到滑到最大高度的过程中做减速运动,随着速度减小,产生的感应电流减小,所受的安培力减小,加速度减小,做加速度逐渐减小的变减速运动,平均速度不等于v 02,则所用时间不等于s v 02=2s v 0,故B 错误.根据能量守恒可知,整个过程产生的焦耳热为12mv 02-12mv 2-2μmgs cos θ,故C 正确.由于导体棒的机械能不断减少,所以下滑与上滑经过同一位置时,上滑速度大,产生的感应电流大,导体棒受到的安培力大,所以上滑过程安培力的平均值大,而两个过程通过的位移大小相等,所以上滑时导体棒克服安培力做功多,整个回路中产生的焦耳热多,则电阻R 产生的焦耳热也多,故D 错误.答案:AC4.(2017·辽宁五校协作体联考)如图,足够长的U 形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为l ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计,其上端所接定值电阻为R ,给金属棒ab 一沿斜面向上的初速度v 0,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为r ,当ab 棒沿导轨上滑距离为x 时,速度减小为零.则下列说法不正确的是( )A .在该过程中,导体棒所受合外力做功为12mv 02B .在该过程中,通过电阻R 的电荷量为BlxR R +r2C .在该过程中,电阻R 产生的焦耳热为Rmv 02R +rD .在导体棒获得初速度时,整个电路消耗的电功率为B 2l 2v 02R +r解析:在该过程中,由动能定理可知导体棒所受合外力做功为-12mv 02,A 错误;由q =I Δt ,I =E R +r ,E =ΔΦΔt =Blx Δt 知,通过电阻R 的电荷量为q =BlxR +r,B 错误;设整个回路产生的总焦耳热为Q ,根据能量守恒得12mv 02=mgx sin θ+Q ,电阻R 产生的焦耳热为Q R =RR +rQ =R R +r (12mv 02-mgx sin θ),故C 错误;在导体棒获得初速度时,电路中电动势为E =Blv 0,I =ER +r ,P =I 2(r +R )=B 2l 2v 02R +r,D 正确. 答案:ABC 三、非选择题5.(2017·贵州黔南州三校联考)如图甲所示,空间存在B =0.5 T 、方向竖直向下的匀强磁场,MN 、PQ 是水平放置的平行长直导轨,其间距L =0.2 m ,R 是连在导轨一端的电阻,ab 是跨接在导轨上质量m =0.1 kg 的导体棒.从零时刻开始,对ab 施加一个大小为F =0.45N 、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v -t 图象,其中AO 是图象在O 点的切线,AB 是图象的渐近线.除R 以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R 的阻值;(2)在棒运动100 m 过程中电阻R 上产生的焦耳热. 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F-F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J[B 组·能力题]非选择题6.(2017·山西运城模拟)如图所示,两足够长的平行的金属导轨MN 、PQ 相距为L ,导轨平面与水平面的夹角θ=37°,导轨电阻不计,整个装置处于垂直于导轨平面向上的匀强磁场中.长为L 的金属棒垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为R ,与导轨间动摩擦因数μ=0.5.两金属导轨的上端连接一个电阻,其阻值也为R ,现闭合开关,给金属棒施加一个方向垂直于杆且平行于导轨平面向上、大小为F =3mg 的恒力,使金属棒从静止开始运动,若金属棒上滑距离为s 时速度恰达到最大,最大速度为v m .(重力加速度为g ,sin 37°=0.6,cos 37°=0.8)求:(1)金属棒刚开始运动时加速度大小; (2)匀强磁场的磁感应强度的大小;(3)金属棒由静止开始上滑位移为2s 的过程中,金属棒上产生的焦耳热Q . 解析:(1)分析金属棒受力得F -mg sin 37°-μmg cos 37°=ma ,代入数据得a =2g .(2)当金属棒速度为v m 时,受力平衡,得F -mg sin 37°-μmg cos 37°=BIL ,又I =E2R,E =BLv m ,联立解得B =2LmgR v m. (3)F ·2s -(mg sin 37°+μmg cos 37°)·2s -W F 安=12mv m 2,Q =W F 安·RR +R=W F 安2,解得Q =2mgs -14mv m 2.答案:(1)2g (2)2LmgR v m (3)2mgs -14mv m 27.如图所示,电阻不计的“∠”形足够长且平行的导轨,间距L =1 m ,导轨倾斜部分的倾角θ=53°,并与定值电阻R 相连.整个空间存在着B =5 T 、方向垂直倾斜导轨平面向上的匀强磁场.金属棒ab 、cd 的阻值R ab =R cd =R ,cd 棒质量m =1 kg ,ab 棒光滑,cd 与导轨间的动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)ab 棒由静止释放,当滑至某一位置时,cd 棒恰好开始滑动.求这一时刻ab 棒中的电流;(2)若ab 棒无论从多高的位置释放,cd 棒都不动,分析ab 棒质量应满足的条件; (3)若cd 棒与导轨间的动摩擦因数μ≠0.3,ab 棒无论质量多大、从多高位置释放,cd 棒始终不动.求cd 棒与导轨间的动摩擦因数μ应满足的条件.解析:(1)cd 棒刚要开始滑动时,其受力分析如图所示.由平衡条件得BI cd L cos 53°-F f =0,F N -mg -BI cd L sin 53°=0,又因为F f =μF N ,联立以上三式,得I cd =1.67 A , 所以I ab =2I cd =3.34 A.(2)ab 棒下滑时,最大安培力F A =m ab g sin 53°,cd 棒所受最大安培力应为12F A ,要使cd 棒不滑动,需满足:12F A cos 53°≤μ(mg +12F A sin 53°). 由以上两式联立解得m ab ≤2.08 kg.(3)ab 棒下滑时,cd 棒始终静止,有F A ′cos 53°≤μ(mg +F A ′sin 53°). 解得μ≥F A ′cos 53°mg +F A ′sin 53°=cos 53°mgF A ′+sin 53°.当ab 棒质量无限大,在无限长轨道上最终一定匀速运动,ab 棒所受安培力趋于无穷大,cd 棒所受安培力F A ′亦趋于无穷大,有μ≥cos 53°sin 53°=0.75.答案:(1)3.34 A (2)m ab ≤2.08 kg (3)μ≥0.758.(2017·辽宁部分重点高中协作校开学考试)如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上.如图所示,将甲、乙两阻值相同、质量均为m 的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l .从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小为a =g sin θ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R .(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F 随时间t 的变化关系式,并说明F 的方向.(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q ,试求此过程中外力F 对甲做的功.解析:(1)甲、乙匀加速运动时加速度相同,所以,当乙进入磁场时,甲刚出磁场,乙进入磁场时的速度v =2gl sin θ.根据平衡条件有mg sin θ=B 2l 2v2R .解得R =B 2l 22gl sin θ2mg sin θ.(2)甲在磁场中运动时,外力F 始终等于安培力F =B 2l 2v2R ,v =g sin θ·t ,将R =B 2l 22gl sin θ2mg sin θ代入得F =mg 2sin 2θ2gl sin θt ,方向沿导轨向下.(3)乙进入磁场前,甲、乙产生相同热量,设为Q 1,则有F 安l =2Q 1,又F =F 安,故外力F 对甲做的功W F =Fl =2Q 1.甲出磁场以后,外力F 为零,乙在磁场中,甲、乙产生相同热量,设为Q 2,则有F 安′l =2Q 2,又F 安′=mg sin θ,又Q =Q 1+Q 2.解得W F =2Q -mgl sin θ.答案:(1)B 2l 22gl sin θ2mg sin θ (2)F =mg 2sin 2θ2gl sin θt ,方向沿导轨向下 (3)2Q -mgl sin θ。
高考物理大一轮检测:第十章+题型探究课(二) 电磁感应中的动力学和能量问题+Word版含解析

