常用逻辑用语测试题四

合集下载

集合与常用逻辑用语》综合测试卷

集合与常用逻辑用语》综合测试卷

集合与常用逻辑用语》综合测试卷1.选择题1.下列命题的否定是真命题的是()A。

有些实数的绝对值是正数B。

所有平行四边形都不是菱形C。

任意两个等边三角形都是相似的D。

3是方程的一个根答案:B2.已知R为实数集,集合A={x|x>1},B={x|x≥2},则(R-B)∩A=()A。

(1,2)B。

[1,2)C。

(-∞,1]D。

[2,+∞)答案:B3.已知集合A={-2,1,9,π},B={1,9},则A-B=()A。

{0,1,9}B。

{1,9}C。

{0,1,9,π}D。

{-2,0,1,9}答案:D4.以下四个命题既是特称命题又是真命题的是()A。

锐角三角形的内角是锐角或钝角B。

至少有一个实数x,使x2+x+1>0C。

两个无理数的和必是无理数D。

存在一个负数,使它的平方大于100答案:A5.“p是q的充要条件”是()A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

既不充分也不必要条件答案:C6.已知全集U={x∈Z|0<x<6},集合A={3,4,5},则(U-C)∩A=()A。

{1,2}B。

{0,1,2}C。

{1,2,3}D。

{0,1,2,3}答案:B7.已知R是实数集,集合A={x|1<x<2},B={x|2<x<3},则阴影部分表示的集合是()A。

[0,1]B。

(0,1]C。

[0,1)D。

(0,1)答案:D8.设命题p:∀x∈R,x-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A。

充分不必要条件B。

必要不充分条件C。

充分且必要条件D。

既不充分也不必要条件答案:C9.若命题“存在x∈R,使得x/(4x+1)<1/4”是假命题,则实数m的取值范围是()A。

(-∞,-1)B。

(-∞,2)C。

[-1,1]D。

(-∞,0)答案:B10.已知集合A={x|x=x},B={1,m,2},若A⊆B,则实数m 的值为()A。

2B。

√2C。

高二数学第一章 常用逻辑用语测试题及答案

高二数学第一章 常用逻辑用语测试题及答案

高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。

( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。

第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)

第一章  集合与常用逻辑用语 单元测试卷(Word版含答案)

《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(有答案解析)

(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(有答案解析)

