第三章多元统计分析答案
应用多元统计分析课后答案_暴强整理

第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
(完整版)多元统计分析思考题答案

《多元统计分析》思考题答案记得老师课堂上说过考试内容不会超出这九道思考题,如下九道题题目中有错误的或不清楚的地方,欢迎大家指出、更改、补充。
1、 简述信度分析答题提示:要答可靠度概念,可靠度度量,克朗巴哈α系数、拆半系数、单项与总体相关系数、稀释相关系数等(至少要答四个系数,至少要给出两个指标的公式)答:信度(Reliability )即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
信度分析的方法主要有以下四种:1)、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。
重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。
由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
2)、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。
复本信度属于等值系数。
复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3)、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。
折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。
这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
在问卷调查中,态度测量最常见的形式是5级李克特(Likert )量表。
进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数。
多元统计分析吴喜之答案

多元统计分析吴喜之答案
第1章
1. 在数据处理时,为什么通常要进行标准化处理?
对数据进行标准化处理主要为了消除变量的量纲以及量纲差别较大时所带来的影响,尤其当变量间的单位不同且量级差别特别大时,使用不做任何处理的数据进行计算,可能会得到极不合理的结果。
2. 欧氏距离与马氏距离的优缺点是什么?
欧氏距离是计算点与点之间距离的常用方法,其缺点是坐标的各维度对计算距离的贡献是同等的,距离的大小与各维度对应的指标变量的单位有关。
因此,对于大部分统计问题,欧氏距离不太适合。
而马氏距离弥补了欧氏距离在统计问题上的缺陷,马氏距离的计算中会将各指标变量转化为无量纲的数值,而且当变量服从或渐近服从多元正态分布时,马氏距离具有良好的统计性质。
3. 当变量Xz和X,方向上的变差相等,且X1与X2互相独立时,采用欧氏距离与统计距离是否一致?
当变量X,和X。
方向上的变差相等,且X,与X。
互相独立时,采用欧氏距离与统计距离的计算结果会相差一个常数倍,即欧氏距离=统计距离*C,该常数项C为变量X,和X的标准差。
多元统计分析习题与答案

多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。
在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。
习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。
你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。
以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。
答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。
根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。
标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。
然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。
由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。
习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。
你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。
多元统计分析 第3章 假设检验

a 1 a 1 n n
X (X1, X2 ,, X p ) Y (Y 1, Y 2 ,, Yp )
给定检验水平 ,查 F 分布表,使 p F F ,可确定 出临界值 F ,再用样本值计算出 F ,若 F F ,则否定 H 0 , 否则接受 H 0 。
一个正态总体均值向量的检验-已知
设 X (1) , X (2) ,, X ( n) 是 来 自 p 维 正 态 总体 N p ( μ , Σ ) 的 样
n 1 n 本,且 X X ( ) , S ( X ( a ) X )( X ( a ) X ) . n 1 a 1
( X 0 ) 2 z n 已知时,用统计量
当假设成立时,该统计量服从标准正态分布,从 而否定域为 | z | z /2 ,z / 2 为 N (0,1) 的 / 2 上分位 点 z 2 n( X 0 )( 2 )1 ( X 0 ) ~ (1)
注意到,上式 t 统计量可以表示为:
2 ( X ) /1 2 2 1 t n ( X ) ( s ) ( X ) 2 s /n 2 对于多元变量而言,可以将 t 分布推广为 Hotelling T 分布。
Hotelling T2 分布
定义 3.1 设 X ~ N p ( μ , Σ ) , W ~ Wp (n, Σ ) 且 X 与 W 相互独立,n p , 则称统计量 T nX W X 的 分 布 为 非 中 心 HotellingT2 分 布 , 记 为
否则接受 H 0 .
一个正态总体均值向量的检验-已知
应用多元统计分析课后答案 暴强整理