[学生用书P224]1.(2019·上海闵行调研)如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长.从置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A .Q 1>Q 2 q 1=q 2B .Q 1>Q 2 q 1>q 2C .Q 1=Q 2 q 1=q 2D .Q 1=Q 2 q 1>q 2解析:选A.设ab 和bc 边长分别为L 1、L 2,线框电阻为R ,若假设穿过磁场区域的时间为t .通过线框导体横截面的电荷量q =It =ΔΦR =BL 1L 2R, 因此q 1=q 2.线框上产生的热量为Q ,第一次:Q 1=BL 1I 1L 2=BL 1BL 1v R L 2, 同理可以求得Q 2=BL 2I 2L 1=BL 2BL 2v R L 1, 由于L 1>L 2,则Q 1>Q 2,故A 正确.2.如图所示,质量均为m 的金属棒ab 、cd 与足够长的水平金属导轨垂直且接触良好,两金属棒与金属导轨间的动摩擦因数为μ,磁感应强度为B 的匀强磁场的方向竖直向下.则ab 棒在恒力F =2μmg 作用下向右运动的过程中,有( )A .安培力对ab 棒做正功B .安培力对cd 棒做正功C .ab 棒做加速度逐渐减小的加速运动,最终匀速运动D .cd 棒做加速度逐渐减小的加速运动,最终匀速运动解析:选C.对于ab棒,因为F=2μmg>μmg,所以从静止开始加速运动,ab棒运动会切割磁感线产生感应电流,从而使ab棒受到一个向左的安培力,这样加速度会减小,最终会做匀速运动;而cd棒所受到的最大安培力与摩擦力相同,所以总保持静止状态,即安培力对ab棒做负功,对cd棒不做功,所以选项C正确,A、B、D错误.3.如图所示,足够长的金属导轨竖直放置,金属棒ab、cd均通过棒两端的环套在金属导轨上.虚线上方有垂直纸面向里的匀强磁场,虚线下方有竖直向下的匀强磁场,两匀强磁场的磁感应强度大小均为B.ab、cd棒与导轨间动摩擦因数均为μ,两棒总电阻为R,导轨电阻不计.开始两棒静止在图示位置,当cd棒无初速释放时,对ab棒施加竖直向上的力F,沿导轨向上做匀加速运动.则下列说法中错误的是()A.ab棒中的电流方向由b到aB.cd棒先加速运动后匀速运动C.cd棒所受摩擦力的最大值大于cd棒的重力D.力F做的功等于两棒产生的电热、摩擦生热与增加的机械能之和解析:选B.ab向上运动的过程中,穿过闭合回路abdc的磁通量增大,根据楞次定律可得ab棒中的感应电流方向为b→a,故A正确;cd棒中感应电流由c到d,其所在的区域有向下磁场,所受的安培力向里,cd棒所受的摩擦力向上.ab棒做加速直线运动,速度增大,产生的感应电流增加,cd棒所受的安培力增大,对导轨的压力增大,则滑动摩擦力增大,摩擦力先小于重力,后大于重力,所以cd棒先加速运动后减速运动,最后停止运动,故B 错误;因安培力增加,cd棒受摩擦力的作用一直增加,会大于重力,故C正确;根据动能定理可得W F-W f-W安培-W G=12m v2-0,力F所做的功应等于两棒产生的电热、摩擦生热与增加的机械能之和,故D正确.4.(多选)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场立即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E k d表示d的动能,x c、x d分别表示c、d 相对释放点的位移.下图中正确的是()解析:选BD.导体棒c 落入磁场之前做自由落体运动,加速度恒为g ,有h =12gt 2,v =gt ,c 棒进入磁场以速度v 做匀速直线运动时,d 棒开始做自由落体运动,与c 棒做自由落体运动的过程相同,此时c 棒在磁场中做匀速直线运动的路程为h ′=v t =gt 2=2h ,d 棒进入磁场而c 棒还没有穿出磁场的过程,无电磁感应现象,两导体棒仅受到重力作用,加速度均为g ,直到c 棒穿出磁场,B 正确;c 棒穿出磁场后,d 棒切割磁感线产生电动势,在回路中产生感应电流,因此时d 棒速度大于c 棒进入磁场时切割磁感线的速度,故电动势、电流、安培力都大于c 棒刚进入磁场时的大小,d 棒减速,直到穿出磁场仅受重力,做匀加速运动,结合匀变速直线运动v 2-v 20=2gh ,可知加速过程动能与路程成正比,D 正确.5.(多选)如图所示,在倾角为θ的光滑斜面上,有三条水平虚线l 1、l 2、l 3,它们之间的区域Ⅰ、Ⅱ宽度均为d ,两区域分别存在垂直斜面向下和垂直斜面向上的匀强磁场,磁感应强度大小均为B ,一个质量为m 、边长为d 、总电阻为R 的正方形导线框,从l 1上方一定高度处由静止开始沿斜面下滑,当ab 边刚越过l 1进入磁场Ⅰ时,恰好以速度v 1做匀速直线运动;当ab 边在越过l 2运动到l 3之前的某个时刻,线框又开始以速度v 2做匀速直线运动,重力加速度为g .在线框从释放到穿出磁场的过程中,下列说法正确的是( )A .线框中感应电流的方向不变B .线框ab 边从l 1运动到l 2所用时间小于从l 2运动到l 3所用时间C .线框以速度v 2做匀速直线运动时,发热功率为m 2g 2R 4B 2d 2sin 2θD .线框从ab 边进入磁场到速度变为v 2的过程中,减少的机械能ΔE 机与重力做功W G的关系式是ΔE 机=W G +12m v 21-12m v 22解析:选BCD.线框从释放到穿出磁场的过程中,由楞次定律可知感应电流方向先沿abcda 后沿adcba 再沿abcda 方向,A 项错误;线框第一次匀速运动时,由平衡条件有BId=mg sin θ,I =Bd v 1R ,解得v 1=mgR sin θB 2d 2,第二次匀速运动时,由平衡条件有2BI ′d =mg sin θ,I ′=2Bd v 2R ,解得v 2=mgR sin θ4B 2d 2,线框ab 边匀速通过区域Ⅰ,先减速再匀速通过区域Ⅱ,而两区域宽度相同,故通过区域Ⅰ的时间小于通过区域Ⅱ的时间,B 项正确;由功能关系知线框第二次匀速运动时发热功率等于重力做功的功率,即P =mg v 2sin θ=m 2g 2R sin 2 θ4B 2d 2,C 项正确;线框从进入磁场到第二次匀速运动过程中,损失的重力势能等于该过程中重力做的功,动能损失量为12m v 21-12m v 22,所以线框机械能损失量为ΔE 机=W G +12m v 21-12m v 22,D 项正确. 6.(2016·高考天津卷)电磁缓速器是应用于车辆上以提高运行安全性的辅助制动装置,其工作原理是利用电磁阻尼作用减缓车辆的速度.电磁阻尼作用可以借助如下模型讨论:如图所示,将形状相同的两根平行且足够长的铝条固定在光滑斜面上,斜面与水平方向夹角为θ.一质量为m 的条形磁铁滑入两铝条间,恰好匀速穿过,穿过时磁铁两端面与两铝条的间距始终保持恒定,其引起电磁感应的效果与磁铁不动、铝条相对磁铁运动相同.磁铁端面是边长为d 的正方形,由于磁铁距离铝条很近,磁铁端面正对两铝条区域的磁场均可视为匀强磁场,磁感应强度为B ,铝条的高度大于d ,电阻率为ρ.为研究问题方便,铝条中只考虑与磁铁正对部分的电阻和磁场,其他部分电阻和磁场可忽略不计,假设磁铁进入铝条间以后,减少的机械能完全转化为铝条的内能,重力加速度为g .(1)求铝条中与磁铁正对部分的电流I ;(2)若两铝条的宽度均为b ,推导磁铁匀速穿过铝条间时速度v 的表达式;(3)在其他条件不变的情况下,仅将两铝条更换为宽度b ′>b 的铝条,磁铁仍以速度v 进入铝条间,试简要分析说明磁铁在铝条间运动时的加速度和速度如何变化.解析:(1)磁铁在铝条间运动时,两根铝条受到的安培力大小相等,均为F 安,有 F 安=IdB ①设磁铁受到沿斜面向上的作用力为F ,其大小有F =2F 安 ②磁铁匀速运动时受力平衡,则有F -mg sin θ=0③联立①②③式可得I =mg sin θ2Bd . ④ (2)磁铁在铝条间运动时,在铝条中产生的感应电动势为E =Bd v ⑤设铝条与磁铁正对部分的电阻为R ,由电阻定律有R =ρd db⑥ 由欧姆定律有I =E R⑦ 联立④⑤⑥⑦式可得v =ρmg sin θ2B 2d 2b . ⑧(3)磁铁以速度v 进入铝条间,恰好做匀速运动时,磁铁受到沿斜面向上的作用力F ,联立①②⑤⑥⑦式可得F =2B 2d 2b v ρ ⑨当铝条的宽度b ′>b 时,磁铁以速度v 进入铝条间时,磁铁受到的作用力变为F ′,有F ′=2B 2d 2b ′v ρ可见,F ′>F =mg sin θ,磁铁所受到的合力方向沿斜面向上,获得与运动方向相反的加速度,磁铁将减速下滑,此时加速度最大.之后,随着运动速度减小,F ′也随着减小,磁铁所受的合力也减小,由于磁铁加速度与所受到的合力成正比,磁铁的加速度逐渐减小,综上所述,磁铁做加速度逐渐减小的减速运动.直到F ′=mg sin θ时,磁铁重新达到平衡状态,以较小的速度匀速下滑.答案:见解析情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
2018版物理大一轮复习第十章电磁感应能力课2电磁感应中的动力学和能量问题课时训练(含解析)

1 能力课2 电磁感应中的动力学和能量问题 一、选择题(1~3题为单项选择题,4~7题为多项选择题) 1.如图1所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。杆ef及线框中导线的电阻都可不计。开始时,给ef一个向右的初速度,则( )
图1 A.ef将减速向右运动,但不是匀减速 B.ef将交减速向右运动,最后停止 C.ef将匀速向右运动 D.ef将往返运动 解析 ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL=B2L2vR=ma知,ef做的是加速度减小的减速运动,故A正确。 答案 A 2.一半径为r、质量为m、电阻为R的金属圆环用一根长为L的绝缘轻细杆悬挂于O1点,杆所在直线过圆环圆心,在O1点的正下方有一半径为L+2r的圆形匀强磁场区域,其圆心O2与O1点在同一竖直线上,O1点在圆形磁场区域边界上,如图2所示。现使绝缘轻细杆从水平位置由静止释放,下摆过程中金属圆环所在平面始终与磁场垂直,已知重力加速度为g,不计空气阻力及其他摩擦阻力,则下列说法正确的是( )
图2 A.金属圆环最终会静止在O1点的正下方 2