一、选择题1.已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要3.下列说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“2000,10x x x ∃∈++<R ”的否定是“2,10x R x x ∀∈++<” C .命题“若x y =,则sin sin x y =”的逆否命题为假命题D .若椭圆22221(0)x y a b a b +=>>的离心率为2,则双曲线22221x y a b -=的渐近线方程为12y x =±4.已知a ,b 是两条直线,则“a ,b 没有公共点”是“a ,b 是异面直线”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件5.下列命题中为真命题的是( )A .若命题p :“2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--≤”B .直线,a b 为异面直线的充要条件是直线,a b 不相交C .“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充要条件D .0x ≠则12x x+≥ 6.在等比数列{}n a 中,“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题9.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件10.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .311.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件二、填空题13.有下列五个命题:①函数y =2020x在区间(,0)(0,)-∞+∞上是单调递减的;②“0k ≠”是“函数1y kx =+的图像表示一条直线”的充分不必要条件;③函数y =[)0,+∞上是单调递减的;④函数y x =--{|1}y y ≤;⑤22(2)5y x a x =+-+在(4,+∞)上是增函数,则实数a 的取值范围是2a >-;⑥已知函数()y f x =在R 上是单调递增的,若0a b +>,则()()()()f a f b f a f b +>-+-.其中所有正确命题的题号是__________.14.已知命题p :任意[1,2]x ∈,20x a -≥,命题q :存在x ∈R ,2220x ax ++=.若命题p 与q 都是真命题,求实数a 的取值范围________.15.在下列给出的命题中,所有正确命题的序号为__________.①函数3231y x x =-+的图象关于点()0,1成中心对称;②对,x y R ∀∈若0x y +≠,则1x ≠或1y ≠-;③若实数x ,y 满足221x y +=,则2yx +的最大值为3;④若ABC ∆为钝角三角形,则sin cos A B <.16.下列命题:①设A ,B 为两个集合,则“A B ⊆”是“A B A =”的充分不必要条件;②0x ∃>,10x x-<;③“|1|1x ->”是“22x x >”的充要条件;④n N ∀∈,代数式241n n ++的值都是质数.其中的真命题是________.(填写序号)17.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若m 1≥,则22(1)30mx m x m -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是____________18.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.19.“200,20o x R x x m ∃∈++≤”是假命题,则实数m 的取值范围是 ________.20.已知命题p :不等式01xx <-的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论: ①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真, 其中正确结论的序号是________三、解答题21.已知集合A =233|1,,224y y x x x ⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,B ={x|x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围. 22.已知命题p : 1x 和2x 是方程220x mx --=的两个实根,不等式22153a a x x --≥-对任意实数[1,1]m ∈-恒成立;命题q :不等式2210ax x +->有解.命题p 为真命题.(1)求实数a 的取值范围;(2)q ⌝是真命题,求实数a 的取值范围.23.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论.24.已知集合{}228120A x x ax a =-+>,其中0a >;集合()(){}120B x x x =--≥.(1)若1a =,求A B ;(2)若:p x A ∈,:q x B ∈,且p 是q 的必要不充分条件,求实数a 的取值范围. 25.设命题p :实数x 满足()()20x a x a --<,其中0a >;命题q :实数x 满足()()216220xx --≤.(1)若2a =,,p q 都是真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用函数3y x =,2x y =的单调性,结合充分条件和必要条件的性质判断即可. 【详解】函数3y x =在R 上单调递增,则33b a a b <⇔< 函数2x y =在R 上单调递增,则22a b a b <⇔< 则“33a b <”是 “22a b <”的充要条件 故选:C 【点睛】本题主要考查了判断充要条件,涉及了利用函数的单调性比较大小,属于中档题.2.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.3.D解析:D 【分析】利用四种命题的逆否判断A 的正误,命题的否定判断B 的正误;根据充分条件与必要条件判断C 的正误;根据椭圆的离心率可得,a b 关系,进而求得双曲线的渐近线方程; 【详解】解:对于A ,命题“若21x =,则1x =”的否命题为:“若21x ≠,则1x ≠”,故A 错误; 对于B ,命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈ 均有210x x ++≥”,故B 错误;对于C ,因为原命题为真命题,故其逆否命题也为真命题,故C 错误;对D ,因为122c b a a a ==⇒=,所以双曲线22221x y a b -=的渐近线方程为12y x =±,故 D 正确.故选:D. 【点睛】本题考查命题的真假的判断与应用,考查四种命题的逆否关系,命题的否定以及充要条件的判断,是基本知识的综合应用.4.B解析:B 【分析】根据异面直线的定义及充分条件、必要条件的概念求解即可. 【详解】因为a ,b 没有公共点,a ,b 可能平行也可能异面, 所以“a ,b 没有公共点”成立推不出“a ,b 是异面直线”, 反之,“a ,b 是异面直线”可以推出“a ,b 没有公共点”成立, 所以“a ,b 没有公共点”是“a ,b 是异面直线”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件,必要条件的判定,异面直线的概念,属于中档题.5.A解析:A 【分析】A ,根据一个是特称命题的否定,变为全称命题,即可判断;B ,根据空间中两条直线的位置关系得到结果;C ,根据两条直线垂直的条件得到a 的值;D 、根据基本不等式得到,这个不等式大于等于2或小于等于2-.【详解】解:对于A ,根据特称命题的否定形式知道:命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”,故A 是真命题;对于B ,直线a ,b ,为异面直线的充要条件是直线a ,b 不相交且不平行,故B 为假命题;对于C ,“直线0x ay -=与直线0x ay +=互相垂直” ⇔ “1a =±”,故“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充分不必要条件,故C 为假命题;对于D ,若0x >,则12x x+,或若0x <,则12x x +-,故D 为假命题. 故选:A . 【点睛】本题考查命题的否定,考查函数的值域,考查空间中两条直线的位置关系,考查特称命题和全称命题的否定,属于中档题.6.B解析:B 【分析】由韦达定理可得2101a a ⋅=,且a 2和a 10均为负值,由等比数列的性质可得61a =-,故必要性满足充分性不满足. 【详解】∵由2a ,10a 是方程2410x x ++=的两根, ∴2102104,1a a a a +=-⋅=, ∴a 2和a 10均为负值,由等比数列的性质可知a 6为负值,且622101a a a =⋅=, ∴61a =-,故“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的必要不充分条件, 故选:B . 【点睛】本题考查充分条件、必要条件,根据充分条件和必要条件的定义,结合等比数列的性质、二次方程根与系数关系等进行判断即可,属于基础题.7.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭,即112xm ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件. 故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.8.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.9.B解析:B 【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断. 【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件, 故选:B. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题.10.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】 取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可. 【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立. 故选:A . 【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.二、填空题13.②④⑥【分析】根据单调性的定义判断命题①③⑤⑥根据充分不必要条件的定义判断②结合二次函数性质求出函数值域判断④【详解】函数例如此时函数在不是减函数①错误;时函数的图象是一条直线充分的但时函数的图象也解析:②④⑥【分析】根据单调性的定义判断命题①③⑤⑥,根据充分不必要条件的定义判断②,结合二次函数性质求出函数值域判断④. 【详解】函数2020y x =,例如11x =-,21x =,此时122020202020202020x x =-<=,函数在(,0)(0,)-∞+∞不是减函数,①错误;0k ≠时,函数1y kx =+的图象是一条直线,充分的,但0k =时函数1y kx =+的图象也是一条直线,不必要.②正确;函数y =的定义域是[1,1]-,③错误;2(1)121)2y x x =--=-+-+=-+,0≥,所以21)1≥,21)21y =-+≤,值域为(,1]-∞,④正确;22(2)5y x a x =+-+22(2)5(2)x a a =+-+--在(4,+∞)上是增函数,则24a -+≤,2a ≥-,⑤错;0a b +>,则,a b b a >->-,又函数()y f x =在R 上是单调递增,则()(),()()f a f b f b f a >->-,所以()()()()f a f b f a f b +>-+-,⑥正确.