嵌入式实时内核的串口通信模块设计

嵌入式实时内核的串口通信模块设计
嵌入式实时内核的串口通信模块设计

2020年嵌入式串口通信设计参照模板

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式串口通信设计 专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

嵌入式是以应用为中心,以计算机技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。随着嵌入式系统的发展和大规模应用,为了提升系统的整体性能,必须实现PC机和嵌入式计算机之间的通信。在实际开发应用中,串口通信是不可缺少的部分。 目前嵌入式系统与PC机之间一种非常重要而且普遍应用的通信方式。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。通过与计算机串口间的接,实现在ARM 平台上,传输速率115200bps,接收来自串口(通过超级终端)的字符并将接收到的字符发送到超级终端,实现监测。与外部设备通信的基本功能。 关键字:嵌入式系统,串口通信,Linux系统

前言 ------------------------------------------------------------------------------------------- - 4 - 一、串口通信概述--------------------------------------------------------------------------- - 5 - 1.1 串口通信的原理 ------------------------------------------------------------------ - 5 - 1.2 串口通信的开发工具 ------------------------------------------------------------ - 5 - 1.2.1 2410F硬件平台简介---------------------------------------------------------- - 5 - 1.3 串口通信的基本任务 ------------------------------------------------------------ - 8 - 二、系统分析--------------------------------------------------------------------------------- - 9 - 三、串口驱动程序设计 ------------------------------------------------------------------- - 17 - 3.1 串口操作需要的头文件 -------------------------------------------------------- - 17 - 3.2 打开串口 -------------------------------------------------------------------------- - 17 - 3.3 串口设置 -------------------------------------------------------------------------- - 18 - 3.4 串口读写 -------------------------------------------------------------------------- - 20 - 3.5 关闭串口 -------------------------------------------------------------------------- - 22 - 四、总结-------------------------------------------------------------------------------------- - 23 - 参考文献-------------------------------------------------------------------------------------- - 24 - 附录----------------------------------------------------------------------------------------- - 25 -

Linux内核—文件系统模块的设计和开发

Linux内核—文件系统模块的设计和开发 郑小辉 摘要:目前,Linux技术已经成为IT技术发展的热点,投身于Linux技术研究的社区、研究机构和软件企业越来越多,支持Linux的软件、硬件制造商和解决方案提供商也迅速增加,Linux在信息化建设中的应用范围也越来越广,Linux产业链已初步形成,并正在得到持续的完善。随着整个Linux产业的发展,Linux技术也处在快速的发展过程中,形成了若干技术热点。 本文介绍了Linux的发展和特点,以及与其他文件系统的区别。文中主要是对Linux2.4.0内核文件系统源代码的分析,并参考其文件格式设计一个简洁的文件系统。源代码的分析主要介绍了VFS文件系统的结构,Linux自己的Ext2文件系统结构,以及文件系统中的主要函数操作。 在设计的简洁文件系统中,通过调用一些系统函数实现了用户的登录、浏览目录、创建目录、更改目录、创建文件以及退出系统功能。 关键字:Linux 源代码分析文件系统Ext2 Linux内核

Linux kernel -Design and development for the File System Module Zheng xiaohui Abstract: Currently, Linux IT technology has become a hot development technology. Participating in Linux technology research communities, research institutes and software enterprises are in support of Linux more and more, software and hardware manufacturers and solution providers have increased rapidly, In the development of the information industry the Linux application is also increasing, Linux industry chain has taken shape, and is sustained improvemently. With the entire industry in the development of Linux, and Linux is also at the rapid development process, formed a number of technical points. This paper presents the development of Linux and features, and with other file system differences. The main text of the document is Linux2.4.0 system kernel source code analysis, and I reference its file format to design a simple file system. The analysis of the source code mainly on the VFS file system structure, Linux Ext2 its own file system structures, file systems and the main function operation. In the design of the file simple system, some system function is used to achieve function such as: the user's login, browse catalogs, create directories, Change directory, create documents and withdraw from the system function and etc. Key words: Linux, the source code, file system, Ext2, Linux kernel