B.金属圆环在整个过程中产生的焦耳热为mgL C.金属圆环在整个过程中产生的焦耳热为12mg(L+2r) D.金属圆环在整个过程中产生的焦耳热为12mg(L+r) 解析 圆环最终要在如图中A、C位置间摆动,因为此时圆环中的磁通量不再发生改变,圆环中不再有感应电流产生。由几何关系可知,圆环在A、C位置时,其圆心与O1、O2
的距离均为L+r,则圆环在A、C位置时,圆环圆心到O1的高度为L+2r2。由能量守恒可
得金属圆环在整个过程中产生的焦耳热为12mg(L+2r),C正确。
答案 C 3.CD、EF是两条水平放置的电阻可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的长度为d,如图3所示。导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接。将一阻值也为R的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处。已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是( )
2018高考物理大一轮复习 第10章 电磁感应 第1节 电磁感应现象 楞次定律课时规范训练
电磁感应现象楞次定律课时规范训练[基础巩固题组]1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析:选D.产生感应电流的条件为:闭合回路内磁通量发生变化.A项中,线圈绕在磁铁上,磁通量未变,不会产生感应电流,A错误.同理B错误.C项中,往线圈中插入条形磁铁的瞬间,线圈中磁通量发生变化,此时线圈中将产生感应电流,但插入后磁通量不再变化,无感应电流,故到相邻房间观察时无示数,C错误.D项中,在线圈通电或断电的瞬间,磁通量发生变化,产生感应电流,D正确.2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生图中箭头方向的瞬时感应电流,下列方法可行的是( )A.使匀强磁场均匀增大B.使圆环绕水平轴ab如图转动30°C.使圆环绕水平轴cd如图转动30°D.保持圆环水平并使其绕过圆心的竖直轴转动解析:选 A.根据右手定则,圆环中感应电流产生的磁场竖直向下与原磁场方向相反,根据楞次定律,说明圆环磁通量在增大.磁场增强则磁通量增大,A正确.使圆环绕水平轴ab或cd转动30°,圆环在垂直磁场方向上的投影面积减小,磁通量减小,只会产生与图示方向相反的感应电流,B、C错误.保持圆环水平并使其绕过圆心的竖直轴转动,圆环仍与磁场垂直,磁通量不变,不会产生感应电流,D错误.3.如图甲所示,在同一平面内有两个相互绝缘的金属圆环A、B,圆环A平分圆环B为面积相等的两部分,当圆环A中的电流如图乙所示变化时,甲图中A环所示的电流方向为正,下列说法正确的是( )A.B中始终没有感应电流B.B中有顺时针方向的感应电流C.B中有逆时针方向的感应电流D.B中先有顺时针方向的感应电流,后有逆时针方向的感应电流解析:选B.由于圆环A中的电流发生了变化,故圆环B中一定有感应电流产生,由楞次定律判定B中有顺时针方向的感应电流,故选项B正确.4.(多选)如图,两同心圆环A、B置于同一水平面上,其中B为均匀带负电绝缘环,A 为导体环.当B绕轴心顺时针转动且转速增大时,下列说法正确的是( )A.A中产生逆时针的感应电流B.A中产生顺时针的感应电流C.A具有收缩的趋势D.A具有扩展的趋势解析:选BD.由图可知,B为均匀带负电绝缘环,B中电流为逆时针方向,由右手螺旋定则可知,电流的磁场垂直纸面向外且逐渐增大;由楞次定律可知,磁场增大时,感应电流的磁场与原磁场的方向相反,所以感应电流的磁场的方向垂直纸面向里,A中感应电流的方向为顺时针方向,故A错误,B正确;B环外的磁场的方向与B环内的磁场的方向相反,当B环内的磁场增强时,A环具有面积扩展的趋势,故C错误,D正确.5.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝.闭合开关S的瞬间( )A.从左侧看环中感应电流沿顺时针方向B.铜环受到的安培力大于铝环受到的安培力C.若将环放置在线圈右方,环将向左运动D.电池正负极调换后,金属环不能向左弹射解析:选AB.线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,环中感应电流由左侧看为顺时针,A正确.由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,B正确.若将环放在线圈右方,根据“来拒去留”可得,环将向右运动,C错误.电池正负极调换后,金属环受力仍向左,故仍将向左弹出,D错误.6.多年来物理学家一直设想用实验证实自然界中存在“磁单极子”.磁单极子是指只有S极或只有N极的磁性物质,其磁感线分布类似于点电荷的电场线分布.如图所示的实验就是用于检测磁单极子的实验之一,abcd为用超导材料围成的闭合回路.设想有一个N极磁单极子沿abcd轴线从左向右穿过超导回路,那么在回路中可能发生的现象是( )A.回路中无感应电流B.回路中形成持续的abcda流向的感应电流C.回路中形成持续的adcba流向的感应电流D.回路中形成先abcda流向后adcba流向的感应电流解析:选C.N极磁单极子的磁感线分布类似于正点电荷的电场线分布,由楞次定律知,回路中形成方向沿adcba流向的感应电流,由于回路为超导材料做成的,电阻为零,故感应电流不会消失,C项正确.[综合应用题组]7.(多选)如图所示,一接有电压表的矩形闭合线圈ABCD向右匀速穿过匀强磁场的过程中,下列说法正确的是( )A.线圈中有感应电动势,有感应电流B.线圈中有感应电动势,无感应电流C.AB边两端有电压,且电压表有示数D.AB边两端有电压,但电压表无示数解析:选BD.由于通过回路的磁通量不变,故回路中无感应电流产生,A项错;由欧姆定律知电压表示数U=IR V=0,C项错;由于AB棒切割磁感线AB两端有电压,B、D项正确.8.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两条可自由滑动的导体棒ab和cd,当载流直导线中的电流逐渐增强时,导体棒ab和cd的运动情况是( )A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离解析:选C.电流增强时,电流在abdc回路中产生的垂直纸面向里的磁场增强,回路中磁通量增大,根据楞次定律可知回路要减小面积以阻碍磁通量的增加,因此,两导体棒要相向运动,相互靠近.选项C正确.9.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是( )A.先顺时针后逆时针B.先逆时针后顺时针C.先顺时针后逆时针,然后再顺时针D.先逆时针后顺时针,然后再逆时针解析:选 D.如图为地下通电直导线产生的磁场的正视图,当线圈在通电直导线正上方的左侧时由楞次定律知,线圈中感应电流方向为逆时针,同理在右侧也为逆时针,当线圈一部分在左侧一部分在右侧时为顺时针,故D正确.10.(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动解析:选ABD.设想把金属圆盘切割成无数根导体棒,导体棒切割磁感线产生感应电动势、感应电流,根据右手定则可知,靠近圆心处的电势高,选项A正确;根据E=BLv可知,所加磁场B越强,感应电动势E越大,感应电流越大,因F=BIL,所以安培力也越大,安培力对圆盘的转动阻碍作用越强,选项B正确;若所加磁场反向,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍将减速运动,选项C错误;若所加磁场穿过整个圆盘,圆盘的半径切割磁感线,产生感应电动势,但圆盘内没有涡流,故没有安培力,不消耗机械能,所以圆盘匀速转动,选项D正确.11.(多选)如图所示,铁芯上有两个线圈A和B.线圈A跟电源相连,LED(发光二极管,具有单向导电性)M和N并联后接在线圈B两端.图中所有元件均正常,则( )A.S闭合瞬间,A中有感应电动势B.S断开瞬间,A中有感应电动势C.S闭合瞬间,M亮一下,N不亮D.S断开瞬间,M和N二者均不亮解析:选ABC.闭合开关的瞬间,穿过线圈A的磁通量增加,线圈A中将产生自感电动势,故A正确.开关断开的瞬间,穿过线圈A的磁通量减小,线圈A中将产生自感电动势,故B正确.闭合开关的瞬间,穿过线圈A的磁通量增加,根据安培定则可知,A中产生的磁场的方向向上,穿过B的磁通量向上增大时,根据楞次定律可知,B中感应电流的磁场的方向向下,根据安培定则可知B中感应电流的方向向下,所以线圈下端的电势高,电流能通过二极管M,不能通过二极管N,故C正确.结合C的分析可知,S断开瞬间,穿过线圈B的磁通量减小,产生感应电流的方向与C中感应电流的方向相反,所以感应电流能通过二极管N,不能通过二极管M,故D错误.12.经过不懈的努力,法拉第终于在1831年8月29日发现了“磁生电”的现象,他把两个线圈绕在同一个软铁环上(如图所示),一个线圈A连接电池与开关,另一线圈B闭合并在其中一段直导线附近平行放置小磁针.法拉第可观察到的现象有( )A.当合上开关,A线圈接通电流瞬间,小磁针偏转一下,随即复原B.只要A线圈中有电流,小磁针就会发生偏转C.A线圈接通后其电流越大,小磁针偏转角度也越大D.当开关打开,A线圈电流中断瞬间,小磁针会出现与A线圈接通电流瞬间完全相同的偏转解析:选A.当合上开关,A线圈接通电流瞬间,穿过A的磁通量发生变化,使得穿过B 的磁通量也变化,所以在B中产生感生电流,电流稳定后穿过A、B的磁通量不再变化,所以B中不再有感应电流,即小磁针偏转一下,随即复原,选项A正确;A线圈中有电流,但是如果电流大小不变,则在B中不会产生感应电流,即小磁针就不会发生偏转,选项B错误;B线圈中的感应电流大小与A中电流的变化率有关,与A中电流大小无关,故C错误;当开关打开,A线圈电流中断瞬间,由于穿过B的磁通量减小,则在B中产生的电流方向与A线圈接通电流瞬间产生的电流方向相反,所以小磁针会出现与A线圈接通电流瞬间完全相反的偏转,选项D错误.13.