练习题解答:第五章集中趋势与离散趋势
数据的集中趋势与离散程度中考考点分析.doc

身高(cm ) 180186 188 192 208则该校篮球班21名同学少高的众数和屮位数分别是(单位:cm)(186, 186 186, 187 186, 188208, 188180, 180, 178180, 178, 178品牌甲销信量(瓶)12建议学校商店进货数量最多的品牌是(A )屮品牌 (B )乙品牌7.我市某一周的最高气温统计如下表:最高气温(°C ) 25 26 27天数112贝U 这组数据的屮位数与众数分别是(乙丙 丁321343( )(C )丙品牌(D ) 丁品牌283A. 27, 28B. 27.5, 28C. 28, 27D. 26.5, 27 数据的集中趋势与离散程度中考考点分析3.某校篮球班21名同学的身高如下表:人数(个)44•体育课上测量立定跳远,其中_组六个人的成绩(单位:米)分别是:1.0, 1.3, 2. 2, 2. 0,1. 8, 1.6,则这组数据的屮位数和极并分别绘(A. 2. 1, 0. 6B. 1. 6, 1. 2C. 1. & 1.2D. 1.7, 1.25•今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单 位:个/分钟).176 180 184 180 170 176172 164 186 180该组数据的众数、屮位数、平均数分别为()C. 180, 178, 176.8D. 178, 180, 176.86.学校商店在一段时间内销伟了四种饮料共100瓶,各种饮料的销伟量如下表:集中趋势 1.数据b 2,3, 4, 5的平均数是A. 1B. 2C. 3D. 42.某车间5名工人LI 加丁零件数分别为6,10, 4, 5, 4, 则这组数据的屮位数是(A.4B. 5C.6D. 10A.屮位数B.众数C.平均数D.极差9.多多班长统计去年1〜8月“书香校园”10•图(四)为某班甲、乙两组模拟考成绩的盒状图。
定量资料统计描述——集中趋势与离散程度

度量单位不同资料之间离散度的比较; 均数相差悬殊的资料之间离散度的比较。
【例4-11】
某研究收集了100例7岁男孩的身高和体重的资料,身高均数为 123.10cm,标准差为4.71cm;体重均数为22.92kg,标准差为 2.26kg,比较这100例7岁男孩的身高和体重的变异度。
身高 CV
4.71 100 % 3.83 %
M X n1
当n为奇数时,
() 2
, 位置居中的观察值
当n为偶数时,
M
(X n ()
X n )/ ( 1)
2 ,计算出位次居中的两个观察值的均数
2
2
例:7名病人患某病的潜伏期分别为2,3,4,5,6,9,16天,求其中位数。
本例n=7,为奇数
M X 71 X 4 5(天 ) () 2
例:8名患者食物中毒的潜伏期分别为1,2,2,3,5,8,15,24小时,求其中位数。
本例n=8,为偶数
M
1
2
X 8
() 2
X 8
( 1) 2
1 2
X
4
X5
1 3 5 4(小时)
2
(二) 中位数的应用
中位数可用于各种分布的资料,在正态分布资料中,中位数等于 均数,在对数正态分布资料中,中位数等于几何均数。
中位数不受极端值的影响,因此,实际工作中主要用于不对称分 布类型的资料、两端无确切值(>100)或分布不明确的资料。
患者编号:1 2 3 4 5 6 7 8 9 ... 117 118 119 120 住院天数:1 2 2 2 3 3 4 4 5 ... 40 40 42 45
n=120,120*5%=6,为整数:
P5
集中趋势和离散趋势

Variance and Standard Deviation
返回总目录
集中趋势的测度
集中趋势是对频数分布资料的集中状况和平均水平的综 合测度。而离散趋势是对频数分布资料的差异程度和离 散程度的测度,用来衡量集中趋势所测度的代表性,或 者反映变量值的稳定性和均匀性。
常用来表达数列集中趋势的测度有算术平均数、调和平均 数、几何平均数、中位数和众数。这些测度在统计学中也 称为平均指标或平均数,可以用来反映标志值的典型水平 和标志值分布的中心位置或集中趋势。
几何平均数
(概念要点)
1. 2. 3. 4. 5. 集中趋势的测度值之一 N 个变量值乘积的 N 次方根 适用于特殊的数据 主要用于计算平均发展速度 计算公式为
GM N X 1 X 2 X N N X i
i 1 N
6. 可看作是均值的一种变形
1 log GM (log X 1 log X 2 log X N ) N
则
XH
m1 m2 m3 mn mn m1 m2 m3 X1 X 2 X 3 Xn
m
i 1 n
n
i
mi X i 1 i
调和平均数
(概念要点)
1. 集中趋势的测度值之一 2. 均值的另一种表现形式 3. 易受极端值的影响 4. 用于定比数据 5. 不能用于定类数据和定序数据 6. 计算公式为L源自fmfSm1
i
——中位数所在组的组距
也可以利用中位数所在组的上限来测算中位数,即中位数的 上限公式为 :
Me U
f
2
Sm 1 fm
i
式中: U
Sm1
——中位数所在组的上限 ——大于中位数组的各组次数之和
专题06数据的集中趋势和离散程度(经典基础题5种题型+优选提升题)(原卷版)