第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
多元统计分析试题
多元统计分析试题及答案一、选择题1. 以下哪一项不是多元统计分析的基本方法?A. 主成分分析B. 聚类分析C. 方差分析D. 因子分析答案:C2. 在多元统计分析中,协方差阵和相关阵的关系是:A. 相关系数是协方差阵的标准化形式B. 协方差阵是相关阵的平方C. 相关系数是协方差阵的平方根D. 协方差阵和相关阵是等价的答案:A3. 在因子分析中,以下哪个指标用于衡量变量间的共同性?A. 提取载荷B. 特征值C. 累计贡献率D. 共同度答案:D4. 聚类分析中,以下哪种方法属于层次聚类法?A. K-means 聚类B. 动态聚类C. 系统聚类D. 密度聚类答案:C二、填空题1. 多元统计分析中的“多元”指的是______。
答案:多个变量2. 主成分分析的目的是将多个变量______,以减少数据的维度。
答案:线性组合3. 在多元正态分布中,若随机变量X和Y独立,则它们的协方差______。
答案:为04. 聚类分析中,类内平方和与类间平方和的比值越大,说明聚类效果______。
答案:越好三、简答题1. 简述主成分分析的基本思想。
答案:主成分分析的基本思想是通过线性变换,将原始变量组合成一组新的变量,这组新变量能够尽可能多地反映原始变量中的信息。
具体步骤如下:(1)计算原始变量的协方差阵;(2)求出协方差阵的特征值和特征向量;(3)根据特征值的大小,选取前几个特征值对应的特征向量,作为主成分;(4)将原始变量表示为新变量的线性组合。
2. 简述因子分析的基本步骤。
答案:因子分析的基本步骤如下:(1)计算变量间的相关阵或协方差阵;(2)求出相关阵的特征值和特征向量;(3)根据特征值的大小,选取前几个特征值对应的特征向量,作为因子;(4)计算因子载荷矩阵;(5)对因子进行命名和解释;(6)计算因子得分,用于进一步的分析。
3. 简述聚类分析中的层次聚类法。
答案:层次聚类法是一种自底向上的聚类方法,其基本思想是将每个样本作为一个初始类,然后根据样本之间的相似度,逐步合并相似度较高的类,直到满足特定的终止条件。
多元统计分析及R语言建模答案(王斌会)
多元统计分析及 R 语言建模》第 2 章王斌会2020.2.1rm( list= ls ()) options ( digits= 4) par ( mar= c ( 4, 4, 2, 1)) library (openxlsx) library (knitr)2.1对下面的相关系数矩阵,试用 R 语言求其逆矩阵、特征根和特征向量。
要求 写出 R 语言计算函数。
1.00 0.80 0.26 0.67 0.340.80 1.00 0.33 0.59 0.34??= 0.260.33 1.00 0.37 0.210.670.59 0.37 1.00 0.35[0.34 0.34 0.210.35 1.00]R=matrix (c( 1.00 , 0.80 , 0.26 , 0.67 , 0.34 , 0.80 , 1.00 , 0.33 , 0.59 , 0.34 , 0.26 , 0.33 , 1.00 , 0.37 , 0.21 , 0.67 , 0.59 , 0.37 , 1.00 , 0.35 , 0.34 , 0.34 , 0.21 , 0.35 , 1.00 ), nrow= 5, ncol= 5);R #生成矩阵 R[,1] [,2] [,3] [,4] [,5][1,] 1.00 0.80 0.26 0.67 0.34 [2,] 0.80 1.00 0.33 0.59 0.34 [3,] 0.26 0.33 1.00 0.37 0.21 [4,] 0.67 0.59 0.37 1.00 0.35 [5,] 0.34 0.34 0.21 0.35 1.00 R.= solve (R);R.[,1] [,2] [,3] [,4] [,5][1,] 3.3881 -2.1222 0.23706 -1.0685 -0.10623[2,] -2.1222 2.9421 -0.33593 -0.1331 -0.16164 [3,] 0.2371 -0.3359 1.20699 -0.3764 -0.08812 [4,] -1.0685 -0.1331 -0.37637 2.0091 -0.21562 [5,] -0.1062 -0.1616 -0.08812 -0.2156 1.18505 R.e= eigen (R, symmetric = T);R.e eigen() decomposition $values[1] 2.7923 0.8263 0.7791 0.4206 0.1818#清理内存 #输出结果位数 #设置图片输出位置$vectors[,1] [,2] [,3] [,4] [,5][1,] -0.5255 0.34022 -0.1665 0.15938 0.74494[2,] -0.5187 0.23435 -0.1778 0.50823 -0.62142[3,] -0.3131 -0.90308 -0.2287 0.14943 0.10844[4,] -0.4966 0.03869 -0.1186 -0.83116 -0.21673[5,] -0.3318 -0.11084 0.9350 0.05616 0.013552.2某厂对50 个计件工人某月份工资进行登记,获得以下原始资料(单位:元)。
(完整版)多元统计分析试题及答案
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
何晓群多元统计分析课后答案
何晓群多元统计分析课后答案【篇一:何晓群版多元统计分析数据】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.00 1326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00 198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez italian uno due tre quattro cinque sei sette otto nove diecipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiechungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenennorwegian en to tre fire fem seks sju ate ni tidanish en to tre fire fem seks syv otte ni tidutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人) x5 交通和通讯支出(元/人)x2 衣着支出(元/人) x6 娱乐、教育和文化服务支出(元/人) x3家庭设备、用品及服务支出(元/人)x7 居住支出(元/人)x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人) x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人) x4 人均其他副食支出(元/人) x8 人均其他非商品支出(元/人)第四章数据例4-3x1 人均食品支出(元/人) x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人) x6 人均文教娱乐用品及服务支出(元/人) x3 人均住房支出(元/人) x7 人均医疗保健支出(元/人)【篇二:何晓群多元统计分析(数据)】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入 x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.001326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez norwegian en to tre fire fem seks sju ate ni tiitalian uno due tre quattro cinque sei sette otto nove diecidanish en to tre fire fem seks syv otte ni tipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiecdutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnhungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenenfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人)x5交通和通讯支出(元/人)x2 衣着支出(元/人)x6 娱乐、教育和文化服务支出(元/人) x3 家庭设备、用品及服务支出(元/人)x7居住支出(元/人) x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)人均其他副食支出(元/人)人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人) x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人) x3人均住房支出(元/人)x7 人均医疗保健支出(元/人)【篇三:多元统计分析期末试题】>1、若x(?)~np(?,?),(??1,2,?n) 且相互独立,则样本均值向量2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。