郑州市高二上学期期末数学试卷A卷
安徽省鼎尖教育2024-2025学年高二上学期11月期中考试数学试卷(A卷)

安徽省鼎尖教育2024-2025学年高二上学期11月期中考试数学试卷(A 卷)一、单选题1.抛物线24y x =的焦点坐标是()A .()1,0B .()0,1C .1,016⎛⎫ ⎪⎝⎭D .10,16⎛⎫ ⎪⎝⎭2.已知,x y ∈R ,向量(1,,2),(1,1,)a x b y =-=- ,且//a b ,则x y +=()A .1B .-1C .2D .-23.已知点(3,1)P 是直线l 上一点,且(3,1)v = 是直线l 的一个方向向量,若角α的终边落在直线l 上,则tan 2α=()A .34B .34-C .43D .43-4.如图,在三棱锥O ABC -中,2,,,,3OA a OB b OC c BD BCE ==== 是线段AD 的中点,则OE = ()A .111236a b c ++ B .111623a b c ++ C .111362a b c ++ D .111263a b c ++ 5.已知圆221:26100C x y x y m ++-+-=被x 轴截得的弦长为222:8300C x y y ++-=,则两圆的公共弦所在的直线方程为()A .7120x y --=B .780x y -+=C .7120x y -+=D .7180x y --=6.如图,在平行六面体1111ABCD A B C D -中,111,4,3AB AD AC AA ====,11π3A AB A AD ∠=∠=,则BAD ∠=()A .π3B .2π3C .π4D .π27.已知双曲线2222:1(0,0)x y C a b a b -=>>的一个顶点为(2,0),左、右焦点分别为1F ,2F ,直线l 经过2F ,且与C 交于A ,B 两点.若234BF BA = ,120AF AF ⋅= ,则C 的离心率为()A B C D 8.数学家华罗庚曾说:“数缺形时少直观,形少数时难入微”.事实上,很多代数问题可以转化为几何问题加以解决,例如,可以转化为点(,)A x y与点(,)B a b 之间距离的几何问题.若曲线2C ,且点M ,N 分别在曲线C 和圆:22(2)8x y +-=上,则M ,N 两点间的最大距离为()A .52+B .72+C .3+D .4+二、多选题9.关于空间向量,下列说法正确的是()A .若,a b 共线,则||||||a b a b +=- B .已知(1,2,2),(2,,4)a b x =-= ,若a b ⊥ ,则5x =C .若对空间中任意一点O ,有121236OP OA OB OC =+- ,则P ,A ,B ,C 四点共面D .若向量{},,a b c 能构成空间的一个基底,则{,,}a b b c a b --+ 也能构成空间的一个基底10.若0a ≠,直线212:230,:20l ax y a l a x y ++=--=,则下列说法正确的是()A .直线1l 过定点(3,0)-B .直线2l 一定经过第一象限C .点(1,3)P 到直线1l的距离的最大值为D .12//l l 的充要条件是12a =-11.已知椭圆221222:1(0),,x y C ab F F a b+=>>分别为C 的左、右焦点,A ,B 分别为C 的左、右顶点,点P 是椭圆上的一个动点,且点P 到2F 距离的最大值和最小值分别为3和1.下列结论正确的是()A .椭圆C 的离心率为12B .存在点P ,使得12PF PF ⊥C .若1272PF PF ⋅=,则12PF F 外接圆的面积为49π24D .22121212PF PF PF PF +++ 的最小值为167三、填空题12.古希腊数学家阿波罗尼斯(约公元前262年—公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作有中这样一个命题:平面内与两定点距离的比为常数(0k k >且1)k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知点(2,0),(2,0)A B -,点P 满足||PA=|PB ,则点P 的轨迹所对应的阿波罗尼斯圆的半径为.13.如图,在长方体1111ABCD A B C D -中,1AA AB ==1AD =,点P 满足1CP mCB = (01)m <<,当1174C P D P ⋅= 时,m 的值为.14.已知抛物线2:2(0)C y px p =>的焦点为F ,过焦点F 的直线l 与C 相交于P ,Q 两点,且1123PF FQ +=,若54PQ =,则直线l 的斜率为.四、解答题15.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,点D ,E ,F 分别为1,,AB BC BB 的中点.(1)证明:11//AC 平面1B DE ;(2)若1222AC AB AA ===,求直线D 与平面11A FC 的距离.16.在平面直角坐标系中,圆C 为过点(2,0)A -,(1,3)B -,(2,2)D 的圆.(1)求圆C 的标准方程;(2)过点(1,1)G 的直线l 与C 交于M ,N 两点,求弦MN 中点P 的轨迹方程.17.已知四棱锥P ABCD -中,底面四边形ABCD 是正方形,,PD AB PD =⊥底面ABCD ,E 是线段PC 的中点,G 在线段PB 上,且满足EG 与PA 所成的角为45︒.(1)证明:DE PB ⊥;(2)求平面ACG 与平面DEG 夹角的余弦值.18.已知双曲线2222:1(0,0)x y C a b a b -=>>1F ,2F 分别为其左、右焦点,P 为双曲线C 上任意一点,且12PF PF ⋅ 的最小值是1-.(1)求双曲线C 的方程;(2)记双曲线C 的左、右顶点分别为1A ,2A ,直线5:2l x my =+与C 的右支交于M ,N 两点.(i )求实数m 的取值范围;(ii )若直线1A M ,2A N 的斜率分别为1k ,2k ,证明:12k k 是定值.19.若椭圆:22221(0)x y a b a b+=>>上的两个点()(),,,M M N N M x y N x y 满足220M N M N x x y y a b +=,则称M ,N 为该椭圆的一个“共轭点对”,点M ,N 互为共轭点.显然,对于椭圆上任意一点M ,总有两个共轭点12,N N .已知椭圆22:184x y C +=,点()00,A x y 是椭圆C 上一动点,点A 的两个共轭点分别记为()()111222,,,B x y B x y .(1)当点A坐标为时,求12B B ;(2)当直线12,AB AB 斜率存在时,记其斜率分别为12,k k ,其中120k k ≠,求12k k +的最小值;(3)证明:12AB B 的面积为定值.。
广东省深圳中学2024-2025学年高二上学期期中考试数学试卷(A卷)

2024-2025学年广东省深圳中学高二(上)期中数学试卷(A 卷)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)直线3450x y +-=的斜率为()A.34B.43C.34-D.43-2.(5分)已知等比数列{}n a ,若42a =,63a =,则2a =()A.34B.23C.43D.323.(5分)若椭圆2214x y λ+=的右焦点坐标为(1,0),则λ的值为()A.1B.3C.5D.74.(5分)设两直线1l :()130m x y +--=,2l :210x my ++=相互垂直,则m 的值为()A.1B.2C.-2D.-35.(5分)已知1F ,2F 是椭圆221259x y +=的两个焦点,P 是椭圆上的任意一点,则12PF PF ⋅的最大值是()A.9B.16C.25D.2526.(5分)设等差数列{}n a 的前n 项和为n S ,且满足10a <,717S S =,则当n S 取得最小值时,n 的值为()A.10B.12C.15D.247.(5分)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述运算,经过有限步后,必然进入循环1→4→2→1.这就是数学史上著名的“冰雹猜想”.如取正整数5m =,根据上述运算法则得出5→16→8→4→.现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,,231,,nn n nn a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时当3m =时,12320a a a a +++⋅⋅⋅+=()A.72B.77C.82D.878.(5分)“222a b R +<”是“圆()()222x a y b R -+-=与坐标轴有四个交点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.非充分必要条件二、选择题:本题共3小题,每小题6分,共18分。
浙江省宁波市慈溪市2023-2024学年高二上学期期末考试 数学(含答案)