专题06数据的集中趋势和离散程度算数平均数1.(2022秋•鼓楼区期中)若一组数据x1,x2,x3,x4,x5的平均数是a,另一组数据x1+2,x2+3,x3﹣5,x4﹣2,x5+1的平均数是b,则a b(填写“>”、“<”或“=”).2.(2022秋•滨海县期中)若数据a1、a2、a3的平均数是6,则数据2a1、2a2、2a3的平均数是.3.(2022秋•宿豫区期中)一组数据6,8,10,x的平均数是8,则x的值是.加权平均数4.(2022秋•建邺区期中)某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分5.(2022秋•铜山区期中)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁,则这个班级学生的平均年龄为()A.14岁B.14.5岁C.13.5岁D.15岁6.(2022秋•东台市期中)小丽参加了某电视台的招聘考试,她在采访写作、计算机操作、创意设计这三种测试中的成绩分别是86分、75分、90分,如果这三种成绩按5:2:3计算,那么小丽的最终得分为分.7.(2022秋•海陵区校级期中)小红参加学校举办的“我爱我的祖国”主题演讲比赛,她的演讲稿、语言表达、形象风度得分分别为85分,70分,80分,若依次按照40%,30%,30%的百分比确定成绩,则她的平均成绩是分.8.(2022秋•滨海县期中)今年是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为80分、90分、85分、85分,则她的最后得分是分.9.(2022秋•涟水县期中)某校举行广播体操比赛,评分项目包括服装统一度、进退场秩序、动作规范整齐度这三项,每项满分10分,总成绩按以上三项得分2:3:5的比例计算,总成绩满分10分.已知八(1)班在比赛中三项得分依次为10分、8分、9分,则八(1)班这次比赛的总成绩为分.10.(2022秋•盐都区期中)浩浩上学期平时成绩为95分,期中成绩为90分,期末成绩为96分,若平时、期中、期末的成绩按2:3:5计算,计算结果作为学期成绩,则小明上学期学期成绩为分.中位数11.(2022秋•仪征市期中)一组数据分别为:2、4、5、1、9,则这组数据的中位数是()A.3B.1C.4D.512.(2022秋•涟水县期中)有一组数据:30,40,34,36,37.这组数据的中位数是()A.34B.40C.37D.3613.(2022秋•东台市期中)现有一组数据2,7,9,5,8,则这组数据的中位数是()A.9B.7C.8D.514.(2022秋•铜山区期中)已知一组数据:a,5,4,7,6的平均数为5,则这组数据的中位数是.15.(2022秋•高邮市期中)若一组数据6,8,10,x的中位数与平均数相等,则符合条件的x的值有个.众数16.(2022秋•宿豫区期中)一组数据5,6,6,6,8,9,12,12的众数是()A.6B.7C.8D.1217.(2022秋•太仓市期中)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm)分别是:23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,2418.(2022秋•铜山区期中)数据1、5、6、6、5、6的众数是.19.(2022秋•泰兴市期中)某校九年级学生在“学习二十大”的党史知识竞赛活动中,随机抽取50名学生的成绩如表:答对数(题)6789人数52510a(1)填空:a=;(2)50名学生的“答对数”的众数是题,中位数是题;(3)若答对8题(含8题)以上被评为优秀“答题能手”,试估计全年级800名学生中有多少是优秀“答题能手”?20.(2022秋•新吴区期中)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.(2022秋•仪征市期中)某校为了提升九年级学生的身体素质,释放学业压力,锻炼意志,激发进取精神,开展“奔跑吧,你最棒”活动,每天利用大课间让学生在操场上伴随着音乐进行800米跑步.为了解学生跑步后身体状况,随机抽取部分学生测量跑步后1min的脉搏次数,其中脉搏次数x满足140≤x <150的结果如下(单位:次):149 148 147 146 146 144 144 143 141 149 144根据以上信息回答下列问题:(1)填写表格:脉搏次数x(次/分)130≤x<140140≤x<150150≤x<160160≤x<170频数5112113频率0.10.420.26(2)脉搏次数x满足140≤x<150的这组数据,众数是;(3)根据运动后正常脉搏公式可知:九年级学生800米跑步后1分钟脉搏次数130≤x<160都属于身体素质较好的情况,如果该校九年级有300名学生,那么身体素质较好的学生大约有多少人?22.(2022秋•盐都区期中)近日,“复旦学霸图书馆”新闻引发网友热议,其中,“风雨无阻爱学习”的潘同学一年时间图书馆打卡301次,更是成为众多学子膜拜的对象.某大学图书馆为了更好服务学子,对:时间周一周二周三周四周五周六周日人数65055071042065023203100(1)该周到馆人数的平均数为人,众数为人,中位数为人;(2)选择合适的数据,估算该校一个月的到馆人数(一个月按30天计).23.(2022秋•姜堰区期中)2022年10月1日,中国女篮在世界杯比赛中表现不俗,获得本届女篮世界杯亚军,追平了世界杯历史最好战绩.她们的拼劲儿以及永不服输的女篮精神,值得我们学习.如表是小组赛的部分统计数据.2022年女篮世界杯小组赛部分统计数据.国家场均得分(分)场均篮板(个)场均助攻(次)场均失误(次)场均投篮命中率(%)场均罚球命中率(%)美国107.246.628.410.655.180.6中国88.846.628.212.051.375.9澳大利亚78.045.821.414.241.376.9比利时72.839.622.815.043.474.3加拿大71.244.214.413.639.874.6韩国69.229.017.013.238.978.1(1)如表中六国的“场均得分”的平均数为分;(2)“场均篮板”这组数据的中位数是个,众数是个;(3)请结合表中数据,从两个不同的角度简要评价中国女篮在本届世界杯中的表现.