平行四边形菱形矩形正方形的性质及判定归纳
平行四边形等性质判定归纳表

直角三角形斜边上的中线等于斜边的一半。
平行四边形、菱形、矩形、正方形性质和判定归纳表
图形
性 质
判 定
平行四边形
1两组对边分别平行;
2两组对边分别相等;
3两组对角分别相等;邻角互补。
4两条对角线互相平分;
1两组对边分别平行的四边形是平行四边形;
2两组对边分别相等的四边形是平行四边形;
3一组对边平行且相等的四边形是平行四边形;
4两组对角分别相等的四边形是平行四边形;
5对角线互相平分的四边形是平行四边形。
菱形
1菱形的四条边都相等;
2菱形的对角线互相垂直;
3一条对角线平分一组对角。
4菱形面积=对角线乘积× =底×高
1一组邻边相等的平行四边形是菱形;
2对角线互相垂直的平行四边形是菱形;
3四边都相等的四边形是菱形;
矩形
1矩形的四个角都是直角;
2矩形的对角线相等。
1有一个角是直角的平行四边形是矩形;
2对角线相等的平行四边形是矩形;
3有三个角是直角的四边形是都相等;
3正方形的对角线相等,且互相垂直平分;
4对角线与边的夹角为45度。
1一组邻边相等的矩形是正方形;
2有一个角是直角的菱形是正方形;
3对角线相等的菱形是正方形。
4对角线互相垂直的矩形是正方形。
平行四边形、矩形、菱形、正方形的性质与判定教案8

1.3 平行四边形、矩形、菱形、正方形的性质与判定学习目标1、根据平行四边形、矩形、菱形与正方形之间的关系,归纳出正方形的判定定理2、能运用正方形的判定定理进行简单的计算与证明3、能运用正方形的性质定理与判定定理进行比较简单的综合推理与证明4、在探究与证明正方形判定定理的过程中,进一步体会一般与特殊的辩证关系,提高分析问题与解决问题的能力学习重、难点重点:正方形判定的应用难点:通过引导合情推理和演绎推理,提高逻辑思维水平学习过程:一、引入新课正方形是特殊的矩形和特殊的菱形,那么什么样的矩形是正方形?什么样的菱形是正方形?二、新课讲解为了活跃学生思维,可以提出以下问题:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?④四条边都相等的四边形是正方形吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?判定方法(1)矩形、菱形法:先判定四边形是矩形,再判定这个矩形是菱形(一组邻边相等的矩形);或者先判定四边形是菱形,再判定这个菱形也是矩形(有一个角是直角的菱形)。
(2)定义法:有一组邻边相等且有一个角是直角的平行四边形是正方形,这是直接利用定义来判定的。
如何用直尺和圆规作正方形?如何把长方形纸片通过折纸,剪出一个正方形纸片?三、例题教学A例1 已知:如图,点A'、B'、C'、D'分别是正方形ABCD 四条边上的点,并且AA'=BB'=CC'=DD'。
求证:四边形A ‘B ’C ‘D ’是正方形例3 已知:如图,E 、F 、G 、H 分别是正方形各边的中点, AF 、BG 、CH 、DE 分别两两相交于点A ’、B ’、C ’、D ’。
求证:四边形是正方形。
分析:如右图,正方形ABCD 中,点F 、G 分别是BC 、CD 的中点,AF 、BG 相交于点P ,AF 与BG 互相垂直吗?若将点F 、 G 分别是BC 、CD 的中点改为BF=CG ,是否有同样的结论?同上,本例可考虑证“有一组邻边相等的矩形是正方形”。
矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。
平行四边形、矩形、菱形、正方形的性质和判定(1)

2、如图 AB // A' B' , BC // B'C ' , CA // C ' A' ,图中有 ______个平行四边形。 B'
A C' B
C
A'
三、典例分析: 在□ ABCD 中,E、F 分别是 AD、BC 的中点。 求证: BE=DF
A
E
D
B
拓展 1:如果将上题中的“E、F 分别是 AD、BC 的 中点”改为“ AE 立吗?
教学目标
过程与方法 情感、 态度与价值观
教学重点 教学难点
平行四边形的性质。 探索、寻求解题思路。 预习内容 预习活动 课堂补充
一、知识回顾: 1、平行四边形的定义: 2、平行四边形的性质有哪些?你能从边、角、对 角线、对称性几个方面进行总结吗?
3、除了以上几个性质外,你还能得到哪些有用的 结论? 二、合作交流 1、用基本事实和学过的定理来证明这几种性质。
1 4
F
C
AD, CF
-1-
四、中考题型展示: 你能再补充一个跟本节内容相关的中考题目吗? 请把题目整理出来并给出答案! 题目:
1、 通过本节课的学习,你认为你的学习重点是: 2、 通过本节课的学习,你认为你的学习难点是: 3、 通过本节课的学习,你认为你还有哪些东西没有掌握:
课时编号 课 题
004 1、3 平行四边形、矩形、菱形、正方形的性质和判定(1) 知识与技能 1、能证明角平行四边形的性质定理。 2、运用平行四边形的性质定理进行有关论证和计算。 3、解决平行四边形问题的基本思想是转化为三角形来处理。 探究平行四边形的性质,利用这些性质进行有关论证和计算。 经历探索、猜想、证明的过程,从中体会探索结论的思考方法,不断感受合理推理和演绎推理是人们正 确认识事物的重要途径。
平行四边形、矩形、菱形、正方形的性质和判定(6)