(多选)某同学将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边.当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致.经过操作,该同学在计算机上得到了如图乙所示的图象.该同学猜测磁感应强度传感器内有一线圈,当测得磁感应强度最大时就是穿过线圈的磁通量最大时.按照这种猜测( )A .在t =0.1 s 时刻,线圈内产生的感应电流的方向发生了变化B .在t =0.15 s 时刻,线圈内产生的感应电流的方向发生了变化C .在t =0.1 s 时刻,线圈内产生的感应电流的大小达到了最大值D .在t =0.15 s 时刻,线圈内产生的感应电流的大小达到了最大值解析:选AC.题图乙中斜率既能反映线圈内产生的感应电流的方向变化,又能反映感应电流的大小变化.t =0.1 s 时刻,图线斜率最大,意味着磁通量的变化率最大,感应电动势最大,线圈内产生的感应电流的大小达到了最大值,t =0.1 s 时刻前后的图线斜率一正一负,说明产生的感应电流的方向发生了变化,所以A 、C 正确;同理可知t =0.15 s 时刻,图线斜率不是最大值,且该时刻前后图线斜率全为负值,说明线圈内产生的感应电流的方向没有变化,而且大小并未达到最大值,选项B 、D 错误.14.磁感应强度为B 的匀强磁场仅存在于边长为2l 的正方形范围内,有一个电阻为R 、边长为l 的正方形导线框abcd ,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图所示,从ab 进入磁场时开始计时,到线框离开磁场为止.(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,说明感应电流的方向.解析:(1)当ab 边进入磁场时,穿过线框的磁通量均匀增加,在t 1=l v 时线框全部进入磁场,磁通量Φ=Bl 2不变化;当在t 2=2l v时,ab 边离开磁场,穿过线框的磁通量均匀减少到零,所以该过程的Φ -t 图象如图所示.(2)ab 边进入磁场时有感应电流,根据右手定则可判知感应电流方向为逆时针;ab 边离开磁场时有感应电流,根据右手定则可判知感应电流方向为顺时针;中间过程t 1~t 2磁通量不变化,没有感应电流.答案:见解析。
2018高考一轮物理文档 第十章 电磁感应 第3节 课时提
课时提能练(三十) 电磁感应定律的综合应用(限时:40分钟)A 级 跨越本科线1.用均匀导线做成的正方形线圈边长为l ,如图10-3-12所示,正方形的一半放在垂直于纸面向里的匀强磁场中,当磁场以ΔB Δt 的变化率增强时,不考虑磁场的变化对虚线右侧的影响,则( )图10-3-12A .线圈中感应电流方向为adbcaB .线圈中产生的电动势E =ΔB Δt ·l 2C .线圈中a 点电势高于b 点电势D .线圈中b 、a 两点间的电势差为l 2ΔB 4ΔtD [处于磁场中的线圈面积不变,ΔB Δt 增大时,通过线圈的磁通量增大,由楞次定律可知,感应电流的方向为acbda 方向,A 项错;产生感应电动势的acb 部分等效为电源,b 端为等效电源的正极,电势高于a 端,C 项错;由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt ·l 22,知B 项错;adb 部分等效为外电路,b 、a 两点间电势差为等效电路的端电压,U =E 2R ·R =E 2,D 项正确.]2.(多选)(2017·武汉模拟)如图10-3-13所示,在水平光滑绝缘桌面上建立直角坐标系xOy ,第一象限内存在垂直桌面向上的磁场,磁场的磁感应强度B 沿x 轴正方向均匀增大且ΔB Δx =k ,一边长为a 、电阻为R 的单匝正方形线圈ABCD 在第一象限内以速度v 沿x 轴正方向匀速运动,运动中AB 边始终与x 轴平行,则下列判断正确的是( )图10-3-13A .线圈中的感应电流沿逆时针方向B .线圈中感应电流的大小为ka 2v RC .为保持线圈匀速运动,可对线圈施加大小为k 2a 4v R 的水平外力D .线圈不可能有两条边所受安培力大小相等BC [由楞次定律得感应电流沿顺时针方向,A 错误;设线圈向右移动一段距离Δl ,则通过线圈的磁通量变化为ΔΦ=Δl ·ΔB Δx·a 2=Δl ·a 2k ,而所需时间为Δt =Δl v ,根据法拉第电磁感应定律,感应电动势为E =ΔΦΔt =ka 2v ,故感应电流大小为I =E R =ka 2v R ,B 正确;线圈匀速运动时,外力与安培力平衡,由平衡条件得F =(B 2-B 1)Ia=ka 2I =k 2a 4v R ,C 正确;线圈的AB 、CD 两条边所受安培力大小相等,D 错误.] 3.(多选)如图10-3-14所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10 Ω的电阻.一阻值R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( )【导学号:92492377】图10-3-14A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 VBD [由右手定则可知ab 中电流方向为a →b ,A 错误.导体棒ab 切割磁感线产生的感应电动势E =Bl v ,ab 为电源,cd 间电阻R 为外电路负载,de 和cf 间电阻中无电流,de 间和cf 间无电压,因此cd 和fe 两端电压相等,即U =E 2R ×R=Bl v 2=1 V ,B 、D 正确,C 错误.]4.如图10-3-15甲所示,线圈ABCD 固定在磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈的AB 边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是下列选项中的( )图10-3-15D [由题图乙可知,线圈的AB 边所受安培力F =BIL 为定值,由欧姆定律可知感应电流I 与感应电动势E 成正比,感应电动势E 与磁通量的变化率ΔΦΔt 成正比,线圈面积不变,磁通量变化率ΔΦΔt 与磁感应强度的变化率ΔB Δt 成正比.在B -t 图象中,切线斜率表示磁感应强度的变化率,若磁感应强度增大,则其变化率应减小,A 、B 项错,D 项正确;若磁感应强度减小,则其变化率应增大,但此时F 的方向变为向左,C 项错.]5.如图10-3-16所示,abcd 是边长为L 、每边电阻均相同的正方形导体线框,今维持线框以恒定的速度v 沿x 轴运动,并穿过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B ,方向垂直纸面向里.线框b 点在O 位置时开始计时,则在t =2L v 时间内,a 、b 二点的电势差U 随时间t 的变化图线为( )图10-3-16D [t =L v 时刻,ab 边完全进入磁场,电动势E =Bl v ,ab 间的电压等于路端电压,U ab =34BL v ,C 错误;t =2L v 时刻,线框完全进入磁场,ab 间的电压等于电动势E ,A 、B 错误;排除了三个错误选项,只有D 正确.]6.(2017·茂名二模))如图10-3-17所示,一个有矩形边界的匀强磁场区域,磁场方向垂直纸面向里.一个三角形闭合导线框,由位置1(左)沿纸面匀速运动到位置2(右).取线框刚到达磁场边界的时刻为计时起点(t =0),规定逆时针方向为电流的正方向,则下图中能正确反映线框中电流与时间关系的是( )图10-3-17A [线框进入磁场过程中,磁通量增大,由楞次定律可知,感应电流方向为逆时针方向,即正方向,可排除B 、C 选项;由E =BL v 可知,线框进出磁场过程中,切割磁感线的有效长度为线框与磁场边界交点的连线,故进、出磁场过程中,等效长度L 先增大后减小,故感应电动势先增大后减小;由欧姆定律可知,感应电流也是先增大后减小的,故A 项正确、D 项错误.]7.(多选)(2017·连云港模拟)如图10-3-18所示,在水平面内直角坐标系xOy 中有一光滑金属导轨AOC ,其中曲线导轨OA 满足方程y =kx 2,长度为Lk 的直导轨OC 与x 轴重合,整个导轨处于垂直纸面向里的匀强磁场中.现有一长为L 的金属棒从图示位置开始沿x 轴正方向以速度v 做匀速直线运动,已知金属棒单位长度的电阻为R 0,除金属棒的电阻外其余部分电阻均不计,棒与两导轨始终接触良好,则在金属棒运动至AC 的过程中( )图10-3-18A .t 时刻回路中的感应电动势e =Bk v 3t 2B .感应电流逐渐减小C .闭合回路消耗的电功率逐渐增大D .通过金属棒的电荷量为B R 0L AC [t 时刻,e =By v ,y =kx 2,x =v t ,故e =Bk v 3t 2,A 项正确;t 时刻回路中的电阻为:R =yR 0=R 0kx 2=R 0k v 2t 2,回路中的电流为i =e R =B v R 0=恒量,故B 项错误;闭合回路的电功率P =i 2R =(B v R 0)2R 0k v 2t 2=kB 2v 4R 0t 2,故C 项正确;通过金属棒的电荷量q =it ,t =L k v ,故q =B R 0L k ,故D 项错误.]8.(2017·永定模拟)在光滑的水平地面上方,有两个磁感应强度大小均为B ,方向相反的匀强磁场,如图10-3-19所示,PQ 为两个磁场的边界,磁场范围足够大.一个半径为a 、质量为m 、电阻为R 的金属圆环垂直磁场方向以速度v 从如图位置运动,当圆环运动到直径刚好与边界线PQ 重合时,圆环的速度为12v ,则下列说法正确的是( )图10-3-19A .