嵌入式系统实验报告-串行通信实验

《嵌入式系统实验报告》 串行通信实验 南昌航空大学自动化学院050822XX 张某某 一、实验目的: 掌握μC/OS-II操作系统的信号量的概念。 二、实验设备: 硬件:PC机1台;MagicARM2410教学实验开发平台台。 软件:Windows 98/2000/XP操作系统;ADS 1.2集成开发环境。 三、实验内容: 实验通过信号量控制2个任务共享串口0打印字符串。为了使每个任务的字符串信息(句子)不被打断,因此必须引入互斥信号量的概念,即每个任务输出时必须独占串口0,直到完整输出字符串信息才释放串口0。 四、实验步骤: (1)为ADS1.2增加DeviceARM2410专用工程模板(若已增加过,此步省略)。 (2)连接EasyJTAG-H仿真器和MagicARM2410实验箱,然后安装EasyJTAG-H仿真器(若已经安装过,此步省略),短接蜂鸣器跳线JP9。 (3)启动ADS 1.2,使用ARM Executable Image for DeviceARM2410(uCOSII)工程模板建立一个工程UART0_uCOSII。(本范例在ADS文件夹中操作) (4)在ADS文件夹中新建arm、Arm_Pc、SOURCE文件夹。将μC/OS 2.52源代码添加到SOURCE文件夹,将移植代码添加到arm文件夹,将移植的PC服务代码添加到Arm_Pc文件夹。 (5)在src组中的main.c中编写主程序代码。 (6)选用DebugRel生成目标,然后编译链接工程。 (7)将MagicARM2410实验箱上的UART0连接跳线JP1短接,使用串口延长线把MagicARM2410实验箱的CZ11与PC机的COM1连接。 注意:CZ11安装在MagicARM2410实验箱的机箱右侧。 (8)PC机上运行“超级终端”程序(在Windows操作系统的【开始】->【程序】->【附件】->【通讯】->【超级终端】),新建一个连接,设置串口波持率为115200,具体设置参考图3.5,确定后即进入通信状态。 (9)选择【Project】->【Debug】,启动AXD进行JTAG仿真调试。 (10)全速运行程序,程序将会在main.c的主函数中停止(因为main函数起始处默认设置有断点)。 (11)可以单步运行程序,可以设置/取消断点,或者全速运行程序,停止程序运行,在超级终端上观察任务0和任务1的打印结果。 五、实验结论与思考题(手写,打印无效): 1、如果任务0删除语句“OSSemPost(UART0_Sem);”,那么程序还能完全正常无误运行么?如果发生异常会出现什么现象?

嵌入式_USART 串口通讯

USART 串口通讯-存储池方式 【实验目的】 学习USART的特性及功能 学习USART 串口通讯的使用 【实验原理】 1. USART介绍 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行 数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。它支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。使用多缓冲器配置的DMA方式,可以实现高速数据通信。 2. USART特性 全双工的,异步通信 标准格式 分数波特率发生器系统 ─发送和接收共用的可编程波特率,最高达 4.5Mbits/s 可编程数据字长度(8位或9位) 可配置的停止位-支持1或2个停止位 LIN主发送同步断开符的能力以及LIN从检测断开符的能力 ─当USART硬件配置成LIN时,生成13位断开符;检测10/11位断开符发送方为同步传输提供时钟 编码器解码器 ─在正常模式下支持3/16位的持续时间 智能卡模拟功能 ─智能卡接口支持ISO7816-3标准里定义的异步智能卡协议 ─智能卡用到的0.5和 1.5个停止位 单线半双工通信 可配置的使用DMA的多缓冲器通信 ─在SRAM里利用集中式DMA缓冲接收/发送字节 单独的发送器和接收器使能位 检测标志 ─接收缓冲器满 ─发送缓冲器空 ─传输结束标志 校验控制 ─发送校验位 ─对接收数据进行校验 四个错误检测标志 ─溢出错误通用同步异步收发器(USART) ─噪音错误 ─帧错误