故答案为:②④⑥. 【点睛】关键点点睛:本题考查函数的单调性,函数的值域与充分不必要条件.单调性中强调区间内自变量的任意性,即函数()f x 在(,)a b 和(,)m n 是都是增函数,不能直接说明()f x 在(,)(,)a b m n 上是增函数(减函数也是如此).14.【分析】分别根据命题为真命题得到和或再计算得到答案【详解】即恒成立即;存在即解得或综上所述:故答案为:【点睛】本题考查了根据命题的真假确定参数范围意在考查学生的计算能力和转化能力属于常考题型解析:(,-∞【分析】分别根据命题为真命题得到1a ≤和a ≥a ≤.【详解】[1,2]x ∈,20x a -≥,即2a x ≤恒成立,即{}2min1a x≤=;存在x ∈R ,2220x ax ++=,即2480a ∆=-≥,解得a ≥a ≤综上所述:a ≤故答案为:(,-∞. 【点睛】本题考查了根据命题的真假确定参数范围,意在考查学生的计算能力和转化能力,属于常考题型.15.①②③【分析】我们可以根据对称性等函数的性质对四个结论逐一进行判断可以得到正确的结论【详解】解:①函数可得所以函数关于点成中心对称成立故①正确;②对若且则即有若则或故②正确;③若实数满足可设则设为可解析:①②③ 【分析】我们可以根据对称性等函数的性质对四个结论逐一进行判断,可以得到正确的结论. 【详解】解:①函数()3231y f x x x ==-+可得()()2f x f x +-=()()3323123112x x x x -++-++=.所以函数关于点()0,1成中心对称成立.,故①正确;②对x ∀,y R ∈.若1x =且1y =-,则0x y +=.即有若0x y +≠,则1x ≠或1y ≠-.故②正确;③若实数x ,y 满足221x y +=,可设cos x α=,sin (02)y ααπ=<, 则sin 22cos y x αα=++,设为t ,可得sin cos 2t t αα-=22||t ,解得33t ,则2yx +③正确; ④若ABC ∆为钝角三角形,若A 为锐角,B 为钝角,则sin cos A B >,故④错误. 故答案为:①②③ 【点睛】本题考查的知识点是判断命题真假,比较综合的考查了函数的性质,属于中档题,16.②③【分析】①根据子集概念是的充分必要条件;②取特殊值使不等式成立判断命题为真;③根据不等式性质可知可判断命题正确;④由于n2+n+41=n (n+1)+41根据乘法分配律和质数的定义得到n=40或n解析:②③ 【分析】①根据子集概念,“A B ⊆”是“AB A =”的充分必要条件;②取特殊值12x =,使不等式成立,判断命题为真;③根据不等式性质可知2|1|1(1)1x x ->⇔->,可判断命题正确;④由于n2+n+41=n (n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n2+n+41不是质数,可判断命题错误. 【详解】对于①根据子集及交集的定义可知,A B AB A AB A A B ⊆⇒==⇒⊆,所以“A B ⊆”是“A B A =”的充分必要条件;②存在特殊值12x =,使不等式成立,判断命题为真;③根据不等式性质可知22|1|1(1)120x x x x ->⇔->⇔->,可判断“|1|1x ->”是“22x x >”的充要条件正确;④由于n 2+n+41=n (n+1)+41,根据乘法分配律和质数的定义得到n=40或n=41时,n 2+n+41分别能被40或41整除,所以不是质数,可判断命题错误.故答案为:②③ 【点睛】本题主要考查了命题,充分条件,必要条件,质数的概念,属于中档题.17.①③④【解析】对于①若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于②矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②错误;对于③其逆命题为:若的解集是则解析:①③④ 【解析】对于①“若0x y +>,则00x y >>且”的逆命题为“若00x y >>且,则0x y +>”故逆命题为真命题,则否命题也为真,故①正确;对于②“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”为假命题,故其逆命题也为假,故②错误;对于③其逆命题为:若()22130mx m x m -+++>的解集是R ,则1m ≥,当该不等式解集为R 时,1.0m =时,不合题意,2.()()241430m m m m >⎧⎪⎨=+-+<⎪⎩解得1m ,故逆命题为真,即③正确;对于④,原命题为真,故逆否命题也为真,故④正确,即正确的序号为①③④,故答案为①③④.18.【分析】使是假命题则使是真命题对是否等于进行讨论当时不符合题意当时由二次函数的图像与性质解答即可【详解】使是假命题则使是真命题当即转化为不是对任意的恒成立;当使即恒成立即第二个式子化简得解得或所以【解析:3m >【分析】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,对1m +是否等于0进行讨论,当10m +=时不符合题意,当10m +≠时,由二次函数的图像与性质解答即可. 【详解】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,当10m +=,即1m =-,()2110m x mx m +-+->转化为20x ->,不是对任意的x ∈R 恒成立;当10m +≠,x R ∀∈,使()2110m x mx m +-+->即恒成立,即()()()2104110m m m m +>⎧⎪⎨--+-<⎪⎩ ,第二个式子化简得234m >,解得m >或m <所以3m >【点睛】本题考查命题间的关系以及二次函数的图像与性质,解题的关键是得出x R ∀∈,使()2110m x mx m +-+->是真命题这一条件,属于一般题.19.【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可【详解】由题意可知命题为真命题据此有:求解不等式可得实数的取值范围是【点睛】本题主要考查命题的否定等价转化的数学思想等知识意在考查学生 解析:1m【分析】考虑题中所给命题的否命题为真命题求解实数m 的取值范围即可. 【详解】由题意可知,命题“2,20x R x x m ∀∈++>”为真命题, 据此有:440m ∆=-<,求解不等式可得实数m 的取值范围是1m >. 【点睛】本题主要考查命题的否定,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.①③【分析】先判断命题的真假然后由复合命题的真值表判断复合命题的真假【详解】不等式等价于即命题为真在中命题为假因此②④为假①③为真【点睛】复合命题的真值表: 真 真 真 真 假 真 假解析:①③ 【分析】先判断命题,p q 的真假,然后由复合命题的真值表判断复合命题的真假. 【详解】 不等式01xx <-等价于()10x x -<,即01x <<,命题p 为真,在ABC ∆中,sin sin A B a b A B >⇔>⇔>,命题q 为假,因此②④为假,①③为真.【点睛】复合命题的真值表:另外在ABC ∆中A B >与sin sin A B >是等价的,但在一般三角函数中此结论不成立.三、解答题21.34m ≥或34m ≤-.【分析】试题分析:首先将集合,A B 进行化简,再根据命题p 是命题q 的充分条件知道A B ⊆,利用集合之间的关系,就可以求出实数m 的取值范围. 【详解】化简集合A ,由2312y x x =-+,配方,得237416y x ⎛⎫=-+⎪⎝⎭. 3,24x ⎡⎤∈⎢⎥⎣⎦,min 716y ∴=,max 2y =.7,216y ⎡⎤∴∈⎢⎥⎣⎦,7|216A y y ⎧⎫∴=≤≤⎨⎬⎩⎭化简集合B ,由21x m +≥,21x m -≥,{}2|1B x m =≥-命题p 是命题q 的充分条件,A B ∴⊆.27116m ∴-≤, 解得34m ≥,或34m ≤-.∴实数m 的取值范围是33,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 22.(1)a ≥6或a ≤-1.(2){}1a a ≤-. 【分析】(1)根据题意得到1212,2,x x m x x +=⎧⎨=-⎩,计算12x x -=12max 3x x -=,代入解不等式得到答案.(2)讨论a >0,a =0,a <0三种情况,根据命题的真假得到1a ≤-,再计算交集得到答案. 【详解】(1)∴命题p 是真命题,∵x 1,x 2是方程x 2-mx-2=0的两个实根,∴1212,2,x x m x x +=⎧⎨=-⎩∴12x x -== ∴当[1,1]m ∈-时, 12max3x x -=,由不等式a 2-5a -3≥12x x -对任意实数m ∈[-1,1]恒成立,可得a 2-5a -3≥3, 解得a ≥6或a ≤-1, 则当命题p 为真命题时,a ≥6或a ≤-1.(2)∵命题p 是真命题,命题q 是假命题, 命题q :不等式ax 2+2x -1>0有解. ①当a >0时,显然有解; ②当a =0时,2x -1>0有解;③当a <0时,∵ax 2+2x -1>0,∴Δ=4+4a >0,∴-1<a <0. 从而命题q :不等式ax 2+2x -1>0有解时,a >-1. ∵命题q 是假命题,∴a ≤-1 611a a a ≥≤-⎧∴⎨≤-⎩或,所以a 的取值范围为{}1a a ≤-.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和推断能力. 23.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面. p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.24.(1){}12x x ≤<;(2)106a <<或1a >. 【分析】(1)解一元二次不等式化简集合A ,B ,代入a 的值,求出A ,B 的交集即可; (2)问题转化为B 是A 的真子集,根据集合的包含关系列不等式求出a 的范围即可. 【详解】 由已知,0a >所以{}()(){}{2281202602A x x ax a x x a x a x x a =-+>=-->=<或}6x a >()(){}{}12012B x x x x x =--≥=≤≤(1)当1a =时{2A x x =<或}6x >{}12B x x =≤≤所以{}12A B x x ⋂=≤<. (2){2A x x a =<或}6x a >{}12B x x =≤≤因为p 是q 的必要不充分条件,所以B 是A 的真子集, 所以22a <或16a > ,即16a <或1a > 又因为0a >,所以106a <<或1a >. 【点睛】关键点点睛:转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将必要不充分条件问题转化为集合之间的包含关系是解题的关键.25.(1)()2,4;(2)[]1,2. 【分析】(1)先分别求出命题p ,q 为真时对应的集合,取交集即可求出x 的范围;(2)根据集合间的基本关系与充分、必要条件的关系列出不等式即可求出a 的取值范围. 【详解】(1)当2a =时,由()()240x x --<, 得命题p :{}24P x x =<<,由()()216220xx--≤,所以命题q :{}14Q x x =≤≤,,p q 都是真命题,即()2,4PQ =,因此x 的取值范围是()2,4;(2)由题意可得{}2P x a x a =<<,{}14Q x x =≤≤,若p 是q 的充分不必要条件所以P Q . 当=P ∅即0a ≤时,因为0a >不成立; 当P ≠∅即0a >时,124a a ≥⎧⎨≤⎩[]11,22a a a ≥⎧⇒⇒∈⎨≤⎩, 故a 的取值范围是[]1,2.【点睛】结论点睛:本题主要考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<, 故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