此时圆环中的电功率为2B 2a 2v 2RB .此时圆环的加速度为4B 2a 2v 2mRC .此过程中通过圆环截面的电量为πBa 2RD .此过程中回路产生的电能为0.75 m v 2C [根据右手定则可知,在图示位置,圆环左、右两边的线圈因切割磁感线而产生的感应电流方向相同(均是顺时针方向),线圈中的感应电动势大小E =2B ·2a ·12v =2Ba v ,感应电流大小I =E R =2Ba v R ,此时圆环中的电功率为P =EI =4B 2a 2v 2R ,A 项错误;根据左手定则可知,圆环左、右两边受到的安培力均是水平向左,所以根据牛顿第二定律可知,圆环的加速度为a =2BI ·2a m =4Ba m ·2Ba v R =8B 2a 2v mR ,B 项错误;此过程中通过圆环截面的电量为Q =I Δt =ΔΦR Δt ·Δt =ΔΦR =πBa 2R ,C 项正确;此过程中回路产生的电能等于小球动能的减小量,所以W 电=12m v 2-12m (v 2)2=38m v 2,D 项错误.]B 级 名校必刷题9.将一均匀导线围成一圆心角为90°的扇形导线框OMN ,其中OM =R ,圆弧MN 的圆心为O 点,将导线框的O 点置于如图10-3-20所示的直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .从t =0时刻开始让导线框以O 点为圆心,以恒定的角速度ω沿逆时针方向做匀速圆周运动,假定沿ONM 方向的电流为正,则线框中的电流随时间的变化规律描绘正确的是( )图10-3-20B [在0~t 0时间内,线框从图示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12Bω·R 2,由闭合电路欧姆定律得,回路中的电流为I 1=E 1r =BωR 22r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN方向).回路中产生的感应电动势为E 2=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32Bω·R 2=3E 1,感应电流为I 3=3I 1.在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12Bω·R 2,由闭合电路欧姆定律得,回路电流为I 4=I 1,B 对.] 10. (多选)(2017·长沙摸底)如图10-3-21所示为两光滑金属导轨MNQ 和GHP ,其中MN 和GH 部分为竖直的半圆形导轨,NQ 和HP 部分为水平平行导轨,整个装置置于方向竖直向上、磁感应强度大小为B 的匀强磁场中.有两个长均为l 、质量均为m 、电阻均为R 的导体棒垂直导轨放置且始终与导轨接触良好,其中导体棒ab 在半圆形导轨上,导体棒cd 在水平导轨上,当恒力F 作用在导体棒cd 上使其做匀速运动时,导体棒ab 恰好静止,且距离半圆形导轨底部的高度为半圆形导轨半径的一半,已知导轨间距离为l ,重力加速度为g ,导轨电阻不计,则( )图10-3-21A .每根导轨对导体棒ab 的支持力大小为2mgB .导体棒cd 两端的电压大小为23mgRBl C .作用在导体棒cd 上的恒力F 的大小为3mgD .恒力F 的功率为6m 2g 2R B 2l2 CD [对ab 棒受力分析如图所示:则:F N sin 30°=mg ,则:F N =2mg ,每根导轨对导体棒ab 的支持力大小为mg ,故选项A 错误;F N cos 30°=F A =B Bl v 2R l ,则回路中电流为:I =Bl v 2R =3mg Bl ,导体棒cd 两端的电压大小为U =IR =3mg Bl R ,故选项B 错误;由于金属棒cd 匀速运动,则安培力等于拉力F ,则F =B Bl v 2R l =3mg ,故选项C 正确;由于B Bl v 2R l =3mg ,则金属棒cd 的速度为v =23mgR B 2l 2,则恒力F 的功率为P =F v =3mg 23mgR B 2l 2=6m 2g 2RB 2l 2,故选项D 正确.]11.(2016·全国甲卷)如图10-3-22所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.图10-3-22【解析】 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E =Bl v③联立①②③式可得E =Blt 0⎝ ⎛⎭⎪⎫F m -μg . ④ (2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I .根据欧姆定律I =E R ⑤式中R 为电阻的阻值.金属杆所受的安培力为f =BlI ⑥因金属轩做匀速运动,由牛顿运动定律得F -μmg -f =0⑦联立④⑤⑥⑦式得R =B 2l 2t 0m . ⑧ 【答案】 (1)Blt 0⎝ ⎛⎭⎪⎫F m -μg (2)B 2l 2t 0m 12.(2017·郑州模拟)如图10-3-23所示,两根足够长的光滑平行金属导轨MN 、PQ 电阻不计,其间距为L ,两导轨及其构成的平面与水平面成θ角.两根用细线连接的金属杆ab 、cd 分别垂直导轨放置,平行斜面向上的外力F 作用在杆ab 上,使两杆静止.已知两金属杆ab 、cd 的质量分别为m 和2m ,两金属杆的电阻都为R ,并且和导轨始终保持良好接触,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B .某时刻将细线烧断,保持杆ab 静止不动,重力加速度为g .(1)求细线烧断后外力F的最小值F1和最大值F2;(2)当外力F=F1+F22时,求cd杆的速度大小;(3)从细线烧断到cd杆达到最大速度,杆ab产生的电热为Q,求cd杆在此过程中经过的位移.图10-3-23【解析】(1)细线烧断瞬间,外力F取得最小值F1,对杆ab:F1=mg sin θcd杆到达最大速度v m时,外力F取得最大值F2,对杆ab:F2=mg sin θ+F安对cd杆,因其匀速运动,则F′安=2mg sin θ显然F安=F′安代入可得F2=3mg sin θ.(2)当外力F=F1+F22时,对杆abF=mg sin θ+F″安=2mg sin θ可得F″安=mg sin θ又知F″安=BIL其中I=BL v 2R可得此时cd杆的速度v=2mgR sin θB2L2.(3)由于两杆电阻相等,所以产生的电热相等.cd杆达到最大速度前,电路产生的总电热为2Q,设cd杆达到最大速度前经过的位移为x,由能量守恒可知2mg sin θ·x=12(2m)v2m+2Qcd杆最后匀速时F′安=2mg sin θ=BI′LI′=BL v m 2R联立解得x=8m3g2R2sin2θ+B4L4Q B4L4mg sin θ.【答案】(1)mg sin θ3mg sin θ(2)2mgR sin θB2L2(3)8m3g2R2sin2θ+B4L4QB4L4mg sin θ。
2018高考一轮物理文档 第十章 电磁感应 第1节 课时提能练28 电磁感应现象 楞次定律 含答案 精品
课时提能练(二十八)电磁感应现象楞次定律(限时:40分钟)A级跨越本科线1.从1822年至1831年的近十年时间里,英国科学家法拉第心系“磁生电”.在他的研究过程中有两个重要环节:(1)敏锐地觉察并提出“磁生电”的闪光思想;(2)通过大量实验,将“磁生电”(产生感应电流)的情况概括为五种:变化着的电流、变化着的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体.结合你学过的相关知识,试判断下列说法正确的是()A.环节(1)提出“磁生电”思想是受到了麦克斯韦电磁场理论的启发B.环节(1)提出“磁生电”思想是为了对已经观察到的“磁生电”现象做出合理解释C.环节(2)中五种“磁生电”的条件都可以概括为“穿过闭合导体回路的磁通量发生变化”D.环节(2)中“在磁场中运动的导体”这种情况不符合“穿过闭合导体回路的磁通量发生变化”这一条件C[环节(1)提出“磁生电”是法拉第认为自然界具有对称美,既然电能生磁,磁也一定能生电.麦克斯韦受法拉第的影响提出电磁场理论,A、B错误;环节(2)磁生电产生条件可以概括为“穿过闭合导体回路的磁通量发生变化”,C正确、D 错误.]2.如图10-1-14所示,一金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生如箭头所示方向的感应电流,下列方法可行的是()图10-1-14A.使匀强磁场均匀增大B.使圆环绕水平轴ab如图转动30°C.使圆环绕水平轴cd如图转动30°D.保持圆环水平并使其绕过圆心的竖直轴转动A[由安培定则可知感应电流产生的磁场方向与原磁场方向相反,由楞次定律可知通过圆环的磁通量一定是增加的,由Φ=BS cos θ可知,A项正确.] 3.如图10-1-15所示,面积为S的圆环始终与纸面垂直,圆环与轻杆一端相连,轻杆另一端绕垂直纸面的水平轴O转动,当转到A、C、D三位置时(D、C在同一直线上)穿过圆环的磁通量正确的是()图10-1-15A.ΦA=ΦC=ΦD=BSB.ΦA=ΦC=ΦD=BS cos αC.ΦA=ΦC=BS cos α,ΦD=-BS cos αD.ΦA=ΦD=BS sin α,ΦC=-BS sin αC[由题图可知圆环所在的三个位置投影到垂直于磁场方向上的面积均为cos α,磁感线穿过A、C位置的圆环时方向是相同的,磁感线穿过D位置的圆环时与穿过A、C位置的圆环时方向是相反的,则ΦD与ΦA的符号应相反.] 4.(2017·汕头一模)如图10-1-16,插有铁芯的螺线管固定在水平面上,管右端的铁芯上套着一个可以自由移动的闭合铜环,螺线管与电源、开关组成电路,不计铜环与铁芯之间摩擦阻力,下面说法正确的是()图10-1-16A.