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

嵌入式UART接口模块的设计

嵌入式UART接口模块的设计 引言 在计算机的数据通信中,外设一般不能与计算机直接相连,它们之间的信息交换主要存在以下问题: (1)速度不匹配。外设的工作速度和计算机的工作速度不一样,而且外设之间的工作速度差异也比较大。 (2)数据格式不匹配。不同的外设在进行信息存储和处理时的数据格式可能不同,例如最基本的数据格式可分为并行数据和串行数据。 (3)信息类型不匹配。不同的外设可能采用不同类型的型号,有些是模拟信号,有些是数字信号,因此采用的处理方式也不同。 为了解决外设和计算机之间的信息交换问题,即需要设计一个信息交换的中间环节接口。UART控制器是最常用的接口。 通用异步收发器(UniversalAsynchrONousReceiv2er/Transmitter,UART)是辅助计算机与串行设备之间的通信,作为RS232通信接口的一个重要的部分,目前大部分的处理器都集成了UART。 1 UART的数据格式 UART的数据传输格式。 图1 UART的数据传输格式 由于数字图像亚像素在计算机中是用8位二进制表示,因此UART传输的有效数据位为8位。传输线在空闲时为高电平,因此有效数据流的开始位设为0。 接着传输8位有效数据位,先从最低位开始传送。奇偶检验位可以设置为奇检验、偶校验或者不设置校验位,由于本系统使用的传输速率不高,为了加快开发进程,减少电路面积,因此没有设计奇偶检验模块,数据流中不设奇偶检验位。最后停止位为高电平。 2 UART的基本结构 设计的UART主要由UART内核、信号检测器、移位寄存器移位寄存器、波特率发生器和计数器组成,。 图2 UART基本结构 UART各个功能模块的功能如下文所述。 2.1 信号检测器模块 信号检测器用于对RS232的输入信号进行实时监测,一旦发现新的数据则立即通知UART 内核。信号检测器的仿真波形。 图3 信号检测器仿真波形图 其中,RxD第一次为低时,new_data信号阐述输出,之后RxD又变低,但由于信号检测器处于锁定状态,所以new_data信号并没有输出;最后,reset_n信号将信号检测器复位,RxD再次变低时,new_data又有输出。可见信号检测器的实现完全正确,其功能完全符合设计要求。 2.2 移位寄存器模块 移位寄存器模块的作用是存储输入或者输出数据。 当UART接收RS232输入时,移位寄存器在波特率模式下采集RS232输入信号,且保存结果;当进行RS232输出时,UART内核首先将数据加载到移位寄存器内,再使移位寄存器在波特率模式下将数据输出到RS232输出端口上。移位寄存器的仿真波形图。关键字:嵌入式嵌

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

简析linux内核的内核执行流程图

简析linux核的执行流程 ----从bootsect.s到main.c(核版本0.11)Linux启动的第一阶段(从开机到main.c) 3个任务: A、启动BIOS,准备实模式下的中断向量表和中断服务程序。 B、从启动盘加载操作系统程序到存。 C、为执行32的main函数做过渡准备。 存变化如下: ①、0xFE000到0xFFFFF是BIOS启动块,其中上电后第一条指令在0xFFFF0。 ②、而后0x00000到0x003FF总共1KB存放中断向量表,而接下去的地址到0x004FF共256B存放BIOS数据,从0x0E05B 开始的约8KB的存中存放中断服务程序。 ③、利用BIOS中断0x19h把硬盘的第一扇区bootsect.s的代码加载到存中,即0x07c00处,后转到该处执行。 ④、将bootsect.s的代码复制到0x90000处。 ⑤、利用中断0x13h将setup.s程序加载到存0x90200处。 ⑥、再将剩余的约240个扇区的容加载到0x10000~0x2EFFF 处。 ⑦、开始转到setup.s处执行,第一件事就利用BIOS提供的中断服务程序从设备上获取核运行的所需系统数据并存在0x90000的地址处,这时将原来bootsect.s的代码覆盖得只剩2Byte的空间。

⑧、关中断并将系统代码复制到0x00000处,将原来放在这里的中断向量表与BIOS数据区覆盖掉,地址围是 0x00000~0x1EFFF。同时制作两表与两寄存器。 ⑨开地址线A20,寻址空间达到4GB,后对8259重新编程,改变中断号。 ⑩、转到head.s(大小是25K+184B)执行,执行该程序完后是这样的: 0x00000~0x04FFF:页目录与4个页表,每一项是4KB,共20KB;0x05000~0x05400:共1KB的空间是软盘缓冲区; 0x05401~0x054b8:共184B没用; 0x054b9~0x05cb8:共2KB的空间存中断描述符表; 0x05cb9~0x064b8:共2KB的空间存全局描述符表; 之后就是main函数的代码了! 第二阶段、从main.c函数到系统准备完毕阶段。 第一步:创建进程0,并让进程0具备在32位保护模式下载主机中的运算能力。流程是: 复制根设备和硬盘参数表(main.c中的102、110、111行) 物理存规划格局(main.c的112行~126行,其中有 rd_init函数定义在kernel/ramdisk.c中,此函数用于虚拟盘初始化;而mem_init函数是用于存管理结构初始化,定义在mem/memory.c中,该函数页面使用