西安电子科技中学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

西安电子科技中学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

一、选择题1.已知:250p x ->,2:20q x x -->,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .103."tan 1"α=是""4πα=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④5.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞6.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R7.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.“3,a =23b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为7( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件11.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈12.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立二、填空题13.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.14.设集合{132}A x x x =-<-,集合1{1}B x x=<,则A B =________. 15.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 16.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________.17.已知集合{}1,2,3,4A =,集合{}3,4,5B =,则A B =_______.18.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 19.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =- (3)()()()A B A B f x f x f x ⋃=+ (4)()()()A B A B f x f x f x ⋂=⋅20.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.三、解答题21.已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++<(1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a .22.已知集合12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥.对于1212(,,,),(,,,)n n n A a a a B b b b S ==∈,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---;A 与B 之间的距离为1(,)||niii d A B a b ==-∑.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -; (2)若对于任意的,,n A B C S ∈,有n A B S -∈,求k 的值并证明:(,)(,)d A C B C d A B --=.23.已知集合{}2650A x x x =+->,集合()(){}110B x x a x a =-+-->,其中0a >.(1)若2a =,求()RAB ;(2)设:p x A ∈,:q x B ∈.若p ⌝是q 的充分不必要条件,求a 的取值范围. 24.已知集合{}2|5140A x x x =--≤,{}|14B x x =-≤.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.25.已知命题p :∀x ∈R ,ax 2+ax +1>0及命题q :∃x 0∈R ,x 02﹣x 0+a =0,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.26.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.3.B解析:B 【解析】 由"tan 1"α=,得,而""4πα=得"tan 1"α=,所以"tan 1"α=是""4πα=的必要非充分条件. 故选B4.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.5.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.6.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.7.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.8.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.C解析:C 【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.10.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b-=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有2222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.11.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.12.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题. 二、填空题13.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.14.【分析】先解不等式再根据交集的定义求解即可【详解】由题因为则解得;又因为则即解得或则或即故答案为:【点睛】本题考查绝对值不等式分式不等式的解法考查交集考查运算能力解析:()4,013⎛⎫-∞⋃ ⎪⎝⎭,【分析】先解不等式,再根据交集的定义求解即可 【详解】由题,因为132x x -<-,则23132x x x -<-<-,解得43x <; 又因为11x<,则10xx -<,即()10x x -<,解得0x <或1x >, 则{|0A B x x ⋂=<或413x <<},即()4,013⎛⎫-∞⋃ ⎪⎝⎭, 故答案为:()4,013⎛⎫-∞⋃ ⎪⎝⎭, 【点睛】本题考查绝对值不等式、分式不等式的解法,考查交集,考查运算能力15.【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式若 解析:()1,2-【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B 的结果.【详解】因为12x -<,所以13x ,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2AB =-.故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.16.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m=≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.17.{34}【分析】利用交集的概念及运算可得结果【详解】【点睛】本题考查集合的运算考查交集的概念与运算属于基础题解析:{3,4}. 【分析】利用交集的概念及运算可得结果. 【详解】{}1234A =,,,,{}345B =,, {}34A B ∴⋂=,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.18.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a 平行于b 所在的平面是直线a ∥直线b 的既不充分也不必要条件;所以(1)错;(2)l 垂直于平面α内的无数条直线是直线l ⊥平面α的必解析:⑶⑷ 【分析】根据线面位置关系以及充要关系概念进行逐一判断. 【详解】(1)“a 平行于b 所在的平面” 是“直线a ∥直线b ”的既不充分也不必要条件;所以(1)错;(2)“l 垂直于平面α内的无数条直线” 是“直线l ⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4) 【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.19.(1)(2)(4)【详解】试题分析:(1)∵A ⊆B 分类讨论:①当则此时②当且即此时③当且即时此时综合有故(1)正确;(2)故(2)正确;故(3)不正确;故(4)正确;考点:集合的交并补运算解析:(1)(2)(4) 【详解】试题分析:(1)∵A ⊆B ,分类讨论: ①当,则,此时,②当,且,即,此时,③当,且,即时,,,此时,综合有,故(1)正确;(2),故(2)正确;1,()()()0,()A B A B U x A B f x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故(3)不正确;,故(4)正确; 考点:集合的交并补运算20.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17 【分析】 用27C 减去4即得. 【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=.故答案为:17. 【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .三、解答题21.(1)1,15⎛⎫-∞- ⎪⎝⎭;(2) 3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭【分析】(1)当命题,p q 为真时,求得a 的取值范围,“2321t a t --≤≤-”是p 成立的充分条件即[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭,计算求解即可; (2)p q ∧为假,p q ∨为真,即即,p q 一真一假,分情况讨论即可得出结果.【详解】(1)命题p 为真时,1a =或()()2221014140a a a ⎧->⎪⎨∆=--⨯-⨯<⎪⎩,解得:1a =或1a >或1715a <-,综上:p 为真,a 的取值范围为[)17,1,15⎛⎫-∞-⋃+∞ ⎪⎝⎭;命题q 为真时,()2=2140a ∆+->,解得a 的取值范围为31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭; 若“2321t a t --≤≤-”是p 成立的充分条件,则[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭, ①2321t t -->-时,15t <-,符合题意. ②2321172115t t t --≤-⎧⎪⎨-<-⎪⎩时,即15115t t ⎧≥-⎪⎪⎨⎪<-⎪⎩,11515t -≤<-. ③2321231t t t --≤-⎧⎨--≥⎩时,151t t ⎧≥-⎪⎨⎪<-⎩,无解.综上:t 的取值范围为:1,15⎛⎫-∞-⎪⎝⎭. (2)若p q ∧为假,p q ∨为真,即,p q 一真一假:①p 真q 假:171153122a a a ⎧<-≥⎪⎪⎨⎪-<<⎪⎩或,即317215a -<<-②p 假q 真:171153122a a a ⎧-≤<⎪⎪⎨⎪≤-≥⎪⎩或,即112a ≤<.综上:实数a 的取值范围:3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭. 【点睛】方法点睛:根据命题的真假求參数的取值范围的方法 (1)求出当命题,p q 为真命题时所含參数的取值范围; (2)判断命题,p q 的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解參数的取值范围. 22.(1)()1,1,0,1,1;4;(2)0k =;证明见解析. 【分析】(1)直接代入计算A B -和(,)d A B ;(2)根据{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,可计算得0k =;然后表示出()()1|()|,ni i i i i a d A C B C c b c =-----=∑,分别讨论0i c =与1i c =两种情况.【详解】(1)()()12,21,11,12,211,1,0,1,1A B -=-----=;1(,)||1+1+0+1+1=4ni i i d A B a b ==-=∑;(2)证明:因为12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥, 1122(||,||,||)n n n A B a b a b a b S -=---∈,所以对于任意的,n A B S ∈,即对{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,所以得0k =.设12(,,,)n n C c c c S =∈则()()1|()|,niiiii a d A C B C c b c =-----=∑,当0ic=时,()()=i i i i i ia cbc a b ----;当1i c =时,()()()()=11i i i i i i i i a c b c a b a b ------=-. 所以()()()11||(,)||,nniiiiiii i d A a c b c a b d A B B C C ==--=--=-=-∑∑【点睛】解答该题的关键是需要注意理解并表示出()()1|()|,niiiii a d A C B C c b c =-----=∑,然后代入化简判断0i c =与1i c =两种情况. 23.(1){}13x x -<≤;(2)(0,2]. 【分析】分别求解一元二次不等式化简A 与B .(1)把2a =代入集合B ,再由交、并、补集的混合运算得答案; (2)由p ⌝是q 的充分不必要条件,得RA B ,进一步转化为两集合端点值间的关系列不等式组求解. 【详解】2{|650}{|16}A x x x x x =+->=-<<,{|(1)(1)0}{|1B x x a x a x x a =-+-->=<-或1}x a >+.(1)若2a =,则{|1B x x =<-或3}x >,{|13}R B x x =-, (){|16}{|13}{|13}R A B x x x x x x ∴⋂=-<<⋂-=-<;(2)若p ⌝是q 的充分不必要条件,A R1{|x x =≤-或6}x ≥则RAB .∴01116a a a >⎧⎪--⎨⎪+⎩且不等式组中两等号不同时成立,解得02a <. a ∴的取值范围是(0,2].【点睛】本题考查交、并、补集的混合运算以及利用包含关系求参数,考查充分条件与必要条件的判定方法,考查数学转化思想方法,是中档题. 24.(1)3m ≤;(2)m 1≥. 【分析】 (1)先求出AB ,再根据包含关系可得关于m 的不等式组,从而求实数m 的取值范围,注意对C 是否为空集分类讨论; (2)先求出A B ,再根据()A BD =∅得到关于m 的不等式,从而求实数m 的取值范围. 【详解】(1){}|27A x x =-≤≤,{}|35B x x =-≤≤,{}|25A B x x =-≤≤,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤,综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴m 1≥. 【点睛】本题考查集合的包含关系以及一元二次不等式的解的求法,注意根据集合关系得到不同集合中的范围的端点满足的不等式(或不等式组),要验证等号是否可取,还要注意含参数的集合是否为空集或全集. 25.0a <或144a << 【分析】题:p x R ∀∈,210ax ax ++>,对a 分类讨论:当0a =时,直接验证;当0a ≠时,可得2040a a a >⎧⎨∆=-<⎩.命题0:q x R ∃∈,200x x a -+=,可得10∆.由p q ∨为真命题,p q ∧为假命题,可得命题p 与q 必然一真一假.解出即可.【详解】解:命题:p x R ∀∈,210ax ax ++>,当0a =时,10>成立,因此0a =满足题意;当0a ≠时,可得240a a a >⎧⎨∆=-<⎩,解得04a <<. 综上可得:04a <.命题0:q x R ∃∈,200x x a -+=,∴1140a =-∆,解得14a . p q ∨为真命题,p q ∧为假命题,∴命题p 与q 必然一真一假.∴0414a a <⎧⎪⎨>⎪⎩或0414a a a <⎧⎪⎨⎪⎩或, 解得0a <或144a <<. ∴实数a 的取值范围是0a <或144a <<. 【点睛】本题考查了一元二次不等式与一元二次方程的解集与判别式的关系、简易逻辑的判定,考查了推理能力与计算能力,属于基础题. 26.(1)2m =;(2)()(),35,-∞-+∞.【分析】(1)求出集合A 、B ,根据交集运算结果得出关于m 的等式和不等式,即可求出实数m的值; (2)求出A R,由p ⌝是q 的必要条件,可得出RB A ⊆,可得出关于实数m 的不等式,即可求得实数m 的取值范围.【详解】 (1){}[]2230,1,3A x x x x R =--≤∈=-,{}()(){}[]222402202,2B x x mx m x x m x m m m ⎡⎤⎡⎤=-+-≤=-+⋅--≤=-+⎣⎦⎣⎦,又[]0,3A B ⋂=,则2023m m -=⎧⎨+≥⎩,解得2m =;(2)()(),13,RA =-∞-⋃+∞,且p ⌝是q 的必要条件,则RB A ⊆,所以,21m +<-或23m ->,解得3m <-或5m >. 因此,实数m 的取值范围是()(),35,-∞-⋃+∞. 【点睛】本题考查了利用交集的结果求参数,同时也考查了利用必要条件求参数,考查了推理能力与计算能力,属于中档题.。

常用逻辑用语(单元测试卷)-2020-2021高中数学新教材训练(人教A版必修第一册)(解析版)

常用逻辑用语(单元测试卷)-2020-2021高中数学新教材训练(人教A版必修第一册)(解析版)