闭合开关,螺线管右端为N极B.闭合开关瞬间,铜环会向右运动C.闭合开关瞬间,铜环会向左运动D.闭合开关瞬间,铜环仍保持不动B[闭合开关,根据右手螺旋定则可知,螺线管右端为S极,故A错误;开关闭合瞬间,线圈产生的磁场变化,穿过铜环的磁通量变大,根据楞次定律,铜环会向右运动,从而阻碍磁通量的增大,故B正确,C、D错误.] 5.(多选)如图10-1-17所示,矩形线框abcd通过导体杆搭接在金属导轨EF 和MN上,整个装置放在方向垂直导轨平面向里的匀强磁场中,导轨左侧接有定值电阻R.当线框向右运动时,下面说法正确的是()【导学号:92492364】图10-1-17A.R中无电流B.R中有电流,方向为E→MC.ab中无电流D.ab中有电流,方向为b→aBD[由于线框向右运动,所以ab两端和dc两端存在着相同大小的电势差,ab中有电流,方向为b→a,cd中也有电流,方向为c→d,回路内有电流,R中电流方向为E→M,B、D正确,A、C错误.]6.如图10-1-18所示,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a()图10-1-18A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转B[据楞次定律的推论“增反减同”,b环中产生顺时针方向的感应电流,说明a中原电流可能顺时针减少,也可能逆时针增加,但b环有收缩的趋势,说明a 环中的电流应与b环中的电流同向,同向电流相互吸引,才能使b环收缩,故a 环中的电流只能是顺时针减少,因此带正电的a环只能顺时针减速旋转,B正确.] 7.(多选)如图10-1-19所示,水平铜圆盘与沿其轴线的竖直金属杆固定连接,并可一同绕圆盘中心轴线自由转动.a接线柱通过导线与金属杆连通,b接线柱通过电刷与圆盘边缘接触良好,方向竖直向下的匀强磁场穿过整个圆盘,则()【导学号:92492365】图10-1-19A.若使圆盘沿图示方向转动,b接线柱电势高、a按线柱电势低B.若使圆盘沿图示方向转动,a接线柱电势高、b接线柱电势低C.若使a接电源正极、b接电源负极,圆盘将沿图示方向转动D.若使b接电源正极、a接电源负极,圆盘将沿图示方向转动BC[若使圆盘沿图示方向转动,根据右手定则,切割磁感线的导体相当于电源,在电源内部电流从低电势流到高电势,a接线柱电势高,b接线柱电势低,选项A错误,选项B正确;若a接电源正极、b接电源负极,根据左手定则,圆盘在安培力作用下将沿图示方向转动,选项C正确;若b接电源正极、a接电源负极,根据左手定则,圆盘在安培力作用下将沿与图示方向相反方向转动,选项D错误.] 8.(2014·广东高考)如图10-1-20所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块()图10-1-20A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大C[小磁块下落过程中,在铜管P中产生感应电流,小磁块受到向上的磁场力,不做自由落体运动,而在塑料管Q中只受到重力,在Q中做自由落体运动,故选项A错误;根据功能关系知,在P中下落时,小磁块机械能减少,在Q中下落时,小磁块机械能守恒,故选项B错误;在P中加速度较小,在P中下落时间较长,选项C正确;由于在P中下落时要克服磁场力做功,机械能有损失,故知,落至底部时在P中的速度比在Q中的小,选项D错误.]B级名校必刷题9.如图10-1-21所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木盘A的轴线OO′重合.现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()图10-1-21A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大B[使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,金属环B 内磁通量增大,根据楞次定律,金属环B的面积有缩小的趋势,丝线受到的拉力减小,选项B正确.]10.如图10-1-22所示,导线框abcd与直导线几乎在同一平面内,直导线中通有恒定电流I,当导线框由左向右匀速通过直导线时,线框中感应电流的方向是()【导学号:92492366】图10-1-22A.先abcd,后dcba,再abcdB.始终dcbaC.先dcba,后abcd,再dcbaD.先abcd,后dcbaC[由安培定则得,载有恒定电流的直导线产生的磁场在导线左边的方向为垂直纸面向外,右边的磁场方向垂直向里,当线圈向导线靠近时,则穿过线圈的磁通量变大,根据楞次定律可知:感应电流方向为dcba;当线圈越过导线时到线圈中心轴与导线重合,穿过线圈的磁通量变小,则感应电流方向为abcd;当继续向右运动时,穿过线圈的磁通量变大,由楞次定律可知,感应电流方向为abcd;当远离导线时,由楞次定律可知,感应电流方向为dcba,故C正确.] 11.如图10-1-23所示,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速释放,在圆环从a摆向b的过程中()图10-1-23A.感应电流方向先逆时针后顺时针B.感应电流的方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向D[圆环从位置a无初速释放,在到达磁场分界线之前,穿过圆环向里的磁感线条数增加,根据楞次定律可知,圆环内感应电流的方向为逆时针,圆环经过磁场分界线之时,穿过圆环向里的磁感线条数减少,根据楞次定律可知,圆环内感应电流的方向为顺时针;圆环通过磁场分界线之后,穿过圆环向外的磁感线条数减少,根据楞次定律可知,圆环内感应电流的方向为逆时针;因磁场在竖直方向分布均匀,圆环所受竖直方向的安培力平衡,故总的安培力沿水平方向.综上所述,正确选项为D.]12.如图10-1-24所示,导轨间的磁场方向垂直于纸面向里,当导线MN在导轨上向右加速滑动时,正对电磁铁A的圆形金属环B中()【导学号:92492367】图10-1-24A.有感应电流,且B被A吸引B.无感应电流C.可能有,也可能没有感应电流D.有感应电流,且B被A排斥D[MN向右加速滑动,根据右手定则,MN中的电流方向从N→M,且大小在逐渐变大,根据安培定则知,电磁铁A的左端为N极,且磁感应强度逐渐增强,根据楞次定律知,B环中的感应电流产生的内部磁场方向向右,B被A排斥.故D 正确.]13.(多选)如图10-1-25是创意物理实验设计作品《小熊荡秋千》.两根彼此靠近且相互绝缘的金属棒C、D固定在铁架台上,与两个铜线圈P、Q组成一闭合回路,两个磁性很强的条形磁铁如图放置,当用手左右摆动线圈P时,线圈Q也会跟着摆动,仿佛小熊在荡秋千.以下说法正确的是()图10-1-25A.P向右摆动的过程中,P中的电流方向为顺时针方向(从右向左看)B.P向右摆动的过程中,Q也会向右摆动C.P向右摆动的过程中,Q会向左摆动D.若用手左右摆动Q,P会始终保持静止AB[P向右摆动的过程中,线圈P平面内从右往左的磁通量减小,根据楞次定律可以得出电流方向为顺时针方向,所以A项正确;根据P中产生的感应电流方向流过Q线圈也是顺时针,根据左手定则判断Q下边受安培力向右摆动,所以B项正确,C项错误;若用手左右摆动Q,线圈Q的下边切割磁感线会产生感应电流,线圈P中会有感应电流通过,在磁场中会受到安培力,所以D项错误.] 14.如图10-1-26所示,质量为m的金属圆环用绝缘细线悬挂起来,金属圆环有一半处于边界水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于细线拉力的大小,下列说法中正确的是()图10-1-26A.大于圆环重力mg,并逐渐减小B.始终等于圆环重力mgC.小于圆环重力mg,并保持恒定D.大于圆环重力mg,并保持恒定A[磁感应强度减小,磁通量减小,线圈中产生顺时针方向的电流,根据左手定则,线圈受到向下的安培力,磁感应强度均匀减小,线圈中产生大小不变的电流,但因为磁感应强度B在减小,所以安培力F=BIl也在减小;由T=mg+F安可知细线的拉力大于圆环的重力,并且逐渐减小,选项A正确.] 15.(多选)图10-1-27中T是绕有两组线圈的闭合铁芯,线圈的绕向如图10-1-27所示,D是理想的二极管,金属棒ab可在两条平行的金属导轨上沿导轨滑行,磁场方向垂直纸面向里.若电流计G中有电流通过,则ab棒的运动可能是()【导学号:92492368】图10-1-27A.向左匀速运动B.向右匀速运动C.向左匀加速运动D.向右匀减速运动CD[当电流计中有电流通过时,说明左边的电流是从上向下流的,由右手螺旋定则可得出此感应电流的磁场方向为从上向下,若ab匀速运动,右边线圈中产生的感应电流是恒定的,则左边线圈中不会产生感应电流,所以A、B错误.若ab向右匀减速运动,右边线圈中的电流产生的磁通量在从下向上减小,故穿过左边线圈的磁通量在从上向下减小,该线圈中会产生一个从上向下的磁场,D正确.当ab向左匀加速运动,同样会在左边的线圈中产生一个从上向下的磁场,故C正确.] 16.(多选)(2017·重庆模拟)如图10-1-28,M、N为两个有一定质量的载流超导线圈,M放置在水平桌面上,N悬停于M正上方.若重力加速度增大,使得N向下运动,则下列说法正确的是()图10-1-28A.线圈M和N中的电流绕行方向相反B.线圈N受到的作用力减小C.线圈M中的电流增大D.线圈M对桌面正压力减小AC[根据题述情境,M、N两个线圈相互排斥,由同向电流相互吸引,反向电流相互排斥,可知线圈M和N中电流绕行方向相反,选项A正确.若重力加速度增大,使得N向下运动,穿过M的磁通量增大,M中将产生与N中电流方向相反的感应电流,使得线圈M中的电流增大,二者之间的排斥力增大,线圈N受到的作用力增大,线圈M对桌面的正压力增大,选项B、D错误,C正确.]。