基于linux的嵌入式串口通信

天津电子信息职业技术学院 嵌入式软件编程》课程报告 课程名称:基于linux 的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28 日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1嵌入式串口通信的原理 (2) 1.2嵌入式串口通信的开发工具 (2) 1.2.1 ............................................................. CC2530 功耗 2 1.2.2........................................................... ARM 简介 3 1.2.3................................................................ L inux 系统简介 3 1.3嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、RS-232C 标准 (5) 2.1引脚定义 (5) 2.2字符(帧)格式 (6) 2.3握手协议 (8) 2.4双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 .................................................................. DTR 和DSR握手情况9 三、嵌入式串口驱动程序设计 (10) 3.1嵌入式串口操作需要的头文件 (10) 3.2打开串口 (10) 3.3串口设置 (11) 3.4串口读写 (13) 3.5关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

Linux内核驱动模块编写概览-ioctl,class_create,device_create

如果你对内核驱动模块一无所知,请先学习内核驱动模块的基础知识。 如果你已经入门了内核驱动模块,但是仍感觉有些模糊,不能从整体来了解一个内核驱动模块的结构,请赏读一下这篇拙文。 如果你已经从事内核模块编程N年,并且道行高深,也请不吝赐教一下文中的疏漏错误。 本文中我将实现一个简单的Linux字符设备,旨在大致勾勒出linux内核模块的编写方法的轮廓。其中重点介绍ioctl的用途。 我把这个简单的Linux字符设备模块命名为hello_mod. 设备类型名为hello_cl ass 设备名为hello 该设备是一个虚拟设备,模块加载时会在/sys/class/中创建名为hello_class 的逻辑设备,在/dev/中创建hello的物理设备文件。模块名为hello_mod,可接受输入字符串数据(长度小于128),处理该输入字符串之后可向外输出字符串。并且可以接受ioctl()函数控制内部处理字符串的方式。 例如: a.通过write函数写入“Tom”,通过ioctl函数设置langtype=chinese,通过read函数读出的数据将会是“你好!Tom/n” b.通过write函数写入“Tom”,通过ioctl函数设置langtype=english,通过read函数读出的数据将会是“hello!Tom/n” c.通过write函数写入“Tom”,通过ioctl函数设置langtype=pinyin,通过read函数读出的数据将会是“ni hao!Tom/n” 一般的内核模块中不会负责设备类别和节点的创建,我们在编译完之后会得到.o或者.k o文件,然后insmod之后需要mk nod来创建相应文件,这个简单的例子 中我们让驱动模块加载时负责自动创建设备类别和设备文件。这个功能有两个步骤, 1)创建设备类别文件class_cr eate(); 2)创建设备文件dev ice_create(); 关于这两个函数的使用方法请参阅其他资料。 linux设备驱动的编写相对wi ndows编程来说更容易理解一点因为不需要处理IR P,应用层函数和内核函数的关联方式浅显易懂。 比如当应曾函数对我的设备调用了open()函数,而最终这个应用层函数会调用我的设备中的自定义open()函数,这个函数要怎么写呢, 我在我的设备中定义的函数名是hello_mod_open,注意函数名是可以随意定义,但是函数签名是要符合内核要求的,具体的定义是怎么样请看 static int hello_mod_open(struct inode *, struct file *); 这样就定义了内核中的open函数,这只是定义还需要与我们自己的模块关联起来,这就要用到一个结构 struct file_operations 这个结构里面的成员是对应于设备操作的各种函数的指针。 我在设备中用到了这些函数所以就如下定义,注意下面的写法不是标准ANSI C的语法,而是GNU扩展语法。 struct file_operations hello_mod_fops = { .owner = THIS_MODULE, .open = hello_mod_open,