方差24.(2022秋•高邮市期中)我校在科技文化节活动中,8位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的6个评分与原始的8个评分相比一定不发生变化的是()A.平均数B.中位数C.方差D.众数25.(2022秋•盐都区期中)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为9.0环,方差分别为s甲2=0.63,s乙2=0.51,s丙2=0.42,s丁2=0.48,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁26.(2022秋•建邺区期中)2022年国庆长假期间七天的气温如图所示,这七天最高气温的方差为,最低气温的方差为S,则S S(填“>”、“<”或“=”).27.(2022秋•高港区期中)乒乓球的标准直径为40mm,质监部门分别抽取了A、B两厂生产的乒乓球各10只,对其直径进行检测,将所得的数据绘制如图.则抽取的A、B两厂生产的乒乓球直径的方差大小关系是:(填“>”或“<”或“=”).28.(2022秋•涟水县期中)“杂交水稻之父”袁隆平为提高水稻的产量贡献了自己的一生.某研究员随机从甲、乙两块试验田中各抽取100株杂交水稻苗测试高度,计算平均数和方差的结果为=12,=12,S=3.2,S=4.6,则杂交水稻长势比较整齐的是.29.(2022秋•仪征市期中)已知一组数据16,17,18,19,20,则这组数据的方差是.30.(2022秋•沭阳县期中)甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是=0.6,=0.8,则运动员的成绩比较稳定.31.(2022秋•涟水县期中)为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.分析数据:平均数中位数众数方差七年级89m9039八年级n90p q根据以上信息回答下列问题:(1)请直接写出表格中m,n,p的值;(2)通过计算求出q的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;32.(2022秋•天宁区校级期中)九7九8班组织了一次经典朗读比赛,两班各10人的比赛成绩如表(10分制):九7789710109101010九810879*********(1)九7班成绩的平均数是分,中位数是分.(2)计算九8班的平均成绩和方差.(3)已知九7班成绩的方差是1.4分,则成绩较为整齐的是班.33.(2022秋•建湖县期中)为让全校学生牢固树立爱国爱党的崇高信念,某校近期开展了形式多样的党史学习教育活动.在党史知识竞赛中,八、九年级各有300名学生参加,现随机抽取两个年级各20名学生的成绩进行整理分析,得到如表信息:a.表1九年级20名学生的成绩(百分制)统计表8280979194727191857094789275979291928398b.表2九年级抽取的20名学生成绩的平均数、中位数、方差统计表年级平均数中位数方差九年级86a86.3 c.随机抽取八年级20名学生的成绩的中位数为88,方差为83.2,且八、九两个年级抽取的这40名学生成绩的平均数是84.5.请根据以上信息,回答下列问题:(1)在表2中,a的值等于;(2)求八年级这20名学生成绩的平均数;(3)你认为哪个年级的成绩较好?试从两个不同的角度说明推断的合理性.34.(2022秋•苏州期中)“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:数量/只平均每只蟹的质量/g第1次试4166捕4167第2次试捕第3次试6168捕6170第4次试捕(1)四次试捕中平均每只蟹的质量为g;(2)若蟹苗的成活率为75%,试估计蟹塘中蟹的总质量为kg;(3)若第3次试捕的蟹的质量(单位:g)分别为:166,170,172,a,169,167.①a=;②求第3次试捕所得蟹的质量数据的方差.35.(2022秋•高邮市期中)甲、乙两班各选10名学生参加电脑汉字录入比赛,将参赛学生每分钟录入汉字的个数如图所示:132133134135136137录入汉字/个甲班参赛学101521生/人014122乙班参赛学生/人(1)根据以上信息,完成下面表格:平均数中位数众数甲班135135乙班135134.5(2)已知甲班的方差为1.6,哪一个班参赛选手电脑汉字录入的成绩稳定?36.(2022秋•东台市期中)为了发展体育运动,培养学生的综合能力,某学校成立了足球队、篮球队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:射击次序(次)一二三四五六七八九十甲的成绩(环)8979867a108乙的成绩(环)679791087710(1)经计算甲和乙的平均成绩都是8环,请求出表中的a=;(2)甲射击成绩的中位数和乙射击成绩的众数各是多少?(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?37.(2022秋•建邺区期中)体育教师要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的五次选拔赛中,他们的成绩如表(单位:cm):甲585596609610595乙580603613585624(1)已知甲运动员的平均成绩是599cm,求乙运动员的平均成绩;(2)从两个不同的角度评价这两名运动员的跳远成绩.一.填空题(共4小题)1.