慈溪市2023学年第一学期期末测试卷高二数学学科试卷(答案在最后)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,42.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A.1B.0C.1- D.2-4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6- B.7- C.8- D.9-5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC =,则AE DF ⋅=()A.53-B.23-C.0D.537.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭ B.0,3⎛⎫⎪ ⎪⎝⎭ C.,19⎛⎫⎪ ⎪⎝⎭ D.,13⎛⎫⎪ ⎪⎝⎭8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20ef -> B.()40442023ef < C.()22ef < D.()40462024ef >二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12D.直线2l 过定点()1,3--10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x aa-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为222230x y ax a +--+=,则圆C 的半径为______.14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪ ⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC 上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.20.已知数列{}n a 的首项123a =,且满足121n n na a a +=+(*n ∈N ).(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nn b n =-+,令n n n c a b =,求数列{}n c 的前n 项和n S .21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)22.已知双曲线C 的渐近线方程为22y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.慈溪市2023学年第一学期期末测试卷高二数学学科试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,4【答案】B 【解析】【分析】根据对称即可求解.【详解】点()2,3,4P --关于平面yOz 对称的点的坐标为()2,3,4-,故选:B2.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(【答案】A 【解析】【分析】根据标准方程即可求解.【详解】双曲线229436x y -=转化为标准方程为22149x y -=,故224,9,a b c ====,故焦点为)和(),故选:A3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A .1B.0C.1- D.2-【答案】D 【解析】【分析】求导,根据()()11,14f f '=-=即可求解1,3a b ==,进而可求解.【详解】()22bf x ax x '=-,则()121f a b '=-=-,又()14f a b =+=,所以1,3a b ==,故2a b -=-,故选:D4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6-B.7- C.8- D.9-【答案】C 【解析】【分析】根据等差数列的性质即可求解.【详解】由()123454a a a a a ++=+可得()5123454545512024S a a a a a a a a a =++++=+=⇒+=,1232239632a a a a a ++==⇒=,故274578a a a a a +=+⇒=-,所以7258a a d =+=-,解得8d =-.故选:C5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-【答案】A 【解析】【分析】设圆心为C ,点()0,2为点D ,切点为,A B ,先利用勾股定理求出切线长,再求出cos ,sin ADC ADC ∠∠,再根据二倍角的余弦公式即可得解.【详解】因为2202421110++⨯-=>,所以点()0,2在圆外,设圆心为C ,点()0,2为点D ,切点为,A B ,圆22410x y x ++-=化为标准方程得()2225x y ++=,则圆心()2,0C -,半径r =,在Rt ACD △中,CD AC ==AD ==,故cosADC ADC ∠=∠=由圆的切线的性质可得ADC BDC ∠=∠,所以351cos cos cos 2884ADB ADC α=∠=∠=-=.故选:A.6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC = ,则AE DF ⋅=()A.53-B.23-C.0D.53【答案】C 【解析】【分析】先将,AE DF 分别用,,AB AC AD表示,再根据数量积得运算律即可得解.【详解】由正四面体ABCD ,得60BAC BAD CAD ∠=∠=∠=︒,则2,2,2AB AC AB AD AD AC ⋅=⋅=⋅=,由E 是BC 的中点,得()12AE AB AC =+,由2AF FC =,得23AF AC = ,则23DF AF AD AC AD =-=- ,所以()1223A A AB AC C AD E DF ⎛⎫+⋅- ⎪⎝⋅=⎭2122233AB AC AB AD AC AD AC ⎛⎫=⋅-⋅+-⋅ ⎪⎝⎭148220233⎛⎫=⨯-+-= ⎪⎝⎭.故选:C.7.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭B.0,3⎛⎫⎪ ⎪⎝⎭C.,19⎛⎫⎪ ⎪⎝⎭D.,13⎛⎫⎪ ⎪⎝⎭【答案】B 【解析】【分析】根据斜率公式,即可得21009b >,进而根据离心率公式即可求解.【详解】设(),M m n ,则222125m n b+=,()5,0,(5,0)A B -,故2222221255529524525MA MBk m b n n n b m k m m m ⎛⎫- ⎪⎝⎭=⋅==-+--=<⋅--,所以21009b >,故离心率为3c e a ===,又01e <<,故0,3e ⎛⎫∈ ⎪ ⎪⎝⎭,故选:B8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20e f -> B.()40442023ef < C.()22ef < D.()40462024ef >【答案】D 【解析】【分析】由()()ln 210f x f x ⎡⎤-+>⎣⎦',可得()()20f x f x -'>,构造函数()()2e xf xg x =,利用导数判断出函数的单调性,再根据函数()g x 的单调性逐一判断即可.【详解】因为()()ln 210f x f x ⎡⎤-+>⎣⎦',所以()()211f x f x +'->,即()()20f x f x -'>,令()()2exf xg x =,则()()()220exf x f xg x '-'=>,所以函数()g x 是增函数,对于A ,由()()01g g <,得()2210e e f -<=,故A 错误;对于B ,由()()20231g g >,得()4046220231e ef >,所以()40442023ef >,故B 错误;对于C ,由()()21g g >,得()4221e ef >,所以()22e f >,故C 错误;对于D ,由()()20241g g >,得()4048220241e e f >,所以()40462024ef >,故D 正确.故选:D.【点睛】关键点点睛:构造函数()()2e xf xg x =,利用导数判断出函数的单调性是解决本题的关键.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12 D.直线2l 过定点()1,3--【答案】CD 【解析】【分析】根据0a =时,直线1l 的斜率不存在,即可判断A ;根据两直线平行的充要条件计算即可判断B ;根据两直线垂直的充要条件计算即可判断C ;令a 的系数等于零求出定点即可判断D .【详解】对于A ,当0a =时,直线1l 的斜率不存在,故A 错误;对于B ,若12//l l ,则()2310a a a ---=,解得0a =或16a =,经检验,两个都符合题意,所以0a =或16a =,故B 错误;对于C ,若12l l ⊥,则23120a a --=,解得1a =或12,故C 正确;对于D ,直线2l 的方程化为()310x y a x ---=,令3010x y x -=⎧⎨--=⎩,解得13x y =-⎧⎨=-⎩,所以直线2l 过定点()1,3--,故D 正确.故选:CD.10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x a a-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='【答案】BCD 【解析】【分析】根据复合函数的求导法则,结合基本初等函数求导公式以及求导法则即可逐一求解.【详解】对于A ,()()cos cos f x x x =-=,所以()sin f x x =-',A 错误,对于B ,()()'ln ln x x f x a a x a a --=⨯-=-',故B 正确,对于C ,()1ln e lg eln10ln10f x x x x=='=,C 正确,对于D ,()()()222cos sin sin sin 1tan cos cos cos x x x x f x x x x x ''--⎛⎫='=== ⎪⎝⎭,D 正确,故选:BCD11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=【答案】ABD 【解析】【分析】先根据2a 的奇偶性求出2a ,再根据1a 的奇偶性即可求出m ,即可判断A ;分类讨论m ,求出数列的周期,进而可判断BCD.【详解】因为51a =,由“冰雹猜想”可得432,4a a ==,①若2a 为偶数,则2342a a ==,所以28a =,当1a 为偶数时,则1282aa ==,所以116a =,即16m =,当1a 为奇数时,则21318a a =+=,解得173a =(舍去),②若2a 为奇数,则32314a a =+=,解得21a =,当1a 为偶数时,则1212a a ==,所以12a =,即2m =,当1a 为奇数时,则21311a a =+=,解得10a =(舍去),综上所述,2m =或16,故A 正确;当2m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,得234561,4,2,1,4a a a a a =====,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()2024216744214721S =++⨯++=,当16m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,23456788,4,2,1,4,2,1a a a a a a a =======,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()20241686744214742S =++⨯++=,综上所述,20241a =,20244721S =或4742,故B 正确,C 错误;对于D ,数列{}n a 从第三项起是以3为周期的周期数列,所以3142n a a +==,故D 正确.