Linux内核与跟文件系统的关系

Linux内核与根文件系统的关系 开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机:“尽管内核是Linux 的核心,但文件却是用户与操作系统交互所采用的主要工具。这对Linux 来说尤其如此,这是因为在UNIX 传统中,它使用文件I/O 机制管理硬件 设备和数据文件。” 一.什么是文件系统 文件系统指文件存在的物理空间,linux系统中每个分区都是一个文件系统,都有自己的目 录层次结构。 Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其 中。这种机制有利于用户和操作系统的交互。 每个实际文件系统从操作系统和系统服务中分离出来,它们之间通过一个接口层:虚拟文件系统或VFS来通讯。VFS使得Linux可以支持多个不同的文件系统,每个表示一个VFS 的通用接口。由于软件将Linux 文件系统的所有细节进行了转换,所以Linux核心的其它部分及系统中运行的程序将看到统一的文件系统。Linux 的虚拟文件系统允许用户同时能透明地安装 许多不同的文件系统。 在Linux文件系统中,EXT2文件系统、虚拟文件系统、/proc文件系统是三个具有代表性的 文件系统。 二.什么是根文件系统 根文件系统首先是一种文件系统,该文件系统不仅具有普通文件系统的存储数据文件的功能,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所挂载(mount)的第一个文件系统,内核代码的映像文件保存在根文件系统中,系统引导启动程序会在根文件系统挂载之后从中把一些初始化脚本(如rcS,inittab)和服务加载到内存中去运行。我们要明白文件系统和内核是完全独立的两个部分。在嵌入式中移植的内核下载到开发板上,是没有办法真正的启动Linux操作系统的,会出现无法加载文件系统的错误。 那么根文件系统在系统启动中到底是什么时候挂载的呢?先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.根文件系统执行完之后,也就是到了Start_kernel()函数的最后,执行init的进程,也就第一个用户进程。对系统进行各 种初始化的操作。 根文件系统之所以在前面加一个”根“,说明它是加载其它文件系统的”根“,既然是根的话,那么如果没有这个根,其它的文件系统也就没有办法进行加载的。它包含系统引导和使其他文件系统得以挂载(mount)所必要的文件。根文件系统包括Linux启动时所必须的目录和关键性的文件,例如Linux启动时都需要有init目录下的相关文件,在Linux挂载分区时Linux 一定会找/etc/fstab这个挂载文件等,根文件系统中还包括了许多的应用程序bin目录等,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。成功之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂载(mount)。使用mount 命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。根文件系统被挂载到根目录下“/”上后,在根目录下就有根文件系统的各个目录,文件:/bin /sbin /mnt等,再将其他分区挂接到/mnt 目录上,/mnt目录下就有这个分区的各个目录,文件。

基于linux的嵌入式串口通信

天津电子信息职业技术学院《嵌入式软件编程》课程报告 课程名称:基于linux的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1 嵌入式串口通信的原理 (2) 1.2 嵌入式串口通信的开发工具 (2) 1.2.1 CC2530功耗 (2) 1.2.2 ARM简介 (3) 1.2.3 Linux系统简介 (3) 1.3 嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、 RS-232C标准 (5) 2.1引脚定义 (5) 2.2 字符(帧)格式 (6) 2.3握手协议 (8) 2.4 双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 DTR和DSR握手情况 (9) 三、嵌入式串口驱动程序设计 (10) 3.1 嵌入式串口操作需要的头文件 (10) 3.2 打开串口 (10) 3.3 串口设置 (11) 3.4 串口读写 (13) 3.5 关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

摘要 随着Internet的发展和后PC时代的到来,嵌入式系统以其可靠性强、体积小、专用性、成本低等特性得到日益广泛的应用。目前嵌入式系统技术已经成为了最热门的技术之一。与此同时,一个独立的嵌入式系统的功能缺陷也逐渐暴露出来。新一代嵌入计算系统的功能集成和应用模式使之迅速向网络化嵌入计算的方向发展,标准和统一的TCP/IP通信协议是独立于任何厂家的硬件的,因此嵌入环境下的实时网络通信成为嵌入计算技术研究的重点和热点。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。 关键词:嵌入式串口通信 2410F