(2022秋•玄武区期中)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.2.(2022秋•阜宁县期中)在方差计算公式S2=[++…+]中,数20表示这组数据的.3.(2022秋•栾城区期中)某市初中毕业生进行了一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取4000个数据,统计如表:数据x70≤x≤7980≤x≤8990≤x≤99个数80020001200平均数788592请根据表格中的信息,估计这4万个数据的平均数约为.4.(2022秋•泊头市期中)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.二.解答题(共13小题)5.(2022秋•海陵区校级期中)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8c (1)a=,b=,c=.(1)填空:(填“甲”或“乙”).从中位数的角度来比较,成绩较好的是;从众数的角度来比较,成绩较好的是;成绩相对较稳定的是.(3)从甲、乙两名队员中选一名队员参加比赛,选谁更合适,为什么?6.(2022秋•东台市期中)为了从甲、乙两位同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两位同学6次选拔赛的成绩,分别绘制了如图统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90①93乙②87.585(2)分别求出甲、乙两位同学6次成绩的方差.(3)你认为选择哪一位同学参加知识竞赛比较好?请说明理由.7.(2022秋•锡山区期中)某校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为,图1中m的值是.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.8.(2022秋•仪征市期中)某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg、20元/kg、27元/kg.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.9.(2022秋•沭阳县期中)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.10.(2022秋•晋州市期中)甲、乙两名队员参加射击选拔赛,射击成绩见统计图:根据以上信息,整理分析数据如下:队员平均数(环)中位数(环)众数(环)方差(环2)甲7.9b c 4.09乙a77d(1)直接写出表格中a、b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.11.(2022秋•沙坪坝区校级期中)我校在七、八年级学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:98,81,98,85,98,97,91,100,88,84.八年级10名学生的竞赛成绩在C组中的数据是93,90,94,93.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数9292中位数94b众数c93根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到90分及以上的学生共有多少名?12.(2022秋•泊头市期中)教育部将劳动教育纳入人才培养全过程,为积极落实国家政策,某校开设了丰富的劳动教育课程.某日,学生处对学校菜圃耕作情况进行了一次评分.从七、八年级各随机抽取20块菜圃,对这部分菜圃的评分进行整理和分析(菜圃评分均为整数,满分为10分,9分及以上为“五星菜圃”).相关数据统计、整理如下:抽取七年级菜圃的评分(单位:分):6,6,7,6,6,7,9,7,9,7,9,9,7,9,9,10,9,9,9,10.抽取八年级菜圃的评分(单位:分):8,8,7,7,9,9,7,7,7,9,9,7,7,7,8,8,8,9,9,10.七八年级抽取的菜圃评分统计:年级平均数中位数众数方差七年级8a9 2.65八年级88b c根据以上信息,解答下列问题:(1)填空:a=;b=;c=;(2)该校七年级共20个班,每班有4块菜圃,估计该校七年级“五星菜圃”的数量;(3)请你根据以上数据,评价一下两个年级的菜圃耕种情况谁更好.13.(2022秋•揭西县期中)某中学开展“中国梦、我的梦”演讲比赛,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?14.(2022秋•昌黎县期中)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?15.(2022秋•开州区期中)某校为了了解八、九年级男生立定跳远情况,现从八、九年级男生中各随机抽取了20名学生进行了测试,这些学生的成绩记为x(厘米),对数据进行整理,将所得的数据分为5组:(A组:0≤x<200;B组:200≤x<220;C组:220≤x<240;D组:240≤x<250;E组:x≥250).学校对数据进行分析后,得到如下部分信息:c.八年级被抽取的男生的立定跳远成绩在220≤x<240这一组的数据是:222 228 230 235 236 238d.九年级被抽取的男生的立定跳远成绩在220≤x<240这一组的数据是:228 235 238 238 238 238 238 239e.