故选:ABD.12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+【答案】BD 【解析】【分析】建立直角坐标系,利用法向量与方向向量的关系即可求解A ,根据线面角的向量法,结合不等式的性质即可判定C ,根据线面平行即可求解B,根据面面平行即可求解长度判断D.【详解】以A 为原点,以AC ,AB ,1AA 所在直线为坐标轴建立空间直角坐标系A xyz -,设12,3AB AC AA ===,则1(0A ,0,3),(2C ,0,0),(0B ,2,0),(0M ,1,0),(1N ,1,3),(1P ,1,3)2,所以1113(1,1,0),(1,1,(2,1,0),(2,0,3)2A N A P CM CA ==-=-=-,设平面1A CM 的法向量为(,,)n x y z =,则123020n CA x z n CM x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令3x =,可得(3,6,2)n = ,设11(,,0),(01)AQ mA N m m m ==≤≤ ,则113(1,1,)2PQ AQ A P m m =-=-- ,当Q 为线段1A N 中点时,12m =,则113(,,)222PQ =-- 3333022PQ n ⋅=--+=-≠ ,故此时PQ 不平行平面l A CM ,A 错误,当Q 为111A B C △重心时,则所以320m -=,即23m =,113(,,332PQ =-- ,此时1230PQ n ⋅=--+=,此时PQ ∥平面1A CM ,由于R 是线段PQ 上的点,故P 到平面1A CM 的距离即为R 到平面1A CM 的距离,故为定值,B 正确,由于3(1,1,)2PQ m m =-- ,设直线PQ 与平面1A CM 所成角为θ,则sin cos ,PQ n PQ n PQ n θ⋅===由于01,m ≤≤所以()()()2223232416999921444m m m --≤≤=-+,所以43sin ,72θ=≤=<ππ0,,23θθ⎡⎤∈∴<⎢⎥⎣⎦,故C 错误对于D ,取11A B 的中点H ,连接1,HB HC ,由于,H M 均为中点,所以11//,//HB A M C H CM ,而1A M ⊂平面1A CM ,CM ⊂平面1A CM ,而HB ⊄平面1A CM ,1C H ⊄平面1A CM ,故//HB 平面1A CM ,1//C H 平面1A CM ,11,,C H HB H C H HB ⋂=⊂平面1C HB ,故平面1//C HB 平面1A CM ,故过点P 平行于平面1A CM 的平面α即为平面1CHB ,故截面为三角形1C HB,由于111BH A M C H CM BC ======,D 正确,故选:BD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为22222330x y ax ay a +--+=,则圆C 的半径为______.【答案】a 【解析】【分析】将一般式转化为标准式即可求解半径.【详解】由22222330x y ax ay a +--+=可得()()2223x a y a a -+=,所以半径为a ,故答案为:a14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.【答案】150【解析】【分析】根据等比数列前n 项和的性质计算即可.【详解】由题意可得510515102015,,,S S S S S S S ---成等比数列,由510S =,1030S =,得10552S S S -=,得()1510105240S S S S -=-=,所以1570S =,则()20151510280S S S S -=-=,所以20150S =.故答案为:150.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.【答案】10,4⎛⎫ ⎪⎝⎭【解析】【分析】直接求导得()ln 14f x x ax '=+-,再设新函数()ln 14g x x ax =+-,首先讨论0a ≤的情况,当0a >时,求出导函数的极值点,则由题转化为11ln044g a a ⎛⎫=> ⎪⎝⎭,解出即可.【详解】2()ln 2(0)f x x x ax x =->,()ln 14f x x ax '=+-,令()ln 14g x x ax =+-,函数()()ln 2f x x x ax =-有两个极值点,则()0g x =在区间(0,)+∞上有两个实数根.114()4axg x a x x'-=-=,当0a ≤时,()0g x '>,则函数()g x 在区间(0,)+∞单调递增,因此()0g x =在区间(0,)+∞上不可能有两个实数根,应舍去.当0a >时,令()0g x '=,解得14x a=.令()0g x '>,解得104x a<<,此时函数()g x 单调递增;令()0g x '<,解得14x a>,此时函数()g x 单调递减.∴当14x a=时,函数()g x 取得极大值.当x 趋近于0与x 趋近于+∞时,()g x →-∞,要使()0g x =在区间(0,)+∞上有两个实数根,只需11ln 044g a a ⎛⎫=>⎪⎝⎭,解得10a 4<<.故答案为:10,4⎛⎫ ⎪⎝⎭.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.【答案】12-【解析】【分析】设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立方程,利用韦达定理求出1212,y y y y +,由FA FB ⊥,得0FA FB ⋅=,求出,m t 的关系,进而可求出t 的范围,再根据1211122AFB S t y y t =--=- 计算即可.【详解】由已知()1,0F ,设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立24x my ty x =+⎧⎨=⎩,消x 得2440y my t --=,216160m t ∆=+>,则12124,4y y m y y t +==-,由FA FB ⊥,得0FA FB ⋅=,即()()()()112212121,1,110x y x y x x y y -⋅-=--+=,所以()()1212110my t my t y y +-+-+=,化简得()()()()2212121110m y y m t y y t ++-++-=,所以()()()222414110t m mt t -++-+-=,化简得224610m t t =-+≥,解得3t ≥+3t ≤-则()()222Δ161646116410m t t t t t =+=-++=->,则1t >或1t <,所以3t ≥+3t ≤-1211122AFB S t y y t =--=-()211122t t t =-=-=-,所以当3t =-()(2min 212AFB S =-=- ,所以AFB △的面积最小值为12-故答案为:12-【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.【答案】(1)()f x 在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;(2)(ln 1)a a -【解析】【分析】(1)直接利用函数的导数确定函数的单调区间.(2)求导根据函数的单调性即可求解最值.【小问1详解】()f x 的定义域为(0,)+∞,当1a =时,()ln f x x x =-,()111x f x x x-=-=',当()10xf x x -'=>,解得:01x <<,当()10xf x x-'=<,解得:1x >.()f x ∴在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;【小问2详解】()f x 的定义域为(0,)+∞,()1a a xf x x x-=-=',当0a >时,令()0f x '>,得0x a <<,令()0f x '<时,得x a >,()f x ∴的递增区间为()0,a ,递减区间为(),a +∞.max ()ln (ln 1)f x a a a a a =-=-.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.【答案】(1)372(2)10y -=或70y -+=.【解析】【分析】(1)由已知条件可得直线l 的方程,再结合点到直线的距离公式即可求出弦AB 的长;(2)由已知条件可求出圆心到直线l 的距离12d r =,再分类讨论,结合点到直线的距离公式可求出k 值,则直线l 的方程可求.【小问1详解】直线l 过点,12M ⎛⎫- ⎪ ⎪⎝⎭,且斜率为tan120k ==∴直线l的方程为1y x -=+,即210y ++=, 圆心(0,0)到直线的距离为14d =,||2AB ∴==;【小问2详解】圆上恰有三点到直线l 的距离等于1,∴圆心(0,0)到直线l 的距离为12rd ==,当直线l 垂直于x轴时,直线方程为2x =-,不合题意;当直线l 不垂直于x 轴时,设直线l的方程为1(2y k x -=+,即10kx y -++=,由1d ==,可得20k -=,解得0k =或k =,故直线l 的方程为10y -=或70y -+=.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.【答案】(1)证明见解析(2)287【解析】【分析】(1)以点D 为原点建立空间直角坐标系,利用向量法求证即可;(2)先根据三棱锥的体积求出t ,再利用向量法求解即可.