1、
2、
例1:……
……
……
例2:……
……
……
习题:……
……
……
作业布置
课后随笔
问题三说说证明“对角线相等的平行四边形是矩形”的思路。
由问题二可得出多种证明思路。
三、例题教学
例1已知:如图,□ABCD的四个内角平分线相交于点E、F、G、H。
求证:EG=FH
分析:由□ABCD,得对边AB∥CD,可证∠ABC+∠BCD=180°
再由两角的平分线可得∠GBC+∠GCB=90°,从而得∠HGF=90°,
具备什么条件的平行四边形是矩形?具备什么条件的四边形是矩形?同学之间进行交流。
二、探索活动
问题一如图,在□ABCD中,AC=BD,由此你可得到什么?
问题二如图,要证□ABCD是矩形,需证什么?为什么?
根据矩形的定义,只要证□ABCD的一个角是直角;或证∠ABO+∠CBO=90°;或证∠ABC=∠DCB.
同理可证得∠HEF=90°,∠AHB=90°,再由对顶角相等得∠EHG=90°,从而可得四边形EFGH是矩形,再由矩形的对角线相等得出结论。
四、练习P23练习1、2
已知:平行四边形ABCD的对角线AC、BD相交于O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积(如图4-38)。
B
A
D
C
课时编号
备课时间
课题
1.3平行四边形、矩形、菱形、正方形的的判定定理
2、能运用矩形的判定定理进行计算与证明
3、能运用矩形的性质定理与判定定理进行比较简单的综合推理与证明
教学重点
矩形判定定理的证明
教学难点
(完整版)平行四边形性质及判定总结

平行四边形、菱形、矩形、正方形性质和判定归纳性质判定平行四边形平行四边形的①两组对边分别平行②两组对边分别相等③两组对角分别相等④两条对角线互相平分①两组对边分别平行的四边形是平行四边形。
(平行四边形的定义)②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④两组对角分别相等的四边形是平行四边形。
⑤对角线互相平分的四边形是平行四边形。
菱形①具有平行四边形的一切性质。
菱形的②四条边都相等③对角线互相垂直,并且每一条对角线平分一组对角①有一组邻边相等的平行四边形是菱形。
(菱形的定义)②四条边都相等的四边形是菱形。
③对角线互相垂直的平行四边形是菱形。
矩形①具有平行四边形的一切性质。
矩形的②四个角都是直角③对角线相等①有一个角是直角的平行四边形是矩形。
(矩形的定义)②有三个角是直角的四边形是矩形。
③对角线相等的平行四边形是矩形。
正方形(1)具有平行四边形、矩形、菱形的一切性质,即:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
(2)对角线与边的夹角为45·①有一组邻边相等的矩形是正方形。
(正方形的定义)②有一个角是直角的菱形是正方形二、直角三角形的性质:(1)直角三角形的两个锐角互余。
(2)直角三角形两直角边的平方和等于斜边的平方。
(即勾股定理)(3)直角三角形斜边上的中线等于斜边的一半。
(4)直角三角形中30 角所对的直角边等于斜边的一半。
平行四边形的性质及判定归纳

平行四边形的性质及判定归纳平行四边形是指有两组对边分别平行的四边形。
例如,四边形ABCD是平行四边形,因为AB∥CD且AD∥BC。
矩形是一种特殊的平行四边形,它的两组对边也分别平行,例如AB∥CD且AD∥BC。
菱形是另一种特殊的平行四边形,其两组对边相等,例如AB=CD且AD=BC。
正方形是菱形的一种特殊情况,其四条边都相等。
平行四边形、矩形、菱形和正方形都有特殊的性质。
例如,平行四边形的两组对角分别相等,因为∠ABC=∠ADC且∠BAD=∠BCD。
矩形的四个角都是直角,因为∠ABC=∠XXX∠BAD=∠BCD=90.菱形的两组对角分别相等,因为∠ABC=∠ADC且∠BAD=∠BCD。
正方形的四个角也都是直角,且其对角线互相平分且相等。
对角线也是平行四边形、矩形、菱形和正方形的重要性质之一。
例如,平行四边形的对角线互相平分,因为OA=OC且OB=OD。
矩形的对角线相等且互相平分,因为OA=OC且OB=OD且AC=BD。
菱形的对角线互相垂直、平分且每一条对角线平分一组对角,因为OA=OC且OB=OD且AC⊥BD且AC平分∠BAD与∠BCD,BD平分∠ABC与∠ADC。
正方形的对角线互相平分且垂直,因为其对角线互为垂直平分线,且对角线相等。
因此,通过这些性质和判定条件,我们可以轻松地判断一个四边形是否为平行四边形、矩形、菱形或正方形。
对于一个几何图形,如果它是一个四边形且其对角线互相垂直平分且相等,那么我们可以得出结论:这个四边形是一个正方形。
正方形是一种特殊的四边形,它的四条边相等且四个角都是直角。
此外,正方形的对角线相等且互为垂直平分线,这也是正方形与其他四边形不同的一个重要特征。
在计算正方形的面积时,我们可以使用对角线的长度来求解。
具体而言,正方形的面积等于对角线长度的平方除以2.这个公式可以帮助我们快速计算出正方形的面积,而不必手动测量每条边的长度。
正方形在日常生活中有着广泛的应用。
例如,在园艺设计中,我们经常会使用正方形的花坛或者草坪来营造整齐、规整的感觉。
平行四边形、矩形、菱形、正方形的性质和判定

