多层系油气藏时移地震匹配处理技术

合集下载

深度学习技术在地震储层预测中的应用及挑战

深度学习技术在地震储层预测中的应用及挑战

深度学习技术在地震储层预测中的应用及挑战骆迪;王宏斌;蔡峰;吴志强;孙运宝;李清【期刊名称】《石油地球物理勘探》【年(卷),期】2024(59)3【摘要】传统地震储层预测技术已无法满足储层精细评价的需求,深度学习具有强大的特征提取和高维数据处理能力,近年来广泛应用于地震储层预测并取得了较好的效果。

为此,本文深入讨论深度学习技术在地震储层预测中的应用、进展及它在实际工作中面临的挑战,并提出未来的发展方向。

主要认识有:(1)在烃类定性检测方面,深度学习技术有助于综合利用多属性地震数据去提高效率和预测结果的准确率;在定量预测方面,深度学习技术可以更精准地逼近地震数据与目标之间复杂的非线性关系,实现储层的精细定量评价。

(2)深度学习技术的应用面临的挑战主要是标签数据不足和样本不均衡等容易导致模型过拟合,泛化能力差;模型复杂,计算成本高;模型的“黑匣子”特征使预测结果缺乏物理可解释性;缺乏定性预测模型的评价标准和高精度的不确定性量化算法。

(3)未来的研究方向应致力于克服数据可用性的不足和深度学习的局限性等,构建地球物理知识图谱,实现多源数据与知识的有效融合、共享,将深度学习与反馈强化学习等其他机器学习算法相结合,为油气勘探和开发提供更可靠的技术支撑。

【总页数】12页(P640-651)【作者】骆迪;王宏斌;蔡峰;吴志强;孙运宝;李清【作者单位】中国地质调查局青岛海洋地质研究所自然资源部天然气水合物重点实验室;崂山实验室海洋矿产资源评价与探测技术功能实验室【正文语种】中文【中图分类】P631【相关文献】1.地震储层预测技术在港东油田二区六断块河流相储层中的应用2.叠后地震储层预测技术在缝洞型储层表征中的应用3.层序约束地震储层预测技术在岩性圈闭识别中的应用4.转换波地震勘探技术在四川盆地震旦系储层预测中的应用5.地震储层预测技术在X地区砂岩薄储层中的应用因版权原因,仅展示原文概要,查看原文内容请购买。

时移地震技术进展简述

时移地震技术进展简述

时移地震技术进展简述摘要:时移地震(四维地震)是利用不同时间采集的地震资料之间的差异来检测由于油气田的开发而导致的地下流体场、压力场和储层物性的变化,并利用这种变化来指导油气田的管理和开发调整,以达到提高油气田采收率和开发效益的一项技术。

关键字:时移地震;进展时移地震技术进展时移地震(四维地震)是近几年来新发展起来的前缘地震勘探探技术,它是指在一个地区不同时间重复进行地震勘探工作,以能够监测出地下油藏由于生产而引起的油气水饱和度变化的地震响应,从而确定剩余油气的变化和分布,为及时调整注采方案,优化油田开发提供可靠的科学依据,最大限度地降低采油成本和提高采收率。

时移地震技术自上世纪80 年代初期提出以来,经历了若干个过程。

在80 年代初期,比较强调检波器几何位置的绝对重复。

为达此目的,检波器甚至被埋于水泥块中,但由于当时技术条件的限制,常导致检波器损毁,使得这种采集方式成本大幅上升,从而导致此技术在相当长时间内没有任何发展。

进入90 年代,三维地震技术逐步发展起来并得到了广泛的应用,在相当多的地区重复采集了不同时间的三维地震资料。

如何利用这些资料去解决油藏工程中感兴趣的问题成为专家们关注的焦点。

在此阶段,工业界开发了许多的处理分析和解释技术,并对采集方式提出了相应的建议。

进入21 世纪后,在工业界提出了E-Field 概念,即在油藏开发的初期,就将检波器安装于与油藏对应的地表和井中,并在不同的时间,在相应的位置进行地震激发,这样就形成了真正的四维地震数据。

如果对油藏进行全开发过程的监测,从成本和效益的角度来看,这种做法是最适宜的。

虽然并不一定在所有的油田都可以实施此技术,但它确实代表了未来发展的方向。

时移地震是目前油气田开发中应用效果较好的一种地震方法。

壳牌(shell)和英国石油公司(BP)的专家们认为时移地震技术的应用有可能会使得油气田的采收率提高15%左右。

与此同时,许多国内的物探专家学者都对时移地震的理论方法进行了不同程度的研究,在众多油田进行了先导试验。

地震多属性融合技术在油气藏储层预测中的应用

地震多属性融合技术在油气藏储层预测中的应用

地震多属性融合技术在油气藏储层预测中的应用摘要:辽河油田地质条件复杂多样,特殊的地质条件造就形成了多种油气藏类型,面对如此复杂的油气藏储层模式,如何精准地进行储层“甜点”有效识别及预测难度越来越大。