【小问1详解】如图,以点D 为原点建立空间直角坐标系,则()()()()()()()2,0,0,2,0,3,2,2,0,2,2,3,0,2,0,2,1,0,1,2,0A A B B C E F '',故()()()2,1,0,0,0,3,1,2,0DE AA AF '===- ,因为0,0DE AA DE AF '⋅=⋅= ,所以,DE AA DE AF '⊥⊥,又,,AA AF A AA AF ''⋂=⊂平面A AF ',所以DE ⊥平面A AF ';【小问2详解】因为()1113232328A BEF V S BEF AA t t '-'=⋅=⨯⨯⨯-⨯= ,解得12t =或32t =,又因为1t >,所以32t =,故312,,0,,2,022E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以33110,,3,,,0,0,,32222A E EF B E ⎛⎫⎛⎫⎛⎫''=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面A EF '的法向量为(),,n x y z = ,则有330231022n A E y z n EF x y ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,3n = ,设平面B EF '的法向量为(),,m a b c = ,则有130231022m B E b c m EF a b ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,1m =-- ,所以cos,287m nm nm n⋅===,所以平面B EF'与平面A EF'的夹角的余弦值为287.20.已知数列{}n a的首项123a=,且满足121nnnaaa+=+(*n∈N).(1)求证:数列11na⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nnb n=-+,令n n nc a b=,求数列{}n c的前n项和n S.【答案】(1)证明见解析(2)()()117214,672242,7nn nn nSn n++⎧--≤⎪=⎨-+≥⎪⎩【解析】【分析】(1)根据递推公式证明11111nnaa+--为定值即可;(2)先利用错位相减法求出数列{}n a的前n项和,再分6n≤和7n≥两种情况讨论即可.【小问1详解】由121nnnaaa+=+,得1112121111221111121n n n n n n n n n n n n n n na a a a a a a a a a a a a a a +-+---+====----,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以11112a -=为首项,12为公比的等比数列;【小问2详解】由(1)得1112n n a -=,所以221n n n a =+,所以()62nn n n c a b n ==-,设数列{}n a 的前n 项和为n T ,则()2352423262nn T n =⨯+⨯+⨯++- ,()()234125242327262n n n T n n +=⨯+⨯+⨯++-+- ,两式相减得()2311022262n n n T n +-=------ ()()()21112121062721412n n n n n -++-=-+-=-+-,所以()17214n n T n +=--,令()620n n c n =-≥,则6n ≤,令()620n n c n =-<,则6n >,故当6n ≤时,n n c c =,当7n ≥时,n n c c =-,所以当6n ≤时,()1127214n n n n S c c c S n +=+++==-- ,当7n ≥时,()()1267862n n nS c c c c c c S S =+++-+++=- ()()11228721472242n n n n ++⎡⎤=---=-+⎣⎦,综上所述,()()117214,672242,7n n n n n S n n ++⎧--≤⎪=⎨-+≥⎪⎩.21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)【答案】(1)(],1-∞(2)证明见解析【解析】【分析】(1)令()()x f x x ϕ=-,由题意可得函数()x ϕ在()0,∞+上单调递增,()0x ϕ'≥在()0,∞+上恒成立,分离参数,进而可得出答案;(2)要证()()00f x x >>,即证2e 1x a x +<,令()()2e 10x g x x x+=>,利用导数求出()min 6g x >即可得证.【小问1详解】对任意的210x x >>时,都有()()2121f x f x x x ->-,即对任意的210x x >>时,都有()()2211f x x f x x ->-,令()()x f x x ϕ=-,则函数()x ϕ在()0,∞+上单调递增,则()()12e 10xx f x a ϕ''=-=--≥在()0,∞+上恒成立,即2e 1x a ≤-在()0,∞+上恒成立,因为当0x >时,2e 11x ->,所以1a ≤,经检验符合题意,所以实数a 的取值范围为(],1-∞;【小问2详解】要证()()00f x x >>,即证2e 1x a x+<,令()()2e 10x g x x x +=>,则()22e 2e 1x x x g x x--'=,令()()2e 2e 10x x h x x x =-->,则()()2e 00xh x x x '=>>,所以函数()h x 在()0,∞+上单调递增,又()7671110,e 163h h ⎛⎫=-<=- ⎪⎝⎭,因为6ln 36 1.099 6.5947≈⨯=<,所以7ln 36>,所以76e 3>,所以7671e 1063h ⎛⎫=-> ⎪⎝⎭,故存在071,6x ⎛⎫∈ ⎪⎝⎭,使得()00002e 2e 10x x h x x =--=,即()00g x '=,当00x x <<时,()0g x '<,当0x x >时,()0g x '>,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()00min 02e 1x g x g x x +==,因为0002e 2e 10x x x --=,所以0012e 1x x =-,所以()00min 0001112e 111x x g x x x x +-+===-,因为071,6x ⎛⎫∈ ⎪⎝⎭,所以0161x >-,即()min 6g x >,又因为6a ≤,所以2e 1x a x+<,所以若6a ≤,()0f x >.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.已知双曲线C的渐近线方程为2y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.【答案】(1)2212x y -=(2)证明见解析【解析】【分析】(1)设双曲线的方程为()2202x y λλ-=≠,利用待定系数法求出λ即可得解;(2)分直线AB 的斜率是否为零两种情况讨论,根据MA MB ⊥,可得121211122y y x x ++⋅=---,双曲线方程可变形为()()22222222211x y x y =-=-+-+-,再由直线AB 的方程x my t =+可得()12112x m y t m ⎡⎤--+=⎣⎦--,代入变形后的双曲线方程,再利用韦达定理即可得出,t m 间的关系,进而可求出直线AB 所过的定点,即可得出结论.【小问1详解】设双曲线的方程为()2202x y λλ-=≠,因为点()2,1M -在C 上,所以412λ-=,解得1λ=,所以C 的方程为2212x y -=;【小问2详解】设()()1122,,,A x y B x y ,当直线AB 的斜率为0时,则()11,B x y -,因为点,A B 在C 上,所以221112x y -=,则221122x y =+,由MA MB ⊥,得0MA MB ⋅=,即()()()221111112,12,14410x y x y x y -+⋅--+=-+++=,()()2211422410y y -++++=,解得13y =或11y =-(舍去),故直线AB 的方程为3y =,当直线AB 的斜率不等于0时,设直线AB 的方程为x my t =+,当MA 的斜率不存在时,则MB 的斜率为0,此时直线MA 的方程2x =,直线MB 的方程为1y =-,联立22212x x y =⎧⎪⎨-=⎪⎩,解得1y =(1y =-舍去),联立22112y x y =-⎧⎪⎨-=⎪⎩,解得2x =-(2x =舍去),所以()()2,1,2,1A B --,则12AB k =,所以直线AB 的方程为()1122y x -=-,令3y =,则6x =,故直线AB 过点()6,3,同理可得当MB 的斜率不存在时,则MB 的斜率为0,此时直线AB 的方程为()1122y x -=-,直线AB 过点()6,3,当直线,MA MB 的斜率都存在且都不等于零时,因为MA MB ⊥,所以121211122y y x x ++⋅=---,由2212x y -=,得()()22222222211x y x y =-=-+-+-()()()()22242421412x x y y =-+-+-+++-,所以()()()()2224221410x x y y -+--+++=,由x my t =+,得()221x m y m t -+=+-+,则()212x m y m t --+=-+-,所以()12112x m y t m ⎡⎤--+=⎣⎦--,所以()()()()22124221212x x x m y y t m ⎡⎤-+---+-+⎣⎦--()()1412102y x m y t m ⎡⎤++--+=⎣⎦--,整理得()()()()2224424222110222t m m t m x x y y t m t m t m +---+-+-+-+=------即224214412022222t m y m y t m t m x t m x t m-++-++-⎛⎫-+⋅+= ⎪--------⎝⎭,所以()1212211221242222422t m y y t m t m t m x x t m t m+-+++---⋅===--+----+---所以63t m =-,所以直线AB 得方程为()6336x my m y m =+-=-+,所以直线AB 过定点()6,3,综上所述,直线AB 过定点()6,3Q ,因为MD AB ⊥,所以存在MQ 的中点()4,1N,使得12DN MQ ==.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。
浙江省温州市2023-2024学年高二上学期数学期末教学质量统一监测试卷(A卷)

则 x ,所以 x
,所以,圆柱的侧面积为 侧 x x
x
则当 x
ঢ x 时,圆柱的侧面积最大,此时 x
所以,当圆柱的侧面积最大时,圆柱与圆锥的高之比为ঢ.