八、九年级男生立定跳远成绩的平均数、中位数、众数如下:年级八年级九年级平均数220230中位数m238众数218k根据以上信息,解答下列问题:(1)填空:m=;(2)若该校八年级有男生1400人、九年级有男生1600人,估计这两个年级男生立定跳远成绩不低于220的人数一共多少人;(3)根据以上数据分析,你认为该校八、九年级中哪个年级的男生立定跳远成绩更优异,请说明理由.(写出一条理由即可)16.(2022秋•海曙区期中)对于三个数a、b、c,我们用P{a,b,c}表示a、b、c这三个数的平均数.M{a,b,c}表示a、b、c这三个数的中位数.例如:P{﹣1,2,3}=,M{﹣1,2,3}=2.(1)若M{2,2x+2,4﹣2x}=2,求x的取值范围;(2)是否存在实数x,使得P{﹣2,x﹣4,2x)=M{2,2x+2,4﹣2x)?如果存在,求出x的值;如果不存在,请说明理由.17.(2022春•鼓楼区校级期中)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)2初中部a85b s初中高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.。
第2讲 频数分布的集中趋势与离散趋势

第二讲 频数分布的集中趋势与离散趋势① 频数分布通过调查或试验取得原始资料后,要对全部资料进行检查和核对后,才能进行数据的整理。
根据样本资料的多少确定是否分组,一般样本容量n<30称为小样本,可直接进行统计描述分析,样本容量n>30称为大样本,此时须将数据分成若干组后进行描述分析。
1、频数分布表1)、频数表的编制相同观察结果出现的次数称为频数。
将所有观察结果的频数按一定顺序排列在一起便是频数表(frequency table)。
步骤:① 找出最大和最小值,计算极差 R=X max ―X min② 根据斯梯阶公式确定组距n RH log 322.31+=③ 扫描样本值,划记后获得频数 2)、频数表的用途① 大样本数据(不限于计量资料)常用的表达方式。
② 便于观察数据的分布类型。
③ 便于发现资料中远离群体的某些特大或特小的可疑值,必要时经检验后舍去。
④ 当样本含量足够大时,各组段的分布频率作为分布概率的估计值。
样本量与分组数量的关系样本量分组数30 ~ 60 5 ~ 860 ~ 100 7 ~ 10100 ~ 200 9 ~ 12200 ~ 500 10 ~ 18500以上15 ~ 30例1:某地随机检查了140名成年男性红细胞数(1012/L)4.765.26 5.61 5.95 4.46 4.57 4.31 5.18 4.92 4.27 4.77 4.885.00 4.73 4.47 5.34 4.70 4.81 4.93 5.04 4.40 5.27 4.63 5.50 5.24 4.97 4.71 4.44 4.94 5.05 4.78 4.52 4.63 5.51 5.24 4.98 4.33 4.83 4.56 5.44 4.79 4.91 4.26 4.38 4.87 4.99 5.60 4.46 4.95 5.07 4.80 5.30 4.65 4.77 4.50 5.37 5.49 5.22 4.58 5.074.81 4.54 3.82 4.01 4.89 4.625.12 4.85 4.59 5.08 4.82 4.935.05 4.40 4.14 5.01 4.37 5.24 4.60 4.71 4.82 4.94 5.05 4.79 4.52 4.64 4.37 4.87 4.60 4.72 4.83 5.33 4.68 4.80 4.15 4.65 4.76 4.88 4.61 3.97 4.08 4.58 4.31 4.05 4.16 5.04 5.15 4.50 4.62 4.73 4.47 4.58 4.70 4.81 4.55 4.28 4.78 4.51 4.63 4.36 4.48 4.59 5.09 5.20 5.32 5.05 4.41 4.52 4.64 4.75 4.49 4.22 4.71 5.21 4.94 4.68 5.17 4.91 5.02 4.76R= 5.95 ― 3.82 = 2.13连续型资料:红细胞数(1012/L)(1)频数f(2)组中值X(3)Fx(4)=(2)*(3)3.80~4.00~ 4.20~ 4.40~ 4.60~4.80~5.00~ 5.20~ 5.40~ 5.60~ 5.80~ 261125322717134213.904.104.304.504.704.905.105.305.505.705.907.824.647.3112.5150.4132.386.768.922.011.45.9合计140(∑f)669.8(∑fX)离散型资料:我国某地农村1995年已婚育龄妇女现有子女数的分布子女数(1)妇女数f(2)频率(%)(3)累计频数(4)累计频率(%)(5)0 1 2 3 4 5 6 7 8 9 ≥10 合计137512519130426285602171913695725532681513731561455259.4517.3020.9119.6214.929.414.982.250.100.260.11100.0013751389226934897908119627133322140577143845144996145369145525——9.4526.7547.6567.2882.2091.6196.6098.8599.6499.89100.00——(一)、均数(mean )的计算① 直接法n xn x x x x x in∑=+++=...32 1例2. 10名7岁男童体重(kg )分别为:17.3、 18.0、 19.4、 20.6、21.2、21.8、 22.5、 23.2、 24.0、 25.5,求平均体重。
