圣维南原理概念及应用
杆件的应力

σ
B A
D
C
E
O
ε
1. 弹性阶段 OAB:这一阶段可分为:斜直线 和微弯曲 :这一阶段可分为:斜直线OA和微弯曲
线AB,该段范围内,试件变形是弹性的,卸载后变形可完全恢复。 ,该段范围内,试件变形是弹性的,卸载后变形可完全恢复。 去外力后变形完全消失的性质称为弹性
σ
D
B A
C
E
O
ε
1.OB段:弹性阶段 段
一、薄壁圆筒的扭转 等厚度的薄壁圆筒,平均半径为 壁厚为 等厚度的薄壁圆筒 平均半径为 r,壁厚为 t
壁厚t<<r
m 薄壁圆筒扭转试验
m
预先在圆筒的表面画上等间距 的纵向线和圆周线, 的纵向线和圆周线,从而形成 一系列的正方格子。 一系列的正方格子。 观察到的现象 圆周线保持不变; 圆周线保持不变;纵向线发生倾斜 设想 薄壁圆筒扭转后,横截面保持为大小均无改变的平面, 薄壁圆筒扭转后,横截面保持为大小均无改变的平面,相邻 两横截面绕圆筒轴线发生相对转动。 两横截面绕圆筒轴线发生相对转动。
标准试件 标距 l,通常取 l
= 5d
或l
= 10 d
夹头
夹头
液压式万能试验机 活塞
油管
活动试台
底座
低碳钢——含碳量在0.3%以下的碳素钢。 (I)低碳钢Q235(A3钢)试件的拉伸图:
(P— ∆L) 曲线——拉伸图 P
D B A
C
E
O
∆l
P
σ
P A
∆l
ε ∆l
l
(Ⅱ)低碳钢 Q 235 的应力—应变图( σ−ε )曲线
二、剪应力互等定理
纯剪切:单元体上只有 剪应力而无正应力。
有限元网格划分中的圣维南原理及其应用

机械设计与制造
2012 年 8 月
Machinery Design & Manufacture
63
文章编号:1001-3997(2012)08-0063-03
有限元网格划分中的圣维南原理及其应用 *
宋少云 尹 芳
(武汉工业学院 机械工程学院,武汉 430023)
Sain Vaint Principle of Meshing in Finite Elememt Method
中图分类号:TH16 文献标识码:A
1 引言
随着自主创新时代的到来,越来越多的中小型机械设计制
造企业开始使用计算机软件来辅助其进行分析,而其中尤以对结 构进行力学分析的有限元软件用得最为广泛。在使用有限元软件
*来稿日期:2011-10-12 *基金项目:湖北省教育厅资助项目(Q20101701)
11.4
设计变量,根据装配偏差分析模型和质量-成本函数构造多目标
优化模型,结合 NSGA-II 算法提出一种解决公差分配的有效方
法。最后应用车身侧围简易框架案例阐述了公差分配过程,取得
了 Pareto 解集。优化结果表明该方法对公差分配策略优化效果良
好,为工程人员提供了灵活的公差设计选择方案。
参考文献
[1] Speckhart F H.Calculation of Tolerance Based on a Minimum Cost Approach[J].Journal of Engineering for Industry,1992,94(2):447-453.
在远离关注点的地方,无论网格是稀疏还是密集,对于所关 注的地方,影响是不大的。若要得到关注点的精确值,局部加密该
以一个平面应力的例子来说明网格划分中的圣维南原理。 处的网格是较好的方法。
弹性力学5-圣维南原理

P
P
P
第二章 平面问题的基本理论 2.7 圣维南原理及其应用
低碳钢拉伸,轴力N是通过端部夹头的接触力得到的,
而接触力的分布情况是不清楚的,但面力的合成结果可以 确定,即轴力N,这个试件端部的精确的边界条件是无法写 出的,如何来求解这类问题?
为了扩大弹性力学解的适用范围,放宽这种限制,圣维南提 出了局部影响原理—圣维南原理。
图(a)
F
图(b) F
F
第二章 平面问题的基本理论 2.7 圣维南原理及其应用
圣维南原理的应用
注意:
边界力替换时必须满足静力等效条件。 只能在次要边界界
F
F/A
第二章 平面问题的基本理论 2.7 圣维南原理及其应用
圣维南原理的应用
(2)通过圣维南原理的使用,可以将一些难以处理 的边界条件转化为基本方程所能够满足的边界条件, 使得弹性力学问题得到解答。
h/2
h/2
∫ ∫ σ( ) −h/ 2
x x=±l
ydy ⋅1 = ±
−h/ 2
f x ( y) ydy ⋅1
h/2
h/2
∫ ∫ −h / 2 (τ xy ) x=±l dy ⋅1 = ± −h / 2 f y ( y)dy ⋅1
第二章 平面问题的基本理论 2.7 圣维南原理及其应用
h/2
h/2
第二章 平面问题的基本理论 边界条件写法小结
(2)直接写法(直接在图上标出)
例2.5 写出如图所示弹性体的应力边界条件。
左竖直边界:x=0 σ x x=0 = −γ y τ xy x=0 = 0 上水平边界:= y=0 σ y y 0= = −q τ xy y 0 = τ 0 右竖直边界:x=b
弹性力学-边界条件