2018高考一轮物理文档 第十章 电磁感应 第2节 课时提
课时提能练(二十九)法拉第电磁感应定律自感和涡流(限时:40分钟)A级跨越本科线1.穿过某闭合回路的磁通量Φ随时间t变化的图象分别如图10-2-11中①~④所示,下列关于该回路中的感应电动势的论述,正确的是()图10-2-11A.图①中,回路中产生的感应电动势恒定不变B.图②中,回路中产生的感应电动势一直在变大C.图③中,回路中在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势D.图④中,回路中产生的感应电动势先变小后变大D[图①中磁通量不变,不能产生感应电动势,图②中均匀变化的磁通量产生恒定的感应电动势,图③中磁通量的变化率为图线斜率的大小,故A、B、C均错,D正确.]2.(多选)涡流检测是工业上无损检测的方法之一.如图10-2-12所示,线圈中通以一定频率的正弦交流电,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法中正确的是()图10-2-12A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交流电频率C .通电线圈和待测工件间存在周期性变化的作用力D .待测工件可以是塑料或橡胶制品ABC [由楞次定律可知,涡流的磁场总是要阻碍穿过工件磁通量的变化,选项A 正确;类似于变压器,涡流的频率等于通入线圈的交流电频率,选项B 正确;由于电流在磁场中受安培力作用,故通电线圈和待测工件间存在周期性变化的作用力,选项C 正确;涡流必须是在导体中产生,故待测工件不能是塑料或橡胶制品,选项D 错误.]3.(2017·桂林模拟)如图10-2-13所示为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 开始均匀增加,该段时间线圈两端a 和b 之间的电势差为-U ,则在t 2时刻磁感应强度大小B ′为( )图10-2-13A .-U (t 2-t 1)nS +BB .U (t 2-t 1)nS -B C.U (t 2-t 1)nS D .U (t 2-t 1)nS +B D [根据题述,磁感应强度大小由B 开始均匀增加,设磁感应强度变化率为ΔB Δt ,在t 2时刻磁感应强度的大小可以表示为B ′=B +ΔB Δt (t 2-t 1).根据法拉第电磁感应定律,E =n ΔΦΔt =nS ΔB Δt ,而E =U ,联立解得B ′=B +U nS (t 2-t 1),选项D 正确.]4.(2016·浙江高考)如图10-2-14所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )图10-2-14A .两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶1B[当磁感应强度变大时,由楞次定律知,线圈中感应电流的磁场方向垂直纸面向外,由安培定则知,线圈内产生逆时针方向的感应电流,选项A错误;由法拉第电磁感应定律E=S ΔBΔt及S a∶S b=9∶1知,E a=9E b,选项B正确;由R=ρLS′知两线圈的电阻关系为R a=3R b,其感应电流之比为I a∶I b=3∶1,选项C错误;两线圈的电功率之比为P a∶P b=E a I a∶E b I b=27∶1,选项D错误.] 5.(2017·承德模拟)如图10-2-15所示的电路中,L为电阻很小的线圈,G1和G2为零点在表盘中央的相同的电流表.开始时开关S闭合,电流表G1指针偏向右方,现将开关S断开,则将出现的现象是()【导学号:92492372】图10-2-15A.G1和G2指针都立即回到零点B.G1指针立即回到零点,而G2指针缓慢地回到零点C.G1指针缓慢回到零点,而G2指针先立即偏向右方,然后缓慢地回到零点D.G1指针立即偏向左方,然后缓慢地回到零点,而G2指针缓慢地回到零点D[当开关断开时,通过线圈L的电流变小,导致线圈中产生瞬间感应电动势,从而阻碍原电流的变小,使得G2指针缓慢地回到零点,而流过G1的电流方向与开始时电流方向相反,所以G1指针立即偏向左方,然后缓慢地回到零点.故选项D正确.]6.(多选)如图10-2-16所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时()图10-2-16A .穿过回路的磁通量为零B .回路中感应电动势大小为2Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同ABD [由题意知,穿过闭合回路的磁通量Φ=0,A 正确;由右手定则判知ab 边与cd 边切割磁感线产生的感应电动势相当于两个电源串联,回路中的感应电动势E =Bl ab v 0+Bl cd v 0=2Bl v 0,B 正确;由右手定则可知感应电流的方向为逆时针方向,C 错误;由左手定则可知ab 边与cd 边所受的安培力方向均向左,D 正确.]7.(多选)(2017·绵阳模拟)如图10-2-17所示是法拉第制作的世界上第一台发电机的模型原理图.把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表.现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图10-2-17A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12Bωr 2C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流BD[把铜盘看作由中心指向边缘的无数条铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,盘边缘为电源正极,中心为电源负极,C点电势低于D点电势,选项A错误;此电源对外电路供电,电流由b经电流表再从a流向铜盘,选项C错误;铜盘转动切割磁感线,相当于电源,回路中感应电动势为E=Br v=Brω12r=12Bωr2,选项B正确;若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中产生感生环形电场,使铜盘中的自由电荷在电场力的作用下定向移动,形成环形电流,选项D正确.]8.(2017·南通模拟)一半径为r、质量为m、电阻为R的金属圆环用一根长为L的绝缘轻细杆悬挂于O1点,杆所在直线过圆环圆心,在O1点的正下方有一半径为L+2r的圆形匀强磁场区域,其圆心O2与O1点在同一竖直线上,O1点在圆形磁场区域边界上,如图10-2-18所示.现使绝缘轻细杆从水平位置由静止释放,下摆过程中金属圆环所在平面始终与磁场垂直,已知重力加速度为g,不计空气阻力及其他摩擦阻力,则下列说法正确的是()图10-2-18A.金属圆环最终会静止在O1点的正下方B.金属圆环在整个过程中产生的焦耳热为mgLC.金属圆环在整个过程中产生的焦耳热为12mg(L+2r)D.金属圆环在整个过程中产生的焦耳热为12mg(L+r)C[圆环最终要在如图中A、C位置间摆动,因为此时圆环中的磁通量不再发生改变,圆环中不再有感应电流产生.由几何关系可知,圆环在A、C位置时,其圆心与O1、O2的距离均为L+r,则圆环在A、C位置时,圆环圆心到O1的高度为L+2r2.由能量守恒可得金属圆环在整个过程中产生的焦耳热为12mg(L+2r),C正确.]B级名校必刷题9.(2017·石家庄模拟)如图10-2-19所示电路中,A、B、C为完全相同的三个灯泡,L是一直流电阻不可忽略的电感线圈.a、b为线圈L的左右两端点,原来开关S是闭合的,三个灯泡亮度相同.将开关S断开后,下列说法正确的是()图10-2-19A.a点电势高于b点,A灯闪亮后缓慢熄灭B.a点电势低于b点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.a点电势低于b点,B、C灯不会闪亮只是缓慢熄灭D[电路稳定时,三个完全相同的灯泡亮度相同,说明流经三个灯泡的电流相等.某时刻将开关S断开,流经电感线圈的磁通量减小,其发生自感现象,相当于电源,产生和原电流方向相同的感应电流,故a点电势低于b点电势,三个灯不会闪亮只能缓慢熄灭,选项D正确.]10.(多选)(2017·唐山模拟)如图10-2-20甲所示,abcd是匝数为100匝、边长为10 cm、总电阻为0.1 Ω的正方形闭合导线圈,放在与线圈平面垂直的图示匀强磁场中,磁感应强度B随时间t的变化关系如图乙所示,则以下说法正确的是()图10-2-20A .导线圈中产生的是交变电流B .在t =2.5 s 时导线圈产生的感应电动势为1 VC .在0~2 s 内通过导线横截面的电荷量为20 CD .在t =1 s 时,导线圈内电流的瞬时功率为10 WACD [在0~2 s 内,磁感应强度变化率为ΔB 1Δt 1=1 T/s ,根据法拉第电磁感应定律,产生的感应电动势为E 1=nS ΔB 1Δt 1=100×0.12×1 V =1 V ;在2~3 s 内,磁感应强度变化率为ΔB 2Δt 2=2 T/s ,根据法拉第电磁感应定律,产生的感应电动势为E 2=nS ΔB 2Δt 2=100×0.12×2 V =2 V .导线圈中产生的感应电流为方波交变电流,选项A 正确.在t =2.5 s 时,产生的感应电动势为E 2=2 V ,选项B 错误.在0~2 s 内,感应电流I =E 1R =10 A ,通过导体横截面的电荷量为q =I Δt =20 C ,选项C 正确.在t =1 s 时,导线圈内感应电流的瞬时功率P =UI =I 2R =102×0.1 W =10 W ,选项D 正确.]11.如图10-2-21所示,两根相距l =0.4 m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15 Ω的电阻相连.