嵌入式课程设计--_串口通信

摘要 (2) 1、绪论 (2) 1.1目的和意义 (2) 1.2设计内容 (2) 2、设计方案 (3) 2.1方案选择 (3) 2.1.1S3C2410X 串行通讯(UART)单元 (3) 2.1.2 波特率的产生 (3) 2.1.3 UART 通信操作 (4) 2.1.4 UART 控制寄存器 (4) 2.1.5 RS232 接口电路 (5) 3、硬件设计 (6) 3.1Embest EduKit-III 实验平台 (6) 3.2ULINK2 仿真器套件,PC 机 (6) 4、软件设计 (6) 4.2程序流程图设计 (7) 4.3调试运行结果 (7) 5、总结与体会 (8) 参考文献 (9)

摘要 为了掌握嵌入式技术,就应该学习以ARM 微处理器为核心的嵌入式开发环境和开发平台。本设计采用ARM原理和C语言程序设计的,设置S3C2410X 处理器 UART 相关控制寄存器和ARM 处理器系统硬件电路中 UART 接口,利用Embest EduKit-III 实验平台实现S3C2410X处理器和PC机的结合。 关键字: Embest EduKit-III 实验平台;S3C2410X 串行通讯(UART)单元;UART 控制寄存器;串口通信

1、绪论 1.1目的和意义 串口通信是目前单片机和 DSP 等嵌入式系统之间,以及嵌入式系统与 PC 机或无线模块之间的一种非常重要且普遍使用的通信方式。在嵌入式系统的硬件结构中,通常只有一个8位或 16位的 CPU, 不仅要完成主流程的工作, 同时还要处理随时发生的各种中断, 因而嵌入式系统中的串口通信程序设计与 PC 机有很大的不同。为了顺应当今世界技术革新的潮流,了解、学习和掌握嵌入式技术,就必然要学习和掌握以ARM 微处理器为核心的嵌入式开发环境和开发平台。 1.2设计内容 本设计采用Embest EduKit-III 实验平台实现,通过EmbestIDE Pro for ARM 软件编写程序,仿真调试。实现实验平台与PC的串口通信。通过PC的超级终端显示接受的结果。

LINUX内核模块编程指南

第1章Hello, World 如果第一个程序员是一个山顶洞人,它在山洞壁(第一台计算机)上凿出的第一个程序应该是用羚羊图案构成的一个字符串“Hello, Wo r l d”。罗马的编程教科书也应该是以程序“S a l u t, M u n d i”开始的。我不知道如果打破这个传统会带来什么后果,至少我还没有勇气去做第一个吃螃蟹的人。 内核模块至少必须有两个函数:i n i t_m o d u l e和c l e a n u p_m o d u l e。第一个函数是在把模块插入内核时调用的;第二个函数则在删除该模块时调用。一般来说,i n i t_m o d u l e可以为内核的某些东西注册一个处理程序,或者也可以用自身的代码来取代某个内核函数(通常是先干点别的什么事,然后再调用原来的函数)。函数c l e a n u p_m o d u l e的任务是清除掉i n i t_m o d u l e所做的一切,这样,这个模块就可以安全地卸载了。

1.1 内核模块的Makefiles 文件 内核模块并不是一个独立的可执行文件,而是一个对象文件,在运行时内核模块被链接到内核中。因此,应该使用- c 命令参数来编译它们。还有一点需要注意,在编译所有内核模块时,都将需要定义好某些特定的符号。 ? _ _KERNEL_ _—这个符号告诉头文件:这个程序代码将在内核模式下运行,而不要作为用户进程的一部分来执行。 ? MODULE —这个符号告诉头文件向内核模块提供正确的定义。 ? L I N U X —从技术的角度讲,这个符号不是必需的。然而,如果程序员想要编写一个重要的内核模块,而且这个内核模块需要在多个操作系统上编译,在这种情况下,程序员将会很高兴自己定义了L I N U X 这个符号。这样一来,在那些依赖于操作系统的部分,这个符号就可以提供条件编译了。 还有其它的一些符号,是否包含它们要取决于在编译内核时使用了哪些命令参数。如果用户不太清楚内核是怎样编译的,可以查看文件/ u s r /i n c l u d e /l i n u x /c o n f i g .h 。 ? _ _SMP_ _—对称多处理。如果编译内核的目的是为了支持对称多处理,在编译时就需要定义这个符号(即使内核只是在一个C P U 上运行也需要定义它)。当然,如果用户使用对称多处理,那么还需要完成其它一些任务(参见第1 2章)。 ? C O N F I G _M O D V E R S I O N S —如果C O N F I G _M O D V E R S I O N S 可用,那么在编译内核模块时就需要定义它,并且包含头文件/ u s r /i n c l u d e /l i n u x /m o d v e r s i o n s .h 。还可以用代码自身来完成这个任务。 完成了以上这些任务以后,剩下唯一要做的事就是切换到根用户下(你不是以r o o t 身份编译内核模块的吧?别玩什么惊险动作哟!),然后根据自己的需要插入或删除h e l l o 模块。在执行完i n s m o d 命令以后,可以看到新的内核模块在/ p r o c /m o d u l e s 中。 顺便提一下,M a k e f i l e 建议用户不要从X 执行i n s m o d 命令的原因在于,当内核有个消息需要使用p r i n t k 命令打印出来时,内核会把该消息发送给控制台。当用户没有使用X 时,该消息146第二部分Linux 内核模块编程指南