x ঢ,
故答案为:B.
;
【分析】利用已知条件结合相似三角形对应边成比例和圆柱的侧面积公式,进而得出圆柱的侧面积关于圆柱底 面的半径的二次函数,再结合二次函数的图象求最值的方法,进而得出圆柱的侧面积最大时的圆柱的底面半径 与圆锥底面半径的关系式,进而得出当圆柱的侧面积最大时的圆柱与圆锥的高之比. 6.【答案】D
烑,则下列命题正确的是( )
A.若 为等差数列,则数列 为递增数列
B.若 为等比数列,则数列 为递增数列
C.若 为等差数列,则数列 为递增数列
D.若 为等比数列,则数列 为递增数列
12.已知在直三棱柱
ঢ ঢ ঢ中, ঢ x , x x ,
AB 上的动点(不含端点),点 M 为棱 BC 的中点,且 ঢ x x
故答案为:C.
【分析】利用已知条件结合平行四边形法则和中点的性质,再结合三角形法则,从而化简向量 熸 ঢ 熸 .
3.【答案】A 【解析】【解答】解:因为函数 f(x)满足
x ' sin cos ,则 ' x ' cos 熸 sin ,
所以 ' x ' cos 熸 sin x ঢ ' 熸 ,则 ' 的值为 .
【分析】利用已知条件结合直线的方程得出直线的斜率,再结合直线的斜率与直线的倾斜角的关系式和直线的
倾斜角的取值范围,进而得出直线的倾斜角. 2.【答案】C 【解析】【解答】解:在空间四边形 ABCD 中,点 M,G 分别是 BC 和 CD 的中点,则ঢ
2023-2024学年湖北省新高考联考协作体高二上学期期末考试数学试卷+答案解析

2023-2024学年湖北省新高考联考协作体高二上学期期末考试数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.抛物线的焦点坐标为()A.B.C.D.2.若等比数列的第2项和第6项分别为3和12,则的第4项为()A.4B.C.6D.3.两条平行直线与间的距离为()A. B.1C.D.4.假设,,且A 与B 相互独立,则()A.B.C.D.5.已知空间向量,则B 点到直线AC 的距离为()A. B.C.D.6.过内一点的2023条弦的弦长恰好可以构成一个公差为的等差数列,则公差d 的最大值为()A.B.C.D.7.已知椭圆,过右焦点F 作直线与椭圆C 交于A 、B 两点,以AB 为直径画圆,则该圆与直线的位置关系为()A.相交B.相切C.相离D.不确定8.如图,在空间直角坐标系中,正四棱柱的底面边长为4,高为2,O 为上底面中心,E ,F ,G 分别为棱AD 、AB 、的中点.若平面OEF 与平面OBG 的交线为l ,则l 的方向向量可以是()A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若数列的前n项和为,则下列命题正确的是()A.数列为等差数列B.数列为单调递增数列C.数列为单调递增数列D.数列为等差数列10.已知点和,过P点的两条直线分别与相切于A,B两点,则以下命题正确的是()A.B.C.P、A、Q、B均在圆上D.A,B所在直线方程为11.在棱长为2的正方体中,点P满足,、,则()A.当时,点P到平面的距离为B.当时,点P到平面的距离为C.当时,存在点P,使得D.当时,存在点P,使得平面PCD12.已知双曲线的左、右焦点分别为,,双曲线C上两点A,B关于坐标原点对称,点P为双曲线C右支上一动点,记直线PA,PB的斜率分别为,,若,则下列说法正确的是()A.B.若,则的面积为C.若,则的内切圆半径为D.以为直径的圆与圆相切三、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
2023-2024学年湖南省张家界市高二(上)期末数学试卷【答案版】
2023-2024学年湖南省张家界市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.35是数列3,5,7,9,…的()A.第16项B.第17项C.第18项D.第19项2.若直线经过两点,则直线AB的倾斜角为()A.30°B.45°C.60°D.120°3.抛物线y2=4x的焦点到直线x﹣y+1=0的距离等于()A.1B.C.D.44.已知向量,若与、共面,则实数λ=()A.﹣2B.﹣1C.1D.25.若直线x﹣y=2被圆(x﹣a)2+y2=4所截得的弦长为2,则实数a的值为()A.0或4B.0或3C.﹣2或6D.﹣1或6.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:若以“宫”为基本音,“宫”经过一次“损”,得到“徵”;“徵”经过一次“益”,得到“商”;依次损益交替变化()A.“徵、商、羽”的频率成等比数列B.“宫、徵、商”的频率成等比数列C.“商、羽、角”的频率成等比数列D.“宫、商、角”的频率成等比数列7.设F1,F2分别为椭圆与双曲线的公共焦点,∠F1MF2=60°,若椭圆的离心率,则双曲线C2的离心率e1的取值范围为()A.B.C.D.8.设a=ln2,b=1.09,c=e0.3,则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知直线l:,则()A.直线l过点B.直线l的斜率为C.直线l的倾斜角为120°D.直线l在y轴上的截距为110.数列{a n}的前n项和为S n,已知,则下列说法正确的是()A.a1=6B.数列{a n}是等差数列C.当n>4时,a n>0D.当n=3或4时,S n取得最大值11.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为A1B,B1C的中点,则()A.EF∥ACB.EF⊥平面B1BDD1C.异面直线EF与D1C所成角的大小为45°D.平面B1CD1到平面BA1D的距离等于12.已知双曲线的左右顶点为A1,A2,左右焦点为F1,F2,直线l与双曲线的左右两支分别交于P,Q两点,则()A.若,则△PF1F2的面积为B.直线l与双曲线的两条渐近线分别交于M,N两点,则|PM|=|NQ|C.若P A1的斜率的范围为[﹣8,﹣4],则P A2的斜率的范围为D.存在直线l的方程为2x﹣y﹣1=0,使得弦PQ的中点坐标为(1,1)三、填空题:本题共4小题,每小题5分,共20分。
高二数学理科B答案高二数学上学期期末考试试题集28课标A选修12高二数
卜人入州八九几市潮王学校二零二零—二零二壹质量检测试卷高二数学〔理科B 卷〕参考答案及评分HY考试用时120分钟,一共150分.本次考试允许使用函数计算器,不得互相借用.一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.请将所选答案标号填入下表:1.等差数列}{n a 中,a 3=7,a 9=19,那么a 5= 〔A 〕10〔B 〕11〔C 〕12〔D 〕13 2.数列}{n a 满足:n n n a a a +=++12,a 1=1,a 2=2,那么该数列前5项之和为〔A 〕11〔B 〕18〔C 〕19〔D 〕313.在ΔABC 中,a=5,B=30°,A=45°,那么b=〔A 〕225〔B 〕335〔C 〕265〔D 〕25 4.不等式0)2(>-x x 的解集是〔A 〕〔-∞,2〕〔B 〕〔0,2〕〔C 〕〔-∞,0〕〔D 〕〔-∞,0〕∪〔2,+∞〕 5.两正数a、b满足:1622=+b a,那么ab 的最大值是〔A 〕2〔B 〕4〔C 〕8〔D 〕166.q 是r 的必要不充分条件,s 是r 的充分且必要条件,那么s 是q 成立的〔A 〕必要不充分条件〔B 〕充要条件〔C 〕充分不必要条件〔D 〕既不充分也不必要条件7.