1.3平行四边形、矩形、菱形、正方形的性质和判定课型:新授课课时:8课时第一课时教学目标1、能证明平行四边形的性质。
2、经历探索、猜想、证明的过程,从中体会探索结论的思考方法,理解对猜想进行证明的必要性,不断感受合情推理和演绎推理是人们正确认识事物的重要途径。
3、逐步学会分析和综合的思考方法,发展演绎推理的能力。
教学重点1、证明平行四边形的性质。
2、经历探索、猜想、证明的过程,从中体会探索结论的思考方法,理解对猜想进行证明的必要性,不断感受合情推理和演绎推理是人们正确认识事物的重要途径。
教学难点学习探索问题的思考方法,理角对猜想进行证明的必要性。
教学方法自主学习、合作探究教学过程设计一、创设情境回忆已探索过的平行四边形以及各种特殊的平行四边形的性质。
在下表相应的空格内打二、探索活动问题一:你能证明平行四边形的哪些性质?可以考虑先证哪个性质?尝试说明证明思路。
平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
问题二:证明平行四边形的对角线互相平分引导学生画图,写已知求证已知:如图,在 ABCD中,AC、BD相交于点O.求证:AO=CO,BO=DO引导学生学习思考与表达方法 三、例题教学例1 已知如图,在 ABCD 中,E 、F 分别是AD 、BC 的中点. 求证:BE=DF四、巩固训练课本P 15练习1,2题1、 证明:夹在两条平行线间的平行线段相等。
2、 已知:如图, ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线与AD 、BC 分别相交于点E 、F. 求证:OE=OF.五、体会与交流我们利用三角形全等,证明了平行四边形的性质定理,这是研究四边形问题中常用的一种思考方法即把四边形的问题转化为三角形的问题。
六、作业课堂作业:课本P 25习题1.3第1,2题 课外作业:补充习题和学习指导书相应的练习CC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形菱形矩形正方形的性质及判定归纳
性质:
1、边:平行四边形的对边平行且相等。
2、角:平行四边形的邻角互补,对角相等。
3、对角线:平行四边形的对角线互相平分。
4、中心对称图形,对称中心是对角线的交点。
5、夹在两条平行线间的平行线段相等。
6、若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线平分分四边形的面积。
判定:
1、边:①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
2、角:两组对角分别相等的四边形是平行四边形。
3、对角线:对角线互相平分的四边形是平行四边形。
菱形
性质
1.边:四条边相等。
2.对角线:对角线互相垂直,并且每一条对角线平分一组对角。
3.菱形是轴对称、中心对称图形。
4.面积:①菱形面积=底×高=对角线乘积的一半。
②菱形的周长=棱长乘以4。
③S菱形=1/2×ab(a、b为两条对角线)。
判定
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
4.对角线互相垂直平分的四边形是菱形。
〖注意〗1.对角线互相垂直的四边形不一定是菱形,必须加上平行四边形这个条件它才是菱形.
2.利用菱形的性质及判定可以证明线段相等及倍分、角相等及倍分、直线平行、垂直,以及证明一个四边形是菱形和有关计算.
矩形
性质
1:矩形的四个角都是直角.
2:矩形的对角线相等.
3.直角三角形斜边上的中线等于斜边的一半.
判定:
1、有一个角是直角的平行四边形。
用定义判定一个四边形是矩形,必须同时满足两个条件:一是有一个角是直角;二是平行四边形.也就是说有一角是直角的四边形,不一定是矩形,必须加上平行四边形这个条件,它才是矩形.
2、对角线相等的平行四边形是矩形.
用定理2证明一个四边形是矩形,也必须满足两个条件:一是对角线相等;二是平行四边形.也就说明:两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件,它才是矩形.
3、有三个角是直角的四边形是矩形.
判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.
正方形
性质
1、边:对边平行,四边相等;
2、角:四个角都是直角;
3、对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
4、正方形是轴对称图形,有4条对称轴.
5、正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个小的全等的等腰直角三角形.
6、正方形的面积:若正方形的边长为,对角线长为,则.
判定
一个四边形为正方形主要根据定义,途径有两种:
①先证它是矩形,再证它有一组邻边相等.
②先证它是菱形,再证它有一个角为直角.
2.判定正方形的一般顺序:
①先证明它是平行四边形;
②再证明它是菱形(或矩形);
③最后证明它是矩形(或菱形)。