本文以西部凹陷S229油田为例,综合分析优化沿目的层时窗内提取的几何类、频率类、相关类等地震属性,运用地震多属性融合技术手段,成功地发现了沙二段深层异常高渗油藏,以此指导部署实施了4口百吨以上的高产井。

应用结果表明,地震多属性融合储层预测技术是油气田勘探开发有效的一种储层研究技术,其研究成果为该油田探明储量的上报及后期高效开发提供了可靠的依据。

关键词:三维地震;多属性融合;储层“甜点”预测;高渗油藏0前言地震属性分析是识别隐藏在地震数据中的相关岩性和物性信息,基于地震数据丰富的空间变异信息来认识地层岩性、特殊岩性体、潜山等油气藏的非均质性的有效手段。

随着各油气田对高渗油气资源投入开发,高渗油气层地质“甜点”分布的预测受到越来越多的重视,特别是在复杂的地质背景下,“甜点”预测的可靠性往往影响到后续开发方案的编制规划。

由于受复杂沉积区内受高渗油气层固有的叠前、叠后地震响应特征、地震品质等的影响,造成利用常规技术的叠前、叠后地震反演预测下“甜点”的可靠性较低,而地震多属性融合技术作为一种有效提高“甜点”预测可靠性的方法亟待进一步研究和应用。

1 地质背景S299块位于辽河坳陷西部凹陷黄金带油田,对于辽河西部坳陷S299的地震勘探工作始于20世纪70年代,1985年开始进行三维一次地震采集,至1999年基本覆盖全盆地,采集面积约9530km2,由于当时勘探目的、采集技术、设备能力等因素的影响及地震地质条件与地面条件如地震波能量衰减、构造断裂的复杂性、沉积环境稳定性、火山岩屏蔽作用、地表障碍物等的限制造成部分地区资料品质较差或缺失。

从2000年至2017年,辽河油田公司基本实现了辽河坳陷三维二次采集全覆盖,采集面积约8040km2,并从2010年开始,有针对性地选择11个重点区块开展“两宽一高”地震技术攻关,三维采集满覆盖面积约2188km2。

油气地质勘探中的地震数据处理和解释技术

油气地质勘探中的地震数据处理和解释技术

油气地质勘探中的地震数据处理和解释技术概述油气地质勘探中的地震数据处理和解释技术,是指通过采集、处理和解读地震波信号,来确定地下的油气储层分布、性质和储量大小等信息。