集中和离散趋势指标

集中和离散趋势指标1.引言1.1 概述概述部分将介绍集中和离散趋势指标的基本概念和背景。
集中趋势指标和离散趋势指标是统计学中常用的分析工具,用于描述和度量数据集中和离散程度的重要指标。
在实际问题中,我们经常遇到需要描述和分析数据集中和离散程度的情况。
集中趋势指标主要关注数据的中心值,用于度量数据集中在何处,以及数据的均匀分布程度。
而离散趋势指标则用于度量数据的分散程度,即数据的离散程度有多大。
集中趋势指标和离散趋势指标在统计学、经济学、金融学等领域被广泛应用。
例如,在统计学中,我们常常使用平均值、中位数、众数等指标来描述数据的集中趋势;而方差、标准差、极差等指标则用于度量数据的离散趋势。
本文将分别介绍集中趋势指标和离散趋势指标的定义和解释,并列举一些常见的集中趋势指标和离散趋势指标的示例。
通过对这些指标的应用和分析,我们能够更加客观地了解数据的分布特征,为后续的数据分析和决策提供依据。
在下一章节的正文部分,我们将详细介绍集中趋势指标和离散趋势指标的定义、计算方法和使用场景。
希望通过本文的介绍,读者能够对集中和离散趋势指标有一个全面的认识,并能够在实际应用中灵活运用这些指标,提高数据分析的精确性和准确性。
接下来,我们将开始介绍集中趋势指标的相关内容,包括定义和解释等方面的内容。
敬请关注!1.2 文章结构文章结构部分的内容:本文将围绕集中和离散趋势指标展开讨论。
首先,在引言部分进行概述,介绍集中和离散趋势指标的基本概念和作用。
然后,通过分析文章目录可以看出,正文部分将重点介绍集中趋势指标和离散趋势指标,包括它们的定义和解释以及常见的指标类型。
最后,在结论部分对集中趋势指标和离散趋势指标的应用进行总结。
具体而言,在正文部分,我们会首先介绍集中趋势指标,包括其定义和解释。
随后,会详细介绍一些常见的集中趋势指标,例如均值、中位数和众数等。
这些指标能够反映数据集中在某个位置或数值上的趋势,有助于我们对数据的整体特征进行理解和分析。
偏态分布的集中趋势和离散统计指标
偏态分布的集中趋势和离散统计指标我们来介绍偏态分布的集中趋势指标。
均值是最常用的集中趋势指标,它表示一组数据的平均值。
均值的计算方法是将所有数据相加,然后除以数据的个数。
中位数是将一组数据按照从小到大的顺序排列,找出中间位置的数值,如果数据的个数为奇数,则中位数就是中间的那个数;如果数据的个数为偶数,则中位数是中间两个数的平均值。
众数是一组数据中出现次数最多的数值,可能有一个或多个众数。
我们来介绍偏态分布的离散统计指标。
方差是衡量数据分散程度的指标,它表示一组数据与其均值的偏离程度。
方差的计算方法是将每个数据与均值的差的平方相加,然后除以数据的个数。
标准差是方差的平方根,它的计算方法和方差类似,但是标准差更常用,因为它和原始数据的单位一致。
偏态分布的集中趋势和离散统计指标对数据的分布特征有很大的影响。
对于正偏态分布,均值大于中位数,表示数据的右侧尾部较长;对于负偏态分布,均值小于中位数,表示数据的左侧尾部较长。
通过观察均值和中位数的关系,我们可以初步判断数据的偏斜方向。
而方差和标准差则可以衡量数据的离散程度,数值越大表示数据越分散,数值越小表示数据越集中。
在实际应用中,我们经常使用偏态分布的集中趋势和离散统计指标来描述和分析数据。
例如,在金融领域,我们经常使用均值来衡量资产的收益率,使用标准差来衡量资产的风险;在人口统计学中,我们使用中位数来描述人口的收入水平,使用方差来衡量人口的收入差距。
偏态分布的集中趋势和离散统计指标是统计学中重要的概念和工具,它们可以帮助我们理解和描述数据的分布特征,从而进行更准确的数据分析和决策。
通过合理选择和运用这些指标,我们可以更好地理解数据背后的规律,并将其应用到实际问题中。
数据的集中趋势与离散程度
数据的集中趋势与离散程度在我们的日常生活和各种工作领域中,数据无处不在。
无论是研究经济趋势、评估学生的考试成绩,还是分析市场销售数据,了解数据的特征都是至关重要的。
而数据的集中趋势和离散程度就是两个关键的特征,它们能帮助我们更好地理解数据所蕴含的信息。
先来说说数据的集中趋势。
简单来讲,集中趋势就是数据呈现出的一种“聚集”的特点,反映了数据的中心位置或者一般水平。
最常见的用于描述集中趋势的指标有平均数、中位数和众数。
平均数,大家应该都很熟悉。
就是把一组数据的所有数值加起来,然后除以数据的个数。
比如说,一个班级里五位同学的数学考试成绩分别是 80 分、90 分、85 分、75 分和 95 分,那么他们的平均成绩就是(80 + 90 + 85 + 75 + 95)÷ 5 = 85 分。
平均数很容易计算,也能直观地反映出这组数据的大致水平。
中位数呢,是将一组数据按照从小到大或者从大到小的顺序排列,如果数据的个数是奇数,那么处于中间位置的那个数就是中位数;如果数据的个数是偶数,那么中间两个数的平均值就是中位数。
比如,还是上面那五个同学的成绩,从小到大排列为 75 分、80 分、85 分、90 分、95 分,因为数据个数是奇数,所以中位数就是 85 分。
中位数的优点在于,它不受极端值的影响。
比如,如果有一个同学考了20 分,那么这组数据的平均数就会被拉低很多,但中位数却不会受到太大影响。
众数则是一组数据中出现次数最多的那个数值。
比如说,一组数据是 1,2,2,3,3,3,4,4,4,4,那么众数就是 4。
众数可以反映出数据中最常见的情况。
了解了数据的集中趋势,我们再来看数据的离散程度。
离散程度反映的是数据的分散情况,也就是数据相对于中心位置的偏离程度。
常见的描述离散程度的指标有极差、方差和标准差。
极差是一组数据中的最大值减去最小值。
比如,一组数据是 10,20,30,40,50,那么极差就是 50 10 = 40。