Linux内核与驱动开发实验教材

内核与驱动开发实验教材 中程在线 实验一嵌入式开发环境的建立 实验目的 掌握嵌入式开发环境的构建,熟悉课程实验的开发板 掌握安装交叉编译工具的安装方法 掌握的烧写方法 掌握的编译方法 实验内容 安装交叉编译工具 编译 烧写 生成映像 基础知识 交叉编译工具 嵌入式系统的开发中,开发环境被称为主机。因为嵌入式目标系统的资源局限性,不可能完成构建系统的任务,所以需要主机使用交叉编译工具来构建目标系统。 实验使用交叉编译器,与桌面系统采用的编译器是不同,因为实验开发板采用的是处理器。 编译器将使用下列工具 , 与通常在平台上使用的工具不同,交叉编译工具编译处理的执行文件只能够在平台上运行。 嵌入式系统构建 一个嵌入式系统从软件的角度看通常可以分为四个层次: .引导加载程序()。引导加载程序是系统加电后运行的第一段软件代码。 . 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 . 文件系统。包括根文件系统和建立于内存设备之上文件系统。通常用来作为。 .用户应用程序。特定于用户的应用程序。

主要的功能有: 初始化硬件,初始化, , , , 。 启动,这是最重要的功能,保存内核映像到中,并跳转到内核起始地址。 映像下载,下载内核映像和文件系统到,下载只能通过以太网进行。如命令完成文件下载。 内存控制,如命令可以烧写。 机中的引导加载程序由(其本质就是一段固件程序)和位于硬盘中的(比如,和等)一起组成。在完成硬件检测和资源分配后,将硬盘中的读到系统的中,然后将控制权交给。的主要运行任务就是将内核映象从硬盘上读到中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像那样的固件程序(注,有的嵌入式也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由来完成。在实验开发板(基于3C)的嵌入式系统中,系统在上电或复位时都从地址处开始执行,而在这个地址处安排的通常就是系统的程序。 简单地说,就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。 通常,是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的几乎是不可能的。尽管如此,我们仍然可以对归纳出一些通用的概念来,以指导用户特定的设计与实现。 内核是所有系统的中心软件组件。整个系统的能力完全受内核本身能力的限制。 由于内核支持多个架构,由于架构的差异性,每种架构都有不同的团队在维护,所以必须根据架构来选择供应内核的网站。见下表: 架构最合适的内核网站下载方式 等 内核源代码目录树结构说明如下: :包含和硬件体系结构相关的代码,每种平台占一个相应的目录。和位相关的代码存放在目录下,其中比较重要的包括(内核核心部分)、(内存管理)、(浮点单元仿真)、(硬件相关工具函数)、(引导程序)、(总线)和(相关状态)。 :常用加密和散列算法(如、等),还有一些压缩和校验算法。 :关于内核各部分的通用解释和注释。 :设备驱动程序,每个不同的驱动占用一个子目录。 :各种支持的文件系统,如、、等。 :头文件。其中,和系统相关的头文件被放置在子目录下。 :内核初始化代码(注意不是系统引导代码)。 :进程间通信的代码。 :内核的最核心部分,包括进程调度、定时器等,和平台相关的一部分代码放在*目录下。:库文件代码。 :内存管理代码,和平台相关的一部分代码放在*目录下。 :网络相关代码,实现了各种常见的网络协议。

相关文档
最新文档