《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“2,220x x x ∃∈++≤R ”的否定是( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220x x x ∃∈++>RD .2,220x x x ∃∈++≥R【答案】A【解析】 特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】∵:3p x <,:13q x -<<∴q p ⇒,但,∴p 是q 成立的必要不充分条件,故选C. 3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B4.(2020·湖南天心·长郡中学高三其他(文))已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( )A .x R ∃∈,2230x x ++>B .x R ∀∈,2230x x ++≤C .x R ∀∈,2230x x ++≥D .x R ∀∈,2230x x ++>【答案】C【解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥.故选:C.5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题【答案】D【解析】对于A ,改写成“若p ,则q ”的形式应为“若两个角都是直角,则这两个角相等”,则A 错误;对于B ,所给语句是命题,则B 错误;对于C ,边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形,对角线相互垂直,但不是菱形,则C 错误;对于D ,当5a =时,16450∆=-⨯<,方程x 2-4x +a =0无实根,则D 正确;故选:D6.(2020·全国高一课时练习)下列语句:①32>;②作射线AB ;③sin 3012=;④210x -=有一个根是-1;⑤1x <. 其中是命题的是( )A .①②③B .①③④C .③D .②⑤ 【答案】B【解析】解析②是祈使句,故不是命题,⑤无法判断真假,故不是命题.①③④符合命题的定义,故选:B.7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是( ) A .a ≥-3 B .a >-3C .a ≤-3D .a <-3【答案】D【解析】∵x +3≥0,∴A ={x |x ≥3-},又∵a ∈A 是假命题,即a ∉A ,∴a <3-.故选:D 8.(2020·湖南雨花·雅礼中学高三其他(理))设集合{}1,2M =,{}2N a=,则“1a =-”是“N M ⊆”的( )A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件 【答案】A【解析】当1a =-时,{}1N =,满足N M ⊆,故充分性成立; 当N M ⊆时,{}1N =或{}2N =,所以a 不一定满足1a =-,故必要性不成立.故选:A.9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x ≤1C .对任意实数x, 都有x ≤1D .存在实数x ,使x ≤1【答案】C【解析】特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .10.(2019·浙江湖州·高二期中)已知a R ∈,那么“1a >”是“21a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当1a >时,21a >成立,取2a =-,此时21a >成立,但是1a >不成立,“1a >”是“21a >”的充分不必要条件,故选:A.二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为21x <的一个充分不必要条件的有( ) A .1x <B .01x <<C .10x -<<D .11x -<<【答案】BC【解析】解不等式21x <,可得11x -<<, {}11x x -<< {}1x x <,{}11x x -<< {}01x x <<,{}11x x -<< {}10x x -<<,因此,使得21x <的成立一个充分不必要条件的有:01x <<,10x -<<.故选:BC.12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .21,04x R x x ∃∈-+<B .所有正方形都是矩形C .2,220x R x x ∃∈++=D .至少有一个实数x ,使310x += 【答案】AC【解析】由题意可知:原命题为特称命题且为假命题. 选项A. 原命题为特称命题,2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以原命题为假命题,所以选项A 满足条件. 选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程2220x x ++=中4420∆=-⨯<,所以方程无实数根,所以原命题为假命题,所以选项C 满足条件.选项D. 当1x =-时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.故选:AC13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“4a <”是“3a <”的必要条件;④“a b >”是“22a b >”的充分条件.其中真命题是( ).A .①B .②C .③D .④【答案】BC【解析】①由“a b =”可得ac bc =,但当ac bc =时,不能得到a b =,故“a b =”是“ac bc =”的充分不必要条件,故①错误;②因为5是有理数,所以当5a +是无理数时,a 必为无理数,反之也成立,故②正确;③当4a <时,不能推出3a <;当3a <时,有4a <成立,故“4a <”是“3a <”的必要不充分条件,故③正确.④取1a =,2b =-,此时22a b <,故④错误;故答案为:BC14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使2210x x ++=成立B .对任意的x 都有2210x x ++=成立C .对任意的x 都有2210x x ++=不成立D .存在x 使2210x x ++=成立 E.矩形的对角线垂直平分【答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.【答案】若x =2,则x 2-3x +2=0【解析】命题“当x =2时,x 2-3x +2=0”可以改写成“若x =2,则x 2-3x +2=0”故答案为:若x =2,则x 2-3x +2=016.(2020·安徽金安·六安一中高二期中(文))命题“0,210x x ∃>-≤”的否定是________. 【答案】0,210x x ∀>->【解析】命题为特称命题,则命题的否定为“0x ∀>,210x ”.故答案为:0x ∀>,210x .17.(2020·浙江高一单元测试)已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦ 【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故31123m m +≥-⎧⎨+≤⎩解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦. 四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.【答案】一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧【解析】已知中的命题改为“若p ,则q ”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.故答案为:一条直线是弦的垂直平分线;这条直线经过圆心且平分弦所对的弧19.(2020·上海)“0x >”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.【答案】2x =(答案不唯一) 1x >-(答案不唯一)【解析】“0x >”的充分非必要条件可以为2x =;一个必要非充分条件可以为1x >-;故答案为:2x =(答案不唯一);1x >-(答案不唯一)20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号) ①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若x y +为有理数,则x ,y 也都是有理数.④8x >.【答案】③ ③【解析】①②不是陈述句,④不能判断真假,均不符合命题定义,不是命题③是可以判断真假的陈述句,是命题;当x =y =时,x y +为有理数,但,x y 不是有理数 ∴③是假命题本题正确结果:③;③21.(2020·广东中山·高二期末)命题p :0x R ∃∈,200250x x ++=是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).【答案】特称命题 假【解析】由题知命题p :0x R ∃∈,200250x x ++=中条件为0x R ∃∈,故命题为特称命题,又因为方程2250x x ++=中2245160∆=-⨯=-<,故方程2250x x ++=没有根,所以命题为假命题.故答案为:特称命题;假.五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当1a >-时,方程2210ax x 有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知,x y 为非零自然数,当2y x -=时,4,2y x ==.【答案】答案见解析.【解析】(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若1a >-,则方程2210ax x 有两个不等实根,因为当0a =时,原方程只有一解,所以原命题是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知,x y 是非零自然数,若2y x -=,则4,2y x ==,是假命题.23.(2020·浙江)判断下列命题的真假.(1)2,560x R x x ∀∈-+=.(2)2,10x x ∃∈+=R .(3)*22,,20a b N a b ∃∈+=.【答案】(1)假命题;(2)假命题;(3)真命题.【解析】(1)假命题,因为只有2x =或3x =时满足2560x x -+=.(2)假命题,因为不存在实数x ,使210x +=成立.(3)真命题,因为存在正整数2和4,使222420+=.24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题.(3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【答案】(1)有的人不晨练;(2)2,10x x x ∃∈++≤R ;(3)存在平行四边形,它的对边不相等;(4);2,10x x x ∀∈-+≠R【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程20x x m ++=必有实数根.(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】(1)这一命题可以表述为“对所有的实数m ,方程20x x m ++=都有实数根”, 其否定为“存在实数m ,使得20x x m ++=没有实数根”,注意到当140m ∆=-<, 即14m >时,一元二次方程没有实根,因此其否定是真命题; (2)命题的否定是“存在末位数字是0或5的整数不能被5整除”,是假命题; (3)命题的否定是“任何一个梯形的对角线都不互相平分”,是真命题; (4)命題的否定是“存在一个数能被8整除,但不能被4整除”,是假命题.。

集合与常用逻辑用语练习测试题

第一练集合与常用逻辑用语1.(集合的基本运算)已知集合A {x|x 1或x 1},集合B {x|0 x 1},则()A. A B 1B. A B RC. C R A B 0,1D. A C R B【答案】D2.(集合的基本运算)若集合A x 0 x 2,且AI D. 1【答案】D【答案】A.0 或 1B.0 或 2C.1 或 2D.0 或 1 或 2【答案】C【解析】日H 儿寒二订或.故选C.5. (充分条件和必要条件)设x R , i 是虚数单位,则“ x 3”是“复数z x 2 2x 3 x 1 i 为纯虚数”的A.充分不必要条B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】CB ,贝卩集合B 可能是()【解析】由题意得 ,因为|心匸儿所以选 B.3.(集合的基本运算) 设集合M x | x 21,1 ,则集合C M N 中整数的个数为 ()A.3B.2C.1D.0【解析】 Q M x| x 2,2 ,N 1,1 , 2, 1 1,1 1,2 ,集合e^N 中整数只有0,故个数为 4.(集合间的关系) 故选C.1, 已知集合刖,若 ,则 ()【解析】由x 3,得x2 2x 3 3 2 2 3 3 0 , x 1 3 1 4.2而由{X 2x30,得X 3 .所以“x 3”是“复数z X2 2x 3 x 1 i为纯数”x 1 0的充要条件.故选C.6. (逻辑联结词)已知命题方程工=刃恥在〔Q + 电上有解,命题qEE”,有?+卄1 AU 恒成立,则下列命题为真命题的是()A. 沁C. D. mr.j【答案】B【解析】由题意知假真,所以,为真,故选B.7. (全称量词和存在量词)命题:“ X。