描述定量资料的集中趋势与离散程度的指标的使用条件
统计研究的步骤设计、收集、整理、分析。
☆描述定量资料的集中趋势与离散程度的指标的使用条件集中趋1)算数均数(口,又):适用于单峰对称分布资料。
2)几何均数(G):适合于作对数变换后单峰对称分布资料(等比资料、滴度资料、对数正态分布资料)。
3)中位数(M)和百分位数(PX):适用于任何分布的资料;中位数和百分位数在样本含量较少时不稳定,越靠两端越不稳定;中位数在抗极端值的影响方面,比均数具有较好的稳定性,但不如均数精确。
因此,当资料适合计算均数或几何均数时,不宜用中位数表示其平均水平(偏态分布、分布不明资料、有不确定值的资料)。
4)不同质的资料应考虑分别计算平均数。
离散程度:1)极差(R)不稳定,不灵敏。
2)标准差的基本内容是离均差,它显示一组变量值与其均数的间距,故标准差直接地、总结地、平均地描述了变量值的离散程度。
在同质的前提下,标准差大表示变量值的离散程度大,即变量值的分布分散、不整齐、波动较大;反之,标准差小表示变量值的离散程度小,即变量值的分布集中、整齐、波动较小。
3)变异系数派生于标准差,其应用价值在于排除了平均水平的影响,并取消了单位。
因此变异系数常用于:比较度量衡单位不同的两组或多组资料的变异度;比较均数相差悬殊的两组或多组资料的变异度。
平均数与变异度的关系1)均数±标准差(min,max)2)中位数±四分位数间距(min,max)3)变异度小,则均数代表性好。
4)变异度大,数据分散,则均数代表性差。
5)平均数所表示的集中性与变异度所表示的离散性,从两个不同的角度阐明计量资料的特征。
正态分布的特征1)单峰分布;高峰在均数处。
2)以均数为中心,均数两侧完全对称。
3)正态分布有两个参数(Parameter),即位置参数(均数)和变异度参数(标准差)。
4)有些指标本身不服从正态分布,但经过变换之后可以服从正态分布。
5)正态曲线下的面积分布有一定的规律。
正态曲线下的面积规律1)正态曲线下面积总和为1。
离散型趋势
S
(X X )
n 1
2
标准差的计算方法
1.直接法:小样本未分组资料可以直接用公式求
标准差,但实际工作中,为了便于计算,常用以
下推导公式:
S
X
2
( X ) 2 / n n 1
测定了5名健康成人血糖值分别为5.86、5.32、 4.05、4.95、3.83(mmol/L) 本例 X 24.01 , X 2 118.22 ,n=5,代入 公式:
第三节 离散趋势指标
集中趋势指标反映了一组变量值的平均水平,
它是描述变量值分布的一个重要指标,但是仅有集
中趋势指标,还不能完整地描述变量值的分布特征,
还要同时考虑变量值个体之间的变异大小,才能够
描述完整。现有A、B、C、三组数据如下: A:26,28,30,32,34 B:24,27,30,33,36 C:26,29,30,31,34
某山区100名健康成年男性身高测量结果
172.5 167.0 176.0 168.5 178.5 172.0 168.0 173.0 165.0 175.5 171.5 171.0 177.5 166.0 165.5 161.0 172.0 160.0 165.0 156.5 155.5 157.0 172.5 168.5 167.5 165.0 175.5 165.0 170.0 167.0 162.0 168.5 180.0 168.0 175.5 169.5 146.5 165.0 179.5 159.5 169.0 166.5 155.0 159.0 168.0 162.0 161.5 164.0 173.5 158.0 170.5 170.5 152.0 158.0
表2-3 100名健康成年男性身高的均数计算 (加权法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 集中趋势与离散趋势
练习题:
1. 17名体重超重者参加了一项减肥计划,项目结束后,体重下降的重量分别为: (单位:千克)
12 10 15 8 2 6 14 12 10 12 10 10 11 10 5 10 16 (1)计算体重下降重量的中位数、众数和均值。
(2)计算体重下降重量的全距和四分位差。
(3)计算体重下降重量的方差和标准差。
解:
(1)○1中位数:
对上面的数据进行从小到大的排序:
M d 的位置=2
=9,数列中从左到右第9个是10,即M d =10。
○2众数:
绘制各个数的频数分布表:
“10”的频数是6,大于其他数据的频数,因此众数M O =“10” ○3均值:
18.1016
521
=+⋯++=
=
∑=n
n
x
X n
i i
(2)○1全距:R =max(x i )-min(x i )=16-2=14 ○2四分位差:
根据题意,首先求出Q 1和Q 3的位置: Q 1的位置=
41+n =4
1
17+=,则Q 1=8+×(10-8)=9 Q 3的位置=4)1(3+n =4
)
117(3+⨯=,则Q 3=12+×(12-12)=12
Q= Q 3- Q 1=12-9=3
(3)○1方差:
2
2
1
222
()
1
(210.18)(510.18)(1610.18) 171
=12.404
n
i
i x x S n =-=
--+--=-∑+?+
○2
标准差: 3.52S ==
2.下表是武汉市一家公司60名员工的省(市)籍的频数分布:
省(市)籍
频数(个)
湖北 28 河南 12 湖南 6 四川 6 浙江 5 安徽
3
(1)根据上表找出众值。
(2)根据上表计算出异众比率。
解: (1)“湖北”的频数是28,大于其他省(市)籍的频数,因此众数M O =“湖北” (2)异众比率的计算公式为: mo
r n f V n
-=