地震勘探是油气勘探中的基础和重要方法之一,其应用范围广泛,取得了很多成功的案例。

本文将从地震数据采集、预处理、成像、解释和评价等方面,对油气地质勘探中的地震数据处理和解释技术进行简要介绍,并结合相关案例进行分析。

一、地震数据采集地震勘探是基于地震波传播原理来寻找地球内部结构和特定物质分布的方法。

地震波源有爆炸、振动和震源三种方式,主要使用振动方式产生的地震波,因为其信号清晰、频率范围广、深度适中、对环境的影响小等优点。

地震波在地下沉积物中经过多次反射和折射后,经地表观测点接收并记录为地震记录,再对这些记录进行处理和解释。

地震数据采集需要经过工区选址、线网设计、设备布置、数据记录等步骤。

工区选址应考虑地质特征、地表条件、设备通信等方面因素,以保证采集到高质量的地震数据。

线网设计则要考虑采集目标、信噪比及经济效益等因素,以获得最优的数据效果。

二、地震数据预处理地震数据预处理包括噪声消除、去除仪器响应、补偿波场偏移等过程。

噪声消除是地震数据处理的重要环节之一,主要是为了减少信号中的噪声,提高数据的清晰度。

去除仪器响应可以提高数据稳定性和可靠性,同时也避免了数据重复处理所带来的偏差。

波场偏移补偿可以提高地震图像的清晰度和分辨率,从而更准确地表征地下结构。

三、地震数据成像地震数据成像是指建立地下模型的过程,是地震勘探的重点之一。

目的是根据地震数据,通过成像算法,建立地质模型,用以分析解释地质结构特征。

常用的成像方法有叠前和叠后成像。

叠前成像是指在地震数据处理过程中,对原始数据进行预处理,再应用成像算法,得到地下结构的影像。

叠前成像的主要优点是处理速度快,成像效果好,能较好地表征地下结构。

叠后成像则是指在处理和解释地震数据后,对已成图像进行后处理,通过地震反演等方法,更好地约束模型,准确表征地下结构特征,优点是更加准确,但计算成本高。

人工地震驱油技术在断块稠油油藏中的应用

人工地震驱油技术在断块稠油油藏中的应用
2 2 储 层 及流体 特 征 .
有效水驱_ 。因此 提高采收率 的理想手段就是 油水分布不均匀的油藏或平面非均质严重 的油藏 , 】 提 改变 流体 的地 下 粘 度 , 下 人 工 地 震 驱 油 技术 正是 震 动还会 促 进 油水 的运 移 和 重 新 分 布 , 高 水 驱 开 井 . J 以 降低地 下 原 油 粘 度 、 善 原 油 流 动 性 为 机 理 的 。 发效率 9。井下人工地震驱油技术 以地震波传递 改 是 对 大港 油 田南 部 地 区井 下人 工 地 震 驱 油 技 术 的试 验 , 的能量 为驱 动动力 , 一种 纯物 理 的增 产技 术 , 油
取 得 了较好 的效果 。
层无污染 ; 波及范围广 , 作用范围大。
1 地震 驱 油原 理
大范 围 、 大幅 度 降 低 地 下 原 油 粘 度 是 井 下 人 工
2 试 验 区特 征
2 1 地 质特 征 .
地震增产并最终提高采收率的主要机理 。井下人工
地 震 驱油是 通 过钢丝 带 动井下 的重锤 产 生 巨 大 的冲
中 图分 类 号 : E 4 T 35 文 献 标 识 码 :A
引 言
对于复杂断块 、 稠油油藏 , 稠油流动性差 、 连通 率 低是 开 发 中 的主 要 矛 盾 。一 是 由于 油 水 粘 度 比
大 , 入水 指进 严重 , 注 使得 油井 见 水 早 、 水 上 升快 , 含 水 驱 效率 低 ¨ J 同 时 油层 渗 流 阻 力 过 大 , 驱 动 。 水
摘 要 : 对 大 港 油 田 南部 油 区 大 多 为 复 杂 断 块 、 针 多层 系、 油 油 藏 , 稠 断块 面积 小且 平 面 、 间 、 内非 均 质 性 较 强 , 层 层 目前

叠后偏移地震资料构造解释的原理

叠后偏移地震资料构造解释的原理

叠后偏移地震资料构造解释的原理随着地球科学领域的不断发展,地震勘探技术作为一种重要的地球物理勘探手段,在油气勘探、地质灾害预测等方面发挥着重要作用。

叠后偏移地震资料构造解释作为地震勘探中的重要环节之一,其原理对于准确解释地下构造具有至关重要的意义。

本文将从叠后偏移的概念、地震资料构造及解释的基本原理入手,深入探讨叠后偏移地震资料构造解释的原理。

一、概念叠后偏移是地震勘探中的一种重要处理手段,它通过将地震记录进行时间和空间的叠加,来提高地震资料的分辨率和解释质量。

在地震资料处理中,叠后偏移是一个重要的步骤,它能够帮助勘探人员更加清晰地观察地下构造,从而为油气勘探和地质灾害预测提供有力的支持。

二、地震资料构造原理1. 时间叠加时间叠加是叠后偏移的关键步骤之一,它通过将不同时间的地震信号叠加在一起,来增强信号的强度和分辨率。

在地震资料构造中,时间叠加可以帮助我们更加清晰地观测地下构造的细节,从而提高地震资料的解释质量。

2. 空间叠加空间叠加是叠后偏移的另一个重要步骤,它通过将不同空间位置的地震记录叠加在一起,来增强地震信号的强度和分辨率。

在地震资料构造中,空间叠加可以帮助我们更加清晰地观测地下构造的分布情况,从而提高地震资料的解释质量。

3. 叠后偏移叠后偏移是地震资料构造的最终步骤,它通过将经过时间和空间叠加处理的地震记录进行偏移校正,来获得更加准确的地震资料。

在地震勘探中,叠后偏移可以帮助我们更加清晰地观测地下构造的几何形态,从而提高地震资料的解释质量。

三、地震资料解释的基本原理1. 反射波分析反射波分析是地震资料解释的基本原理之一,它通过分析地震波在不同介质中的反射特征,来推断地下构造的性质和分布情况。

在地震资料解释中,反射波分析可以帮助我们更加清晰地观测地下构造的界面和变化情况,从而提高解释的准确性和可靠性。

2. 折射波分析折射波分析是地震资料解释的另一个基本原理,它通过分析地震波在不同介质中的折射特征,来推断地下构造的速度和密度情况。

石油勘探中的地震数据处理与解释方法研究

石油勘探中的地震数据处理与解释方法研究

石油勘探中的地震数据处理与解释方法研究引言地震勘探是石油勘探领域中一项重要的技术手段,它利用地震波在地下不同介质中传播的规律,通过采集和分析地震数据,可以获取地下构造信息,进而预测油气藏的分布及性质。