双曲线1422=-y x 的一个焦点坐标是〔A 〕)0,5(-〔B 〕)5,0(〔C 〕)3,0(〔D 〕)0,3(-8.抛物线的顶点在原点,准线是x=4,它的HY 方程是〔A 〕x y 162-=〔B 〕y x 162-=〔C 〕x y 82-=〔D 〕y x 82=9.椭圆上116922=+y x 一动点P 到两焦点间隔之和为〔A 〕10〔B 〕8〔C 〕6〔D 〕不确定10.空间两点A 〔4,a ,-b 〕,B 〔a ,a ,2〕,那么向量AB =〔A 〕〔a-4,0,2+b 〕〔B 〕〔4-a ,0,-b-2〕 〔C 〕〔0,a-4,2+b 〕〔D 〕〔a-4,0,-b-2〕11.向量a =〔0,1,2〕,b =〔1,0,-1〕,那么数量积a •b= 〔A 〕〔1,1,1〕〔B 〕0〔C 〕-2〔D 〕〔0,0,-2〕 12.点M 在平面ABC 内,并且对空间任一点O ,1123OM xOA OB OC =++,那么x 的值是〔A 〕0〔B 〕1/2〔C 〕1/3〔D 〕1/6二、填空题:本大题一一共6小题,每一小题5分,一共30分.把答案填在题中横线上.13.在ΔABC 中,ab c b a-=+222,那么角C=120°(或者32π). 14.点P(x,y)满足:⎪⎩⎪⎨⎧≥≥≤+≥-0,020y x y x y x ,那么y x z +=21可获得的最大值为3/2.15.“x ∈R ,x 2-x ≥0.〞的否认是0,2<-∈∃x x R x .16.椭圆的两个焦点恰好将长轴三等分,那么椭圆的离心率是_1/3_.17.斜率为1的直线与抛物线x y =2只有一个公一共点,这条直线的方程是41+=x y . 〔其它形式如0144,041=+-=+-y x y x 等均给总分值是〕 18.在三棱锥P-ABC 中,三侧棱两两垂直,且PB=PC=2PA,PO 垂直于面ABC,O 是垂足,假设设=PA a =PB b =PC c ,请用a 、b 、c 表示0P :c b a616132++.三、解答题:本大题一一共5小题,一共60分.解容许写出文字说明,证明过程或者演算步骤.19.(本小题总分值是10分)在下面是电路图〔1〕、〔2〕中,分别简述闭合开关A 是 灯泡B 亮的什么条件?解:在图〔1〕中,闭合开关A是灯泡B亮的充分但不必要条件.闭但灯泡B亮时,开关A不一定闭合〔只要此时开关C闭合即可〕.〔5分〕 在图〔2〕中,闭合开关A是灯泡B亮的必要但不充分条件.〔7分〕当开并A闭合时,灯泡B不一定亮〔假设此时开关C没有闭合的话〕,但灯泡B亮时,开关A一定闭合〔只要此时开关C闭合即可〕.〔10分〕 (注:假设只说出一半,那么按一半计分.没有理由,扣理由分) 20.(本小题总分值是12分)三个数成等比数列,且它们的和为21,积是64.求这三个数. 解:设这三个数依次为a/q,a,aq(2分)根据题意,有a/q+a+aq=21(4分)和64=⋅⋅aq a qa,(6分) 解得:a=4,(8分)q=4或者1/4(10分)图(1)图(2)这三个数依次为1,4,16或者16,4,1(12分)21.(本小题总分值是12分)求与椭圆1244922=+y x 有公一共焦点,且一条渐近线为x y 34=的双曲线的方程.解:由椭圆HY 方程1244922=+y x 可得的两者公一共焦点为(-5,0)和(5,0),(2分)设双曲线的方程为)0,0(12222>>=-b a by a x ,(4分)其渐近线为x a by ±=,(6分)现双曲线的一条渐近线为x y 34=,得34=a b ,(7分)又双曲线中2225=+b a ,(8分) 解得4,3==b a ,(10分)∴双曲线的方程为1432222=-y x (12分)22.(本小题总分值是12分)点A 、B 的坐标分别是A 〔0,-1〕,B 〔0,1〕,直线AM 、BM 相交于点M ,且它们的斜率之积是2,求点M 的轨迹方程,并说明曲线的类型. 解:设M(x,y),那么),0(0)1(),0(01≠---=≠--=x x y k x x y k AM BM(4分),t k k AM BM -=⋅(5分) )0(0)1(01≠-=---⋅--x t x y x y ,(7分)整理得)0(1122≠=+x tx y (10分,少了限制扣1分) (1) 当t ∈(0,1)时,M 的轨迹为椭圆(除去A 和B 两点);(12分)(2) 当t=1时,M 的轨迹为圆(除去A 和B 两点).(14分,多了两点扣2分))23.(本小题总分值是14分) 抛物线方程为212xy =,直线l 过其焦点,交抛物线于A 、B 两点,|AB|=16.1〕求抛物线的焦点坐标和准线方程;2〕求A、B中点的纵坐标. 解:1〕由抛物线方程为212xy =,比照HY 方程)0(22>=p py x 可得2P=12,P=6得焦点F 〔0,3〕,准线方程为:3-=y .(4分)2〕〔解法一〕设直线l 的斜率为k,设),(),,(2211y x B y x A ,A 、B 的中点M ),(00y x .直线的方程:y=kx+3,联立方程组得:(5分)⎩⎨⎧=+=yx kx y 1232,(7分)消去y,整理得:036122=--kx x (9分) 方程中,0144144)36(4)12(22>+=---=∆k k ,有两个不同的根.由根与系数的关系得:36,122121-==+x x k x x (10分)由|AB|=16得:16)4))((1(||21212=-++=x x x x k AB ,(11分)代入,整理得:916)1(22=+k,得312=k .(12分) M ),(00y x 在直线l 上,有:300+=kx y ,36322210+=++⋅=k x x k y 〔13分〕∴50=y ,即A、B中点的纵坐标为5.〔14分〕 〔解法二〕:设直线l 的斜率为k,设),(),,(2211y x B y x A ,A 、B 的中点M ),(00y x ,过A、B分别作准线的垂线,垂足分别为P、Q,焦点F 在弦AB 上,〔5分〕 |FA|+|FB|=|AB|=16,〔6分〕由抛物线定义,|AP|=|AF|,|BQ|=|BF|,〔8分〕 而|AP|=3211+=+y p y ,〔9分〕|BP|=3222+=+y py ,〔10分〕 163321=+++y y ,1021=+y y ,〔12分〕52210=+=y y y 〔13分〕即A、B中点的纵坐标为5.〔14分〕以上答案和评分HY 仅供参考。
中等职业学校高二上学期期末数学测试卷及答案