( n 代表总频数,mo f 代表众数的频数) 其中n=60,mo f =28,则: 6028
0.5360
r V -==
3.某个高校男生体重的平均值为58千克,标准差为6千克,女生体重的平均值 为48千克,标准差为5千克。
请计算男生体重和女生体重的离散系数,比较男 生和女生的体重差异的程度。
解:计算离散系数的公式:
%100⨯=
X
S
CV 男生体重的离散系数:
%34.10%10058
6
=⨯=
CV 女生体重的离散系数: %42.10%10048
5
=⨯=
CV 男生体重的离散系数为%,女生体重的离散系数为%,男生体重的差异程度比女生要稍微小一些。
4.在某地区抽取的120家企业按利润额进行分组,结果如下:
按利润额分组(万元)
企业数 200——299 19 300——399 30 400——499 42 500——599 18 600——699 11 合计
120
(1)计算120家企业利润额的中位数和四分位差。
(2)计算120家企业利润额的均值和标准差。
解:
(1) ○1 中位数M d 的位置=
5.602
1
12021=+=+n ,M d 位于“400—499”组, L=,U =,cf (m-1)=49,f m =42,n =120,代入公式得
)(2)1(L U f cf n L M m m d --+=-=120
492399.5(499.5399.5)425.6942
-+⨯-=
职工收入的中位数为元。
○2336.17)5.2995.399(3019
41205.299)(4111111=-⨯-+=--+=L U f cf n L Q 497.12)5.3995.499(42
49412035.399)(43333333=--⨯+=--+
=L U f cf n L Q 四分位差31497.12336.17160.95Q Q Q =-=-=
(2)○1均值:
1
199.5299.5299.5399.5399.5499.5499.5599.5599.5699.5
1930421811 22222
120
51140
=
120
=426.17
k
i i
i
M f
X
n
=
+++++
⨯+⨯+⨯+⨯+⨯==
∑
○2标准差:
48
.
116
119
67
.
1614666
1
120
11
)
17
.
426
5.
649
(
18
)
17
.
426
5.
549
(
42
)
17
.
426
5.
449
(
30
)
17
.
426
5.
349
(
19
)
17
.
426
5.
249
(
1
)
(
2
2
2
2
2
1
2
=
=
-
⨯
-
+
⨯
-
+
⨯
-
+
⨯
-
+
⨯
-
=
-
-
=
∑
=
n
f
x
M
s
n
i
i
5.根据武汉市初中生日常行为状况调查的数据(data9),运用SPSS统计被调查
的初中生平时一天做作业时间(c11)的众数、中位数和四分位差。
解:《武汉市初中生日常行为状况调查问卷》:
C11 请你根据自己的实际情况,估算一天内在下面列出的日常课外活动上所花的时间大约为(请填写具体时间,没有则填“0”)
平时(非节假日):
1)做作业_______小时
SPSS操作步骤如下:
○1依次点击Analyze→Descriptive Statistics→frequencies,打开如图5-1(练习)所
示的对话框。
将变量“平时一天做作业时间(c11a1)”,放置在Variables栏中。
图5-1(练习) Frequencies对话框
○2单击图5-1(练习)中Frequencies对话框中下方的Statistics(统计量)按钮,打开如
图5-2(练习)所示的对话框。
选择Quartiles(四分位数)选项,Median(中位数)选项
和Mode(众数)选项。
点击Continue按钮,返回到上一级对话框。
图5-2(练习) Frequencies :Statistics 统计分析对话框 ○
3点击OK 按钮,SPSS 将输出如表5-1(练习)所示的结果。
表5-1 平时初中生一天做作业时间的中位数、众值和四分位差
从上表可以看出,平时初中生一天做作业时间的中位数是小时,众数是2小时,四分位差是1(即个小时。
6.根据武汉市初中生日常行为状况调查的数据(data9),运用SPSS 分别统计初 中生月零花钱的均值和标准差,并进一步解释统计结果。
解:《武汉市初中生日常行为状况调查问卷》: F1 你每个月的零用钱大致为___________元。
SPSS 操作的步骤如下:
○
1依次点击Analyze →Descriptive Statistics →frequencies ,打开如图5-3(练习)所N Valid
517 Missing
9 Median Mode Percentile s
25 50
75
示的对话框。
将变量“每个月的零花钱(f1)”,放置在Variables 栏中。
图5-3(练习) Frequencies 对话框
○
2单击图5-3(练习)Frequencies 对话框中下方的Statistics (统计量)按钮,打开如图5-4(练习)所示的对话框。
选择Mean (均值)选项和(
标准差)选项。
点击Continue 按钮,返回到如图5-3(练习)所示的对话框。
图5-4(练习) Frequencies :Statistics 统计分析对话框 ○
3点击OK 按钮,SPSS 将输出如表5-2(练习)所示的结果。
表5-2(练习) 初中生月零用钱的均值和标准差
Stat istics
你每个月的零用钱大致为_
49828109.80114.200
Valid
Missing
N Mean
Std. Deviation
从表5-2(练习)可以看出,“初中生月零用钱”的均值为元,标准差为元。