导轨间x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5 T/m ,x =0处磁场的磁感应强度B 0=0.5 T .一根质量m =0.1 kg 、电阻r =0.05 Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2 m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:图10-2-21(1)回路中的电流;(2)金属棒在x =2 m 处的速度;(3)金属棒从x =0运动到x =2 m 过程中安培力做功的大小.【导学号:92492373】【解析】 (1)电阻上消耗的功率不变,即回路电流不变,在x =0处有E =B 0l v 0=0.4 V,I=ER+r=2 A.(2)由题意,磁感应强度B=B0+kx考虑到电流恒定,在x=2 m处有B0l v0R+r=(B0+kx)l vR+r得v=23m/s.(3)导体棒受到的安培力F=BIl=(B0+kx)Il=0.4(1+x)安培力随位置线性变化,则安培力做功W F=12[B0+(B0+kx)]Ilx代入数据得W F=1.6 J.【答案】(1)2 A(2)23m/s(3)1.6 J12.(2015·广东高考)如图10-2-22(a)所示,平行长直金属导轨水平放置,间距L=0.4 m.导轨右端接有阻值R=1 Ω的电阻.导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场,若使棒在导轨上始终以速度v=1 m/s做直线运动,求:(1)棒进入磁场前,回路中的电动势E;(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i 与时间t的关系式.图10-2-22【解析】(1)正方形磁场的面积为S,则S=L22=0.08 m2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B-t图象可知ΔBΔt=0.5 T/s,根据E=n ΔΦΔt,得回路中的感应电动势E=ΔBΔt S=0.5×0.08 V=0.04 V.(2)当导体棒通过bd位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E′=BL v=0.5×0.4×1 V=0.2 V;回路中感应电流I′=E′R=0.21A=0.2 A导体棒受到的安培力F=BI′L=0.5×0.2×0.4 N=0.04 N当导体棒通过三角形abd区域时,导体棒切割磁感线的有效长度l=2v(t-1) (1 s≤t≤1.2 s)感应电动势e=Bl v=2B v2(t-1)=(t-1)V感应电流i=eR=(t-1)A (1 s≤t≤1.2 s).【答案】(1)0.04 V(2)0.04 N i=(t-1)A(1 s≤t≤1.2 s)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题组层级快练(四十七)
一、选择题
1.如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属
棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B
的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下
由静止开始向右运动.则( )
A.随着ab运动速度的增大,其加速度也增大
B.外力F对ab做的功等于电路中产生的电能
C.当ab做匀速运动时,外力F做功的功率等于电路中的电功率
D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能
答案 CD
解析 金属棒ab在一水平恒力F作用下由静止开始向右运动,随着ab运动速度的增大,
产生的感应电流增大,所受与F方向相反的安培力增大,其加速度减小,A项错误;外力F
对ab做的功等于电路中产生的电能和导体棒增加的动能之和,B项错误;由能量守恒定律
可知,当ab做匀速运动时,外力F做功的功率等于电路中的电功率,C项正确;无论ab做
何种运动,它克服安培力做的功一定等于电路中产生的电能,D项正确.
2.如图所示,两根电阻不计的光滑金属导轨竖直放置,导轨上端接电阻
R,宽度相同的水平条形区域Ⅰ和Ⅱ内有方向垂直导轨平面向里的匀强
磁场B,Ⅰ和Ⅱ之间无磁场.一导体棒两端套在导轨上,并与两导轨始
终保持良好接触,导体棒从距区域Ⅰ上边界H处由静止释放,在穿过两
段磁场区域的过程中,流过电阻R上的电流及其变化情况相同.下面四
个图像能定性描述导体棒速度大小与时间关系的是( )
答案 C
解析 MN棒先做自由落体运动,当到Ⅰ区磁场时由四个选项知棒开始减速说明F安>mg,由
牛顿第二定律得,F安-mg=ma,当减速时F安减小,合力减小,a也减小,速度图像中图线
上各点切线斜率减小,离开Ⅰ区后棒做加速度为g的匀加速直线运动,随后进入Ⅱ区磁场,
因棒在穿过两段磁场区域的过程中,流过电阻R上的电流变化情况相同,则在Ⅱ区磁场中
运动情况与Ⅰ区磁场中完全相同,所以只有C项正确.
3.两磁感应强度均为B的匀强磁场区Ⅰ、Ⅲ,方向如图所示,两区域中间为宽为s的无磁
场区Ⅱ,有一边长为L(L>s)、电阻为R的均匀正方形金属线框abcd置于Ⅰ区域,ab边与
磁场边界平行,现拉着金属线框以速度v向右匀速运动,则( )
A.当ab边刚进入中间无磁场区域Ⅱ时,ab两点间的电压为3BLv4
B.当ab边刚进入磁场区域Ⅲ时,通过ab边的电流大小为2BLvR,方向由a→b
C.把金属线框从ab边刚进入Ⅱ区域到完全拉入Ⅲ区域过程中,拉力所做功为2B2L2vR(2L-
s)
D.从cd边刚进入Ⅱ区域到刚进入Ⅲ区域的过程中,回路中产生的焦耳热为B2L2vR(L-s)
答案 BC
解析 当ab边刚进入区域Ⅱ时,cd边切割磁感线产生的感应电动势为E=BLv,所以ab两
点间的电压为BLv4,选项A错误;当ab边进入区域Ⅲ时,ab、cd边均切割磁感线,由右手
定则可知方向由a→b,大小为2BLvR,选项B正确;当把金属线框从Ⅰ区域完全拉入Ⅲ区域
过程中,拉力所做功为W=W1+W2+W3,而W1=W3=B2L2vsR,W2=4B2L2vR(L-s),所以W=
2B2L2v
R
(2L-s),选项C正确;从cd边刚进入Ⅱ区域到刚进入Ⅲ区域的过程中,回路中产生的焦
耳热为Q=I2Rt=B2L2v2R·sv=B2L2vsR,选项D错误.
4.如图所示,在倾角为θ的光滑斜面上,有三条水平虚线l1、l2、l3,
它们之间的区域Ⅰ、Ⅱ宽度均为d,两区域分别存在垂直斜面向下和垂
直斜面向上的匀强磁场,磁感应强度大小均为B,一个质量为m、边长
为d、总电阻为R的正方形导线框,从l1上方一定高度处由静止开始沿
斜面下滑,当ab边刚越过l1进入磁场Ⅰ时,恰好以速度v1做匀速直线运动;当ab边在越
过l2运动到l3之前的某个时刻,线框又开始以速度v2做匀速直线运动,重力加速度为g.
在线框从释放到穿出磁场的过程中,下列说法正确的是( )
A.线框中感应电流的方向不变
B.线框ab边从l1运动到l2所用时间大于从l2运动到l3所用时间
C.线框以速度v2做匀速直线运动时,发热功率为m2g2Rsin2θ4B2d2
D.线框第一次匀速运动的过程比第二次匀速运动的过程产生的热量多
答案 CD
解析 线框从释放到穿出磁场的过程中,由楞次定律可知感应电流方向先沿abcda后沿
adcba再沿abcda方向,选项A错误;线框第一次匀速运动时,由平衡条件有BId=mgsin
θ,I=Bdv1R,解得v1=mgRsinθB2d2.第二次匀速运动时,由平衡条件有2BI′d=mgsinθ,I′
=2Bdv2R,解得v2=mgRsinθ4B2d2.线框ab边匀速通过区域Ⅰ,先减速再匀速通过区域Ⅱ,而两
区域宽度相同,故通过区域Ⅰ的时间小于通过区域Ⅱ的时间,选项B错误;由功能关系知
线框第二次匀速运动时发热功率等于重力做功的功率,即P=mgv2sinθ=m2g2Rsin2θ4B2d2,选项
C正确;线框在匀速运动中产生的热量等于减少的重力势能,线框第一次匀速运动的过程比
第二次匀速运动的过程下滑的距离大,减少的重力势能多,选项D正确.
5.如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<
90°),其中MN平行且间距为L,导轨平面与磁感应强度为B的匀强磁
场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导
轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒
某一横截面的电量为q时,金属棒的速度大小为v,则金属棒ab在这一过程中( )
A.运动的平均速度大小为12v
B.下滑位移大小为qRBL
C.产生的焦耳热为qBLv
D.受到的最大安培力大小为B2L2vRsinθ
答案 B
解析 流过ab棒某一截面的电量q=It=BΔSRtt=BLxR,ab棒下滑的位移x=qRBL,其平均速
度v-=xt,而棒下滑过程中做加速度减小的加速运动,故平均速度不等于12v,选项A错误,
选项B正确;由能量守恒mgxsinθ=Q+12mv2,产生的焦耳热Q=mgxsinθ-12mv2=mgqRBLsin
θ-12mv2,选项C错误;当mgsinθ=B2L2vR时v最大,安培力最大,即F安m=mgsinθ=B2L2vR,
选项D错误.
6.(2016·四川第二次大联考)如图所示,固定的竖直光滑U型金属导轨,间距为L,上端
接有阻值为R的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B的匀强磁场中,