中等职业学校公共基础课水平测试数学测试试卷(满分:100分;时间:90分钟)1.用列举法表示不等式+27x≤的所有正奇数的解集是{1,3}. ()2.设全集U={2,1,16,1,0}-,A={1,2,16}-,则={1,0}UAð. ()3.不等式||x≤1的解集为(1,1)-. ()4.区间(5,0]-可用集合表示为{|50}x x-<<. ()5.若53,x+<-则8x>-. ()6.已知()f x=(4)3f=. ()7.3()1f x x=-在R上是减函数. ()8.函数21()+1f xx=的定义域为R. ()9.2logy x=的图像过点(1,0). ( )10.把对数式ln3x=写成指数式是3x e=. ()11.22231log+log384=. ()12.函数xy=是指数函数. ()13.指数函数都是非奇非偶函数. ()14.=303π︒. ()15.30060︒︒与是终边相同的角. ()16.96-︒是第二象限角. ()17.角α的终边与单位圆的交点坐标为34(,)55-,则角α的余弦值为35-. ()18.已知1cos2α=-,且α是第二象限角,则tanα的值是. ()19.cos1080︒>. ()20.sin0︒的值等于1. ()21.当sinα时,=45α︒. ()22.sin360︒的值等于1. ()23.1是等比数列{3}n的项. ()24.数列1,2,3,4----与数列4,3,2,1----是相同的数列. ()25.数列1,1,1,1,1,,---的通项公式为1(1)nna+=-. ()26.等差数列1,2,3,4,的前7项和为28. ()27.等比数列1,3,9,27--,的前5项和为60. ()28.(0,2),(0,3)a b==-,a与b是共线向量. ()29.+0AB BD DA+=. ()30.直线3y x=+与直线23y x=+的交点坐标为(0,3). ()31.直线5y x=-+与直线+3=0x y-的位置关系为平行. ()32.直线30x y--=的斜截式方程是+3y x=-. ()一、判断题(每题1分,共40 分)学校______________________姓名:______________学籍号:_________________年级:______________专业:_____________…….…………………………….密…………………………………封…………………………………线……………………………………第1 页共8页第2 页共8页第4 页共8页33.斜率不存在为的直线的倾斜角为90︒. ()34.平行于同一条直线的两直线互相平行. ()35.垂直于同一个平面的两直线平行. ()36.圆柱的母线平行且相等,且等于圆柱的高. ()37.底面是正方形的四棱锥一定是正四棱锥. ()38.从1,2,3,45,这五个数中任取一个,得到奇数的概率是35. ()39.由12,3,4,可组成24个可以重复数字的四位数. ()40.抛掷两次骰子,则两次都出现偶数点的概率是14. ()1.设{}{}2,1,1,1,1,2A B=-=-,则A B=()A. {}1,1,2- B. {}1- C. {}1 D. {}22.指出条件p是结论q的什么条件?条件:20p x+=,结论:(2)(5)0q x x++=.()A. 必要条件B. 充分条件C. 充分且必要条件D. 不确定3.不等式10x->的解集为()A. []1,1- B. (1,1)- C. (,1)(1,)-∞-+∞ D. (,1][1,)-∞-+∞4.不等式(2)(3)0x x--<的解集为()A. (,2)(3,)-∞-+∞ B. (,2)(3,)-∞+∞ C. (2,3)- D. (2,3)5.已知()tanf x x=,则()4fπ的值为()A.3B.2C. 1D.6.函数()f x=的定义域为()A. (,1]-∞ B. (,0]-∞ C. (,0)(0,)-∞+∞ D. R7.函数()f x x=是().A.奇函数B. 偶函数C. 非奇非偶函数D. 既奇又偶函数8.函数()43f x x=+在R上是(.)A. 减函数B. 增函数C. 先增后减D. 先减后增9.函数1yx=的图像不过()A. 原点B. (1,1)C. (1,1)-- D. 无法确定10.如果21log log32a a>,则a的取值范围是()A. )1,0(B. )0,(-∞ C. ),0(+∞ D. ),1(+∞11.把指数式124x⎛⎫=⎪⎝⎭化为对数式为()A.1log24x= B.21log4x= C.14log2x= D.14log2x=12.函数3y x=的图像关于()对称. ()A. x轴B. y轴C. (0,0)D. 直线y x=13.把指数幂23a化成根式的形式是()A. aB.C.D.14.计算63a a÷=()A. 9aB. 6aC. 3aD. 2a二、单选题:(每题1分,共40分)专业:_____________………………………第3 页共8页第5 页 共8页 第6 页 共8页15.下列函数属于指数函数的是 ( )A. 0.3xy =- B. 0.3xy = C. 0.3y x = D. 22y x -=16.53π是 ( ) A. 第一象限角 B.第二象限角 C.第三象限角 D. 第四象限角17. 在0~360之间,与60-终边相同的角是 ( ) A. 660 B.320 C.390 D. 30018. 1的弧度数是 ( ) A. 1 B.2π C. 3πD. 180π19.函数2cos21y x =-+的最小值是 ( ) A. 2 B. 2- C. 1- D. 320. 已知角α的终边经过点(3,0),则角α的正弦值为 ( ) A.31B. 0C. 3D. 1 21. tan(315)-= ( )A. 3B. 1C. 1-D. 2122. 108的各三角函数值的符号为 ( ) A. sin 0α> B. 0cos >α C. 0tan <α D. 以上都不对23. sin 270等于 ( ) A. 0 B. 1- C. 1 D.1224. 数列 ,8,6,4,2的第8项是 ( ) A. 16 B. 17 C. 18 D. 1925. 24是数列 ,15,12,9,6,3的第几项? ( )A. 8B. 9C. 10D. 11 26. 等差数列2,6,10,14,的通项公式是 ( )A. 42n a n =+B. 46n a n =-C. 42n a n =-D. 24n a n =- 27. 等比数列1111,,,,392781的通项公式是 ( )A. n n a 31=B. n n a 31-=C. 21+-=n a nD. na n +-=3128. (1,2),(3,1),a b =-=-则a b ⋅= ( )A. 5B. 5-C. 1-D. 129. 下列等式错误的是 ( ) A. a b b a +=+ B. 00a a +=+ C. ()0a a +-= D. ()=0+-a a 30. 点(2,1)P -到直线230x y -=的距离为 ( )A.B.C.D. 31. 关于直线1x =与直线7y =说法正确的是 ( ) A. 垂直 B. 平行 C. 重合 D. 无法确定32. 直线1y =与直线1=x 的交点坐标为 ( ) A. )1,1(- B. )1,2( C. )2,1( D. (1,1)33. 若点(1,2)A 与点B 关于点(2,5)P 对称,则点B 的坐标为 ( ) A. (3,8) B. (1,8)- C. (1,1)- D. (0,1)-34. 圆224x y +=的圆心为 ( ) A. (1,0) B. (0,0) C. (0,1) D. (0,2)35. 方程2226100x y x y ++-+=表示 ( )第7 页 共8页 第8 页 共8页A.圆B. 不表示任何图形C. 点D. 无法确定 36. 平面的斜线与平面所成角的范围是( )A. (0,90)B. (0,90]C. (0,180)D. ]90,0[37.过两条平行直线中的一条,可做多少个平面平行于另一条直线? ( ) A. 一个 B. 两个 C. 三个 D. 无数个38. 某学校高一年级共有7个班,高二年级6个班,从中选一个班级担任学校星期一早晨升旗任务,共有( )种安排方法.A. 14B. 13C. 12D. 4239. 在随机试验中,对于不可能事件φ,则()P φ= ( ) A. 等于1 B. 等于0 C. 大于0 D. 大于等于0且小于等于1 40. 抛掷一颗骰子,“出现偶数点”的事件是 ( ) A. 必然事件 B. 不可能事件 C. 基本事件 D. 随机事件1.表示所有大于7的整数组成的集合是 ( ) A.{}Z x x x ∈>,7 B.{} ,10,9,8 C.{}Q x x x ∈>,7 D.{}7>x 2.已知集合{}{}60,52≤≤=<<-=x x B x x A ,则=⋂B A ( ) A.[0,5) B.(2,6]- C. {}05x x ≤< D. {}26x x -<≤ 3. 下列函数定义域为(),0-∞的是 ( ) A.y =B.2log ()y x =-C. y =D. y =4.下列对数值大于零的是 ( ) A.ln e B. ln 5 C. 1ln 2D .ln 0.6 5. 已知4sin 5∂=,则∂tan 的值可能是 ( ) A .35- B. 35 C.34 D.34-6.以下哪些数是数列{(1)n +- 的项 ( )A.1B.2C.3D.47.5a →=,且(,4)a k →=- ,则=k ( ) A.3 B. -3 C.4 D.-48.圆心在原点,的圆的标准方程错误的是 ( ) A .224x y += B.224x y -= C. 222x y += D. 222x y -= 9.两个平面可以把空间分成 ( )A.两部分B.三部分C.四部分D.五部分10.从甲、乙、丙、丁四人中挑选1人去参加职业技能大赛。