地震数据处理与解释是地震勘探中的核心环节,涉及到信号处理、成像和解释等方面的技术。

本文将针对石油勘探中的地震数据处理与解释方法进行研究,并对其中几个重要的方法进行详细介绍。

一、地震数据处理方法1. 数据采集地震数据的采集是地震勘探的第一步,通过在地表布设地震仪器进行震源激发和地震波接收,记录地震数据。

在石油勘探中常采用地震通道布设、合理分布的方式进行数据采集,以获取更全面、准确的地震信息。

2. 数据预处理由于地震数据受到各种噪声的干扰,为了提取出有效的信号,需要进行数据预处理。

主要包括零偏校正、去噪、频率特征提取等步骤。

其中,零偏校正可以消除地震记录中的直流成分,去噪可以滤除噪声信号,频率特征提取可以分析地震信号的频率边界。

3. 数据成像地震数据成像是根据地震波在地下介质中的传播规律,在计算机上生成地震剖面图像。

常用的成像方法有叠前偏移、叠后偏移等。

其中,叠前偏移适用于波速变化较大的地震剖面,可以产生较高分辨率的图像;叠后偏移适用于波速变化较小的剖面,可以提高图像质量。

二、地震数据解释方法1. 层析成像层析成像是一种将地震数据转换为地下速度模型的方法。

它通过反演地震波的传播路径和速度信息,重建地下速度模型,从而获取地下构造细节。

层析成像方法包括射线追踪、势场重构等。

其中,射线追踪方法以地震波射线路径为基础,通过反演射线的旅行时间和速度来获得地下速度模型。

势场重构方法则是利用物理势场来描述地震波传播的实际情况,并通过反演势场的数值信息得到地下速度模型。

2. 反演方法地震数据的反演是指通过地震数据推断地下介质参数的方法。

反演方法主要有全波形反演、倾斜叠加反演等。

其中,全波形反演是将地震数据中的全部波形信息都纳入反演过程,可获得较高分辨率的地下速度模型。

石油勘探过程中地震资料处理个创新方法与成功案例集总分析

石油勘探过程中地震资料处理个创新方法与成功案例集总分析

石油勘探过程中地震资料处理个创新方法与成功案例集总分析地震资料在石油勘探中起着重要的作用。

通过对地震信号的处理和分析,可以获得地下地层的结构、性质等相关信息,为油气资源的勘探和开发提供重要依据。

随着勘探技术的发展和人们对油气资源需求的不断增长,石油勘探过程中地震资料处理也在不断创新。

本文将对一些个创新方法以及成功案例进行集总分析。

首先,地震资料处理个创新方法之一是全波形反演(full waveform inversion,FWI)。

传统地震资料处理方法主要使用速度模型进行图像重建,但是这种方法对于复杂地质条件下的油气藏难以准确获取三维模型。

然而,FWI利用完整的地震记录数据,可以更准确地重建地下地质结构。

FWI的优势在于通过模型迭代,逐步减小地震模拟数据与观测数据之间的差异,最终获得更准确的地下模型。

FWI方法在海洋和陆地勘探领域都有广泛应用,并取得了显著的成果。

其次,地震资料处理个创新方法之二是虚拟井技术(Virtual Well Technology,VWT)。

在某些情况下,由于地下结构的复杂性或资源限制,真实的井不能在每个勘探区域内建立。

然而,井是获取地下地质信息的重要手段。

为了弥补这个缺陷,VWT可以通过地震记录数据,创建虚拟井并获得与真实井相似的地下结构。

这种技术的使用可以在遇到资源和经济限制时获得更全面、准确的地下结构信息,从而为勘探和开发提供更可靠的依据。

在实际的石油勘探中,地震资料处理个创新方法取得了一系列成功案例。

以墨西哥湾深水勘探为例,FWI技术的应用使得重建的地下结构有了更高的分辨率,大大提高了石油储量的准确估计。

此外,在北海地区的石油勘探中,VWT技术得到了广泛应用。

研究人员通过分析地震资料,成功创建了虚拟井,帮助揭示了隐藏在海底的复杂地质结构,为勘探和开发工作提供了重要指导。

需要注意的是,虽然地震资料处理个创新方法在石油勘探中取得了较大的成功,但仍面临着一些挑战。

首先,数据处理需要大量的计算资源和时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档