0,使2xo(x o a) 1 ”,这个命题的否定是()A. x 0,使2x(x a)1B. x 0,使2x(x a) 1C. x 0,使2x(x a)1D. x 0,使2x(x a) 1【答案】B8. (全称量词和存在量词)命题“卜护…沁+ 恒成立”是假命题,则实数的取值范围是().A. B. 或C. 或D. 或【答案】B【解析】命题“ ax2- 2ax+3>0恒成立”是假命题,即存在x € R,使“ ax2- 2ax+3< 0,当a=0时,不符合题意;当av0时,符合题意;当a>0时,△ =4a?- 12a>0?a>3, 综上:实数a的取值范围是:av0或a>3.9. (逻辑联结词与充分条件和必要条件的结合)已知命题p , q是简单命题,则“P q是真命题”是“ P是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分有不必要条件【答案】B【解析】由p q是真命题,可得p真q假或p假q真或p真q真;由p是假命题,知p 为真命题,则p q是真命题,所以已知命题p , q是简单命题,则“ p q是真命题” 是“ p是假命题”的必要不充分条件,故选 B.10. (集合运算与不等式、函数的结合)已知集合卜二-歹,r-()A. B. C.脸剧D.【答案】D【解析一匚厂吋,所以|』"曲-[孔习,选D.11. (充要条件和解析几何的结合)已知圆- l/+y2= r2(r>0).设条件p:0<r<3 ,条件圆上至多有个点到直线卜*—耳的距离为,则•是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C12. (充分条件和必要条件与数列的结合)在等差数列{a n}中,a i 2,公差为d,则“ d 4”是“ q, a?, a5成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由a b a?, a5成等比数列,得⑻d)2 ag 4d),即(2 d)2 2(2 4d),解得d 0 或d 4,所以“ d 4”是“ a i, a?, a§成等比数列”的充分不必要条件.13. (逻辑联结词与平面向量的结合)已知命题p:存在向量ad,使得a b a|b,命题q:对任意的向量a、b、c,若a b a c则b c.则下列判断正确的是()A.命题p q是假命题B.命题p q是真命题C.命题p q是假命题D.命题p q是真命题【答案】D【解析】对于命题p,当向量a,b同向共线时成立,真命题;对于命题q,若a为零向量则命题不成立,为假命题;所以命题p q是真命题,故选D.14. (命题综合判断)下列命题错误的是()A. 对于命题p : x R,使得X2 x 1 V 0,贝y P: x R,均有X2 x 1 0.B. 命题“若x2 3x 2 0,则x 1 ”的逆否命题为“若x 1,,则x2 3x 2 0. ”C. 若p q为假命题,则p,q均为假命题D. “X> 2”是“ x2 3x 2 >0”的充分不必要条件.【答案】C二.易错问题纠错练15. (忽视集合端点的取值而致错)设U R,已知集合A {x|x 1} , B {x|x a},且(C u A) B R,则实数a的取值范围是()A. ( ,1)B. ( ,1]C. (1, )D. [1,)【答案】A【解析】由A {x|x 1}有C u A xx 1,而(C U A) B R,所以a 1,故选A.【注意问题】充分借助数轴,端点取值要检验16. (“新定义”不理解致错)设P,Q是两个集合,定义集合P Q {x|x P,x Q}为P,Q 的“差集”,已知P {x|1 - 0},Q {x| x 2 1},那么Q P等于()xA.{x|0 x 1}B.{x|0 x 1}C.{x|1 x 2}D.{x|2 x 3}【答案】D【解析】从而有,T P {x|1 - 0},化简得:P {x|0 x 2},而Q {x|x 2 1},化x简得:Q {x|1 x 3} . T•定义集合P Q {x|x P,x Q},二Q P {x|2 x 3},故选D.【注意问题】要充分理解新定义和例子的内涵.17.集合A x, y |2x 3y 5 0,A x, y | y x 1,则A B 等于()A . 2,3 B. 2,3 C. 2,3 D. 2,3【答案】C无解},则图中阴 影部分所表示的集合是() 【答案】C中阴影部分表示的集合为(C u M )l N ,则(CjM )l N { 2, 1,2}. A.2个B.4个C.5个D. 8个【答案】A【解析】B 2,1 ,则子集为 ,2,1 ,共2个.故选A.20 .已知角 A 是 ABC 的内角,则“ cosA 1 ”是“ si nA — ”的条件2 2 (填“充分不必要”、“必要不 充分”、“充要条件”、“既不充分又不必要”之一).【答案】充分不必要 2tan x ③函数y x 的最小正周期为 一;④任意的锐角三角形 ABC 中,有sinB cosA 成1 tan x2 r立.其中所有正确结论的序号为 _________ .【答案】①②④【解析】①当a 1时,a 2 a 成立,所以a . a 成立,当a . a 时,a 2 a 成立,即18.设全集U2 R , M {x|x x 0}, N {m|关于x 的方程 m(m 1)(m4)x 3 要条件,则实数m 的取值范围是 【答案】 2 1 3‘221 .已知命题p : x【解析】因为p 是q 的充分非必要条件,所以,13, 是 A. { 1,0,1,2}B. { 1,0,2}C. { 2, 1,2}D. { 2,1,2}【解析】M{x|0 x 1} , C u M {x |x 0或x 1},且 N { 2, 1,0,1,2}.又图19 .已知集合A1,2 ,B { x,y |x A,y A,x yA },则B 的子集共有() 1或x 3,命题q: x 3m 1或x m 2,若p 是q 的充分非必 ,3m 1 m 2, 的真子集,故{3m 1 1解得: m 2 3 -m 1,又因为 33m 1 m 2,所以m 1,综上可知 2 2 1 -m -,故填 3 222 .下列结论:① a 1?是 a a ”的充要条件②存在 a1,x 0,使得 a x log a x ;a a 1 0,所以a 1,故正确;②根据指数函数与对数函数关于y x对称,可以知道,两个函数在直线上可以有两个交点,故存在a 1,x 0,使得a x log a x,正确;③当x 0时,y 0, x —时,y不存在,故周期不是一,错误;④因为锐角三角形,所2 2以A B ,故B A且为锐角,所以sinB sin A cosA,故正确,所以2 2 2填①②④。

郑州外国语学校必修第一册第一单元《集合与常用逻辑用语》测试(有答案解析)

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

常用逻辑用语测试题答案

原命题若p则q否命题若┐p则┐q逆命题若q则p

逆否命题若┐q则┐p

互为逆

否互逆否互

为逆否

互互逆

常用逻辑用语 常用逻辑用语主要包括三部分内容,命题以及命题的四种形式,充分必要条件,量词。考试时对本部分的考查主要有两个方面:一是全称量词与存在量词、全称命题与存在命题之间的关系,一般以选择题的形式出现,考查两种命题的否定命题的写法;第二是充分必要条件的推理判断以及四种命题的相互关系问题等。这些内容大多是以其他数学知识为载体,具有较强的综合性,一般在解答题中出现,考查对概念的理解与应用,难度不会太大。 一、基础知识 1、命题的定义:可以 叫做命题。 2、四种命题的形式: 原命题: ; 逆命题: ; 否命题: ;逆否命题: 。 (1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题; (3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 3、四种命题之间的相互关系: 一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题) ①、原命题为真,它的逆命题不一定为真。②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。 4、如果已知pq那么我们说,p是q的 条件,q是p的 条件。 若pq且qp,则称p是q的 条件,记为p?q. 5、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。 构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。 6、“或”、 “且”、 “非”的真值判断: (1)“非p”形式复合命题的真假与p的真假相反; (2)“p且q”形式复合命题当P与q同为真时才为真,其他情况时为假; (3)“p或q”形式复合命题当p与q同为假时才为假,其他情况时为真。 7、含有 ,叫做全称命题;含有 ,叫做特称命题。