南通市2023-2024学年高二上学期期末数学考试(原卷版)
(2)若 MF , MP , NF 成等差数列,求 NP . 20. 如图,在四棱锥 P ABCD 中,PA 平面 ABCD, AB AD, AD BC ,AP AB AD 1, BC 2.
(1)求二面角 B PD C 的正弦值;
(2)在棱 PC 上确定一点 E ,使异面直线 PD 与 BE 所成角的大小为 60 ,并求此时点 E 到平面 PBD 的距
7. 已知平行六面体 ABCD A1B1C1D1 中, AA1 3, BD 4, AD1 DC AB1 BC 5 ,则
cos AA1, BD ( )
5
A.
12
B. 5 12
4
C.
15
D. 4 15
.8.
已知
F
是双曲线
C
:
x2 a2
y2 b2
1(a 0,b 0) 的右焦点,直线 y
16. 已知圆 C : (x 4)2 y2 5, A, B 是 C 上的两个动点,且 AB 2 .设 A x1, y1 , B x2, y2 ,则
x1 y1 2 x2 y2 2 的最大值为__________. 四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
9. 下列等式中,正确的是( )
A A52 A35
B. C52 C35
C. C52 C35 C36 10. 已知曲线 E : x2 y2 xy 4 ,则( )
D. 2A22 3A33 A44 A22
A. E 关于原点对称
B. E 关于 x 轴对称
C. E 关于直线 y x 对称
55
1, , , 1. 数列 3 2
的通项公式可能是 an (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州市高二上学期期末数学试卷A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) (2019高二上·水富期中) “ ”是“ ”的()
A . 充分非必要条件
B . 必要非充分条件
C . 充要条件
D . 既不充分也不必要条件
2. (2分) (2018高二上·南阳月考) 命题“ ,则或”的逆否命题为()
A . 若,则且
B . 若,则或
C . 若且,则
D . 若或,则
3. (2分)若b<a<0,则下列不等式中正确的是()
A .
B . |a|>|b|
C .
D . a+b>ab
4. (2分)若直线l的方向向量为=(1,1,2),平面α的法向量为=(﹣3,3,﹣6),则()
A . l∥α
B . l⊥α
C . l⊂α
D . l与α与斜交
5. (2分)“”是“”的()
A . 充分而不必要条件
B . 必要而不充分条件
C . 充分必要条件
D . 既不充分也不必要条件
6. (2分) (2016高二上·仙桃期中) 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()
A .
B .
C .
D .
7. (2分)若m、n为两条不同的直线,α、β为两个不同的平面,则以下命题正确的是()
A . 若m∥α,m⊂β,α∩β=n,则m∥n
B . 若m∥α,n⊂α,则m∥n
C . 若m∥α,n∥α,则m∥n
D . 若α∩β=m,m⊥n,则n⊥α
8. (2分)如图,在长方体中,AB=BC=2,,则异面直线与所成的角为()
A .
B .
C .
D .
9. (2分) (2019高一上·琼海期中) 若 ,那么的最小值是()
A . 64
B . 128
C .
D .
10. (2分) (2016高二上·临川期中) 如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为30°和45°,则 =()
A .
B .
C .
D .
二、填空题 (共8题;共8分)
11. (1分) (2018高二上·海口期中) 已知A(1,2,0),B(0,1,-1),P是x轴上的动点,当取最小值时,点P的坐标为________.
12. (1分) (2016高一下·武邑开学考) 一圆锥的母线长为20,母线与轴的夹角为30°,则圆锥的表面积为________.
13. (1分)已知含有三个元素的集合{a,,1}={a2 , a+b,0},则a2004+b2005=________.
14. (1分)如图,在正方体中,用,,作为基向量,则 =________.
15. (1分)(2017·芜湖模拟) 如图,网格纸上的小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体外接球的体积为________.
16. (1分) (2016高二上·温州期中) 各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若 =1,则| |=________.
17. (1分) (2018高二下·葫芦岛期末) 设点在曲线上,点在曲线
上,则的最小值为________.
18. (1分)(2018·河北模拟) 如图,已知矩形 ,为边上的点,现将沿
翻折至,使得点在平面上的投影在上,且直线与平面所成角为30°,则线段的长为________.
三、解答题 (共4题;共35分)
19. (5分)(2016·福建模拟) 已知函数f(x)=|x﹣a|+m|x+a|.
(Ⅰ)当m=a=﹣1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.
20. (10分)(2018·呼和浩特模拟) 已知函数 .
(1)若不等式恒成立,求实数的取值范围;
(2)设,且,求证: .
21. (10分) (2015高三上·保定期末) 在三棱锥P﹣ABC中,AB⊥BC,平面PAB⊥平面ABC,BC=2AB=1,PC=
,∠PBA= .
(1)求证:BC⊥PB;
(2)求二面角A﹣PC﹣B的大小.
22. (10分) (2016高二上·包头期中) 如图,在三棱锥P﹣ABC中,△ABC是等边三角形,D是AC的中点,PA=PC,二面角P﹣AC﹣B的大小为60°;
(1)求证:平面PBD⊥平面PAC;
(2)求AB与平面PAC所成角的正弦值.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共4题;共35分)
19-1、
20-1、
20-2、
21-1、
22-1、
22-2、
第11 页共11 页。