高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

一、选择题1.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题 ②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题 ③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->” ④1a b +>是a b >的一个必要不充分条件 A .0B .1C .2D .34.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( )A .1B .2C .3D .47.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题8.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真9.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 10.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >11.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④12.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.若12,[3,4]x x ∀∈∃∈R ,使2211221225x x x x x ax +++-成立,则实数a 的取值范围是______. 14.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=; ④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上)15.若命题“x ∃∈R ,220x x a --<”是假命题,则实数a 的取值范围是______. 16.“14a =”是“对任意的正数x ,均有1ax x +≥”的________条件.17.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈, ②[]33-∈,③[][][][][]01234Z =⋃⋃⋃⋃,④整数,a b 属于同一类的充要条件是[]0a b -∈. 其中正确的个数是___________ 18.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________. 19.下列说法:(1)设a ,b 是正实数,则“a >b >1”是“log 2a >log 2b”的充要条件; (2)对于实数a ,b ,c ,如果ac >bc ,则a >b ; (3)“m=12”是直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的充分不必要条件;(4)等比数列{a n }的公比为q ,则“a 1>0且q >1”是对任意n ∈N +,都有a n+1>a n 的充分不必要条件;其中正确的命题有______ 20.给出下列四个命题中:①命题“若x ≥2且y ≥3,则x +y ≥5”为假命题.②命题“若x 2-4x +3=0,则x =3”的逆否命题为:“若x ≠3,则x 2-4x +3≠0”. ③“x >1”是“|x |>0”的充分不必要条件④关于x 的不等式|x +1|+|x -3|≥m 的解集为R ,则m ≤4. 其中所有正确命题的序号是______.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=,(1)若q 是真命题,求实数m 的取值范围; (2)若()p q ∧⌝为真命题,求实数m 的取值范围.23.已知p :2430x x -+<,q :()()210x m x m m R -++<∈.(1)求不等式2430x x -+<的解集;(2)若q 是p 的必要不充分条件,求m 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=.(1)若命题p :“x B ∀∈,都有x A ∈”为真命题,求实数a 的取值集合; (2)若C ≠∅,且“x A ∈”是“x C ∈”的必要条件,求实数m 的取值集合. 26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断两个命题p , q 的真假,结合复合命题真假关系进行判断即可. 【详解】对于命题p ,取1x =时,10<不成立,故命题p 为假命题, 对于命题 q ,1x =-时,23(1)(1)->-成立,故命题 q 为真命题,所以p q ∧为假命题,p q ⌝∧为真命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,故选:B 【点睛】本题主要考查复合命题真假关系的判断,结合条件判断命题p ,q 的真假是解决本题的关键.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.B解析:B 【分析】①1=1,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1abe e -=,则111a b a bb b b e e e e e e-+===+,再利用0b >,得出1b e >,从而求得a be -的范围,进而判断;④取特殊值,a e =,1b =即可判断. 【详解】解:①1=,1,所以1a b =++所以11a b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.7.C解析:C 【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案. 【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确; 若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确; 故选:C . 【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.8.C解析:C【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.10.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题, 不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.A解析:A 【分析】求出函数()y f x =的解析式,由函数()y f x =为偶函数得出ϕ的表达式,然后利用充分条件和必要条件的定义判断即可. 【详解】将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度,得到的图象对应函数的解析式为()sin 3sin 393f x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 若函数()y f x =为偶函数,则()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,当0k =时,6π=ϕ. 因此,“6π=ϕ”是“()y f x =是偶函数”的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.二、填空题13.【分析】先整理为关于的不等式恒成立求出相应的最值后得不等式在时能成立分离参数整理为求出诉最大值可得结论【详解】由得∴当时取得最小值∴使成立即使成立设设则∴即∴在时是增函数∴在上有∴故答案为:【点睛】 解析:(,5]-∞【分析】先整理为关于1x 的不等式恒成立,求出相应的最值后,得不等式222222154x x x ax -+--+-在2[3,4]x ∈时能成立,分离参数整理为223414x a x ≤++,求出223414x x ++诉最大值可得结论. 【详解】由2211221225x x x x x ax ≥++-+,得2212122(2)5x x x x ax +-≥-+-, ∴当2112x x =-时,()21212x x x +-取得最小值()22222221211224x x x x x ⎛⎫⎛⎫-+--=-+- ⎪ ⎪⎝⎭⎝⎭ ∴2[3,4]x ∃∈,使222222154x x x ax -+--+-成立,即2[3,4]x ∃∈,使223414a x x ++成立. 设3414t y t=++,设1234t t ≤<≤,则12120,316t t t t -<>, ∴12121212121233()(316)44444t t t t t t y y t t t t ---=+--=0<,即12y y <, ∴3414t y t=++在[3,4]∈时,是增函数. ∴223414x y x =++在[3,4]上有max 5y =,∴5a ≤. 故答案为:(,5]-∞. 【点睛】思路点睛:本题考查双变量不等式恒成立求参数范围.解题方法是先整理为以1x 为变量的不等式恒成立,又转化为关于2x 的不等式能成立,分离参数后求得函数的最值.14.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.15.【分析】由题意可知恒成立结合二次函数的性质可求的最小值从而可求出实数的取值范围【详解】原命题否定为真命题即∴因为图象开口向上对称轴为则∴故答案为:【点睛】本题考查了由不等式恒成立求参数的取值范围考查 解析:(],1-∞-【分析】由题意可知22a x x ≤-恒成立,结合二次函数的性质可求22x x -的最小值,从而可求出实数a 的取值范围. 【详解】原命题否定,x ∀∈R ,220x x a --≥为真命题,即22a x x ≤-,∴()2min2a x x≤-,因为22y x x =-图象开口向上,对称轴为1x =,则()2min2121x x-=-=-,∴1a ≤-,故答案为: (],1-∞-.本题考查了由不等式恒成立求参数的取值范围,考查了已知命题的真假性求参数的取值范围.本题的关键是由已知得不等式恒成立.16.充分不必要【分析】当时对任意的正数x 均有反过来当对任意的正数x 均有时通过讨论有成立即可判断【详解】当时对任意的正数x 均有当且仅当时等号成立;当对任意的正数x 均有时当时令此时不符合题意;当时显然不满足解析:充分不必要 【分析】当14a =时,对任意的正数x ,均有141a x x x x+=+≥,反过来,当对任意的正数x ,均有1a x x +≥时,通过讨论有14a ≥成立,即可判断.【详解】 当14a =时,对任意的正数x ,均有141a x x x x +=+≥==, 当且仅当12x =时等号成立; 当对任意的正数x ,均有1ax x+≥时,当0a <时,令0x =>,此时0ax x+=,不符合题意; 当0a =时,1≥x ,显然不满足题意;当0a >时,有1ax x+≥, 解得有14a ≥, 所以“14a =”是“对任意的正数x ,均有1ax x +≥”的充分不必要条件故答案为:充分不必要 【点睛】本题考查了充分性和必要性的判断,属于一般题.17.3【分析】根据2011被5除的余数为1可判断①;将=可判断②;根据整数集就是由被5除所得余数为01234可判断③;令根据类的定理可证明④的真假【详解】①由2011÷5=402…1所以2011∈1故①解析:3根据2011被5除的余数为1,可判断①;将3-=52-+,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令115a n m =+,225b n m =+,根据“类”的定理可证明④的真假. 【详解】①由2011÷5=402…1,所以2011∈[1],故①正确; ②由()3512-=⨯-+ 所以[]33-∉,故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确; ④假设115a n m =+,225b n m =+,()12125a b n n m m -=-+-,,a b 要是同类. 则 12m m =,即120m m -=,所以[]0a b -∈,反之若[]0a b -∈,即120m m -=,所以12m m =,则,a b 是同类. ④正确; 故答案为:3 【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.属中档题.18.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.19.(3)(4)【分析】利用充要条件不等式性质两直线垂直的充要条件等比数列为递增数列的条件逐一判断即可【详解】对于(1)求得所以是的充分不必要条件所以错误对于(2)不成立所以错误对于(3)直线与直线相互解析:(3)(4) 【分析】利用充要条件、不等式性质、两直线垂直的充要条件、等比数列为递增数列的条件,逐一判断即可. 【详解】对于(1)22"log log "a b >求得0a b >>,所以"1"a b >>是22"log log "a b >的充分不必要条件,所以错误对于(2)0c <不成立,所以错误对于(3)直线()2310m x my +++=与直线()()2230m x m y -++-=相互垂直,12m =或2m =-,所以正确 对于(4)1"0a >且1"q >可以推出对任意n N +∈,都有1n n a a +>,反之不成立,如数列16,8,4,2----,所以正确故答案为(3)(4) 【点睛】本题考查了命题真假的判断,涉及到不等式性质、充要条件、等比数列的单调性等知识,属于中档题.20.②③④【分析】命题的判断一一进行判断即可对于①显然为假命题;对于②逆否命题条件和结论都否定正确;对于③若x >1则|x|>0若|x|>0则x 不一定大于1;对于④f (x )=|x+1|+|x ﹣3|表示数轴解析:②③④ 【分析】命题的判断,一一进行判断即可.对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和. 【详解】对于①,显然为假命题;对于②,逆否命题,条件和结论都否定,正确;对于③,若x >1,则|x |>0.若|x |>0,则x 不一定大于1;对于④,f (x )=|x +1|+|x ﹣3|表示数轴上点x 到﹣1和3的距离之和,最小为4,所以m 4≤.故答案为②③④. 【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解答题21.(1)[)2,3;(2)12a <<. 【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围. 【详解】(1)当1a =时,由()()130x x --<,得p :13x <<, 由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3. (2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<. 即实数a 的取值范围是12a <<. 【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题.22.(1)2m ≥-;(2)2m <-. 【分析】(1)由题意知,q 是真命题等价于方程2210x x m +--=有实根,利用判别式0∆≥即可求解;(2)由题意知,分别求出p 、q ⌝为真命题时实数m 的取值范围,然后再取交集即可. 【详解】(1)因为0:R,q x ∃∈200210x x m +--=为真命题, 所以方程2210x x m +--=有实根, 所以判别式()4410m ∆=++≥, 所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<, 若:R,p x ∀∈()221x m x >+为真命题,则220mx x m -+<对任意的x ∈R 恒成立, 当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有2440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-, 又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-,所以实数m 的取值范围为2m <-. 【点睛】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题. 23.(1){}3|1x x <<(2)()3,+∞ 【分析】(1)分解因式得()()130x x --<,进而求解即可;(2)先将命题q 中不等式分解为()()10x m x --<,所以讨论m 与1的大小,当1m 时,不等式()210x m x m -++<的解是1x m <<,由q 是p 的必要不充分条,则2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,即可求解,同理讨论当1m <与1m =时的情况.【详解】解:(1)因为2430x x -+<,所以()()130x x --<,所以13x <<, 所求解集为{}|13x x <<.(2)因为q :()()210x m x m m R -++<∈,则()()10x m x --<当1m 时,不等式()210x m x m -++<的解是1x m <<,因为q 是p 的必要不充分条件,所以2430x x -+<的解集是()210x m x m -++<(1m )解集的真子集,所以3m >;当1m <时,不等式()210x m x m -++<的解是1m x <<,因为{}{}||131x x x m x <<⋂<<=∅,不合题意; 当1m =时,不等式2430x x -+<的解集为∅,不合题意. 综上,m 的取值范围是()3,+∞. 【点睛】本题考查含参数的一元二次不等式的解法,考查由充分必要条件求参数的范围,考查运算能力与分类讨论思想.24.充分不必要条件,证明见解析. 【分析】利用给出的定义、向量共面定理即可判断出关系. 【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出, 不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面, 即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示. p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.25.(1){2,3};(2){3}. 【分析】(1)解方程确定集合,A B ,再根据命题p 为真求得a ; (2)题意说明x C ∈是x A ∈的充分条件,由此可求得m 值. 【详解】 由题意{1,2}A =,(1)2a =时,{1}B =满足题意,2a ≠时,{1,1}B a =-, 则∵x B ∀∈,都有x A ∈,∴12a -=,3a =, ∴a 的取值集合是{2,3};(2)∵“x A ∈”是“x C ∈”的必要条件,∴x C x A ∈⇒∈.若280m ∆=-=,即m =±C =或{C =均不合题意, 又C ≠∅,∴0∆>,因此12{,}C x x =,又12,x A x A ∈∈, 因此不妨设11x =,22x =,则123m x x =+=.∴m 的取值集合是{3}.【点睛】关键点点睛:本题考查由充分必要条件求参数,解题方法是根据充分条件,必要条件的定义得出集合中元素的性质,从而得出结论.也可由充分必要条件与集合包含之间的关系确定集合的关系,从而得出结论. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<,故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤<②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
常用逻辑用语测试题
1.下列命题 :①2xxxR;②2xxxR; ③43;④“21x”的充要
条件是“1x,或1x”. 中,其中正确命题的个数是 ( )
A.0 B.1 C.2 D.3

2.已知命题p:xR,||0x,那么命题p为( )

A.xR,||0x B.xR,||0xC.xR,||0x D.xR,||0x
3.已知命题 :pxR,2x,那么命题p为( )

A.2xxR, B.2xxR, C.2xxR, D.2xxR,
4.下列命题中的真命题是( )
A.Rx使得5.1cossinxx B. xxxcossin),,0(

C.Rx使得12xx D. 1),,0(xexx
5.已知命题p:0xR,200220xx,那么下列结论正确的是( )
A.0:pxR,200220xx B.:pxR,2220xx
C.0:pxR,200220xx D.:pxR,2220xx

6.“2a”是“直线20axy与1xy平行”的( )
A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要
条件

7.命题p:实数x集合A,满足032xx2,命题q:实数x集合A,满

足032xx2,则命题p是命题q为真的( )
A、充分不必要条件 B、必要不充分条件 C、充要条件 D、非充分非必要条件
2

8.如果对于任意实数x,x表示不超过x的最大整数. 例如3.273,0.60.那
么“xy”是“1xy”的( )
A.充分而不必要条件B必要不充分条件C.充分必要条件D.既不充分也不必要条件

9.“ba0”是“ba)41()41(”的( )
A充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分条件也不必要条件
10.“2a”是“直线03:21yxal与直线14:2xyl互相垂直”的( )
A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件
11.“2m”是“直线(1)20mxy与直线(22)10mxmy相互垂直”的
( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

12.在ABC中,ABACBABC“” 是 ACBC“”的( )
A.充分而不必要条件B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要
二、填空题
13、判断下列命题的真假性:
①若m>0,则方程x2-x+m=0有实根 ②若x>1,y>1,则x+y>2的逆命题
③对任意的x∈{x|-2④△>0是一元二次方程ax2+bx+c=0有一正根和一负根的充要条件
14、“末位数字是0或5的整数能被5整除”的
否定形式是 ;
否命题是
15.若命题“x∈R,x2+ax+1<0”是真命题,则实数a的取值范围是 .
16、用符号“”与“”表示含有量词的命题:
(1)实数的平方大于等于0_________________ ______________. (2)存
在一对实数,使2x+3y+3>0成立 .
三、解答题
17.写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所
构成的这些复合命题的真假.

(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整
3

除;
(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形;

18.已知命题),0(012:,64:22aaxxqxp若非p是q的充分不必要条
件,求a的取值范围.

19.已知命题p:方程x2+mx+1=0有两个不等的负根;命题q:方程4x2+4(m-2)x+1=
0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.

20给定两个命题,
P
:对任意实数x都有012axax恒成立;Q:关于x的方程

02axx
4

有实数根;如果P与Q中有且仅有一个为真命题,求实数a的取值范围.
21..已知p:方程
2
10xmx
有两个不相等的负实根;q:方程

2
44(2)10xmx
无实根. 若"","",pqpq为真为假求实数m的取

值范围.

常用逻辑用语测试题参考答案
一.选择题
5

题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D C B D B C B A A A A C
二、填空题
13.假 假 真 假 ;14.否定形式:末位数是0或5的整数,不能被5整除;否命
题:末位数不是0或5的整数,不能被5整除 15. 16.
三、解答题

17解:(1)根据真值表,复合命题可以写成简单形式:

p或q:连续的三个整数的乘积能被2或能被3整除.
p且q:连续的三个整数的乘积能被2且能被3整除.
非p:存在连续的三个整数的乘积不能被2整除.
∵连续的三整数中有一个(或两个)是偶数,而有一个是3的倍数,
∴p真,q真,∴p或q与p且q均为真,而非p为假.
(2)根据真值表,只能用逻辑联结词联结两个命题,不能写成简单形式:
p或q:对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形.
p且q:对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形.
非p:存在对角线互相垂直的四边形不是菱形.
∵p假q假,∴p或q与p且q均为假,而非p为真.

18.解::46,10,2,|10,2pxxxAxxx或或

22
:2101,1,|1,1qxxaxaxaBxxaxa,或记或

而,pqAB,即12110,030aaaa
6

19.解: 若方程x2+mx+1=0有两不等的负根,则0042mm解得m>2,即命题p:
m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m
+3)<0

解得:1<m<3.即q:1<m<3. 因“p或q”为真,所以p、q至少有一为真,又
“p且q”为假,所以命题p、q至少有一为假, 因此,命题p、q应一真一假,即
命题p为真,命题q为假或命题p为假,命题q为真.

∴312312mmmmm或或 解得:m≥3或1<m≤2.

20.解:对任意实数x都有012axax恒成立000aa或
40a
;关于x的方程02axx有实数根41041aa;如果P

正确,且Q不正确,有44141,40aaa且;如果Q正确,且P不正确,有
041,40aaaa且或
.所以实数a的取值范围为4,410,.

21.解:若p为真,则24002mm解得2m.
若q为真,则2216(2)1616(43)0mmm,解得13m
7

pqpqpqpq“”为真,“”为假,
为真,为假,或为假,为真.

当p为真, q为假时, 213mmm或,解得3m,

当pq为假,为真时, 213mm,解得12m.
故实数m的取值范围是1,23,.

相关文档
最新文档