xy x, y, z
x, y, x, y, x, y
x
y
xy
独立的(3个)
(3个)
3、位移分量f
ux, y, vx, y, w 独立的(2个) ux, y, vx, y(2个)
二. 平面问题基本方程
平面应力问题 1、平衡微分方程 (2个)
x x
悬臂梁的例子:
边界的积分式
h
2 h
x
xldy 0
2
h
2 h
x
xl ydy M
2
h
2 h
xy
dy 0
xl
2
设中性轴为z
y xdA z 1
自由端边界条件:
y
h
2 h
x
xl dy 0
2h 2 hFra bibliotekh x
2 h
x
xldy
2 h
f x dy
2
2
h
h
y xl f y
2 h
y
dy
xl
2 h
f ydy
2
2
根据圣维南原理,同时还要考虑等效力矩:
h
h
2 h
x
xl ydy
2 h
f x ydy
2
2
平面问题小结
0
左 : (
)
x
s
q, (
)
xy
s
0
上 : (
y)s q, (
y
)
x
s
0
下: (
圣维南原理验证过程

圣维南原理验证过程课程:有限元方法及CAE软件班级:姓名学号:圣维南原理验证过程一、圣维南原理简介圣维南原理属于弹性力学中一个局部效应原理,是由法国力学家圣维南于1855年提出。
意在表述:分布于弹性体上一小块面积(或者体积)内的载荷所引起的物体中的应力,在离载荷作用区域较远的地方,基本只同载荷的合力和合力矩有关,载荷的具体分布只影响载荷作用区域附近的应力分布。
(弹性力学一般原理-圣维南原理)二、圣维南原理验证实验的前提条件1.载荷作用于弹性体。
2.满足静力学等效条件。
3.只能在边界上用圣维南原理,在主要边界上不能使用。
三、圣维南实验验证的准备工作此次实验验证使用的零件是一根梁,长为800mm,截面宽为50mm,截面高为30mm,材料属性为弹性模量为2.07E11Pa,泊松比为0.29。
分析软件为ANSYS15.0。
图1 梁二维图四、圣维南原理有限元分析过程4.1 模型建立使用ANSYS建模工具,建立三维模型图,如图2。
图2 三维模型4.2 有限元分析前置处理前处理包括:单元选取、常数设置、材料属性定义、网格划分和载荷施加等。
单元选取为solid 8nodes185。
常数不需设定。
材料选取为stl_AISI-C1020(钢)。
采用映射网格划分,如图3所示。
图3 网格划分对模型一端施加全约束,另一端施加集中力1500000N,如图4所示。
图4 载荷施加4.3 有限元求解对已经前置处理好的模型进行求解,求解成功后,如图5所示。
图5 求解图4.4 有限元后处理通过GUI显示,施加载荷后模型的应力分布情况,如图6所示。
图6 应力分布情况4.5 等效载荷的分析mm,重复以上步骤,将集中力改为等效的均布载荷分布力,大小为1000N/2得到模型的载荷分布及应力分布如图7、图8所示。
图7 均布载荷分布情况图8 等效均布载荷五、圣维南原理有限元分析结论由上述分析可知,两次不同的加载,远离作用区域的应力几乎不发生变化,集中载荷作用时在梁上最小值为1117.42N,均布载荷作用时在梁上最小值为1087.21N,二者几乎相等,且此值分布在远离作用域的大部分区域中,变化较大的只集中在作用区域附近。
圣维南原理的有限元模拟

圣维南原理的有限元模拟一、引言1.1 背景介绍圣维南原理(Saint-Venant principle)是结构力学中的一个重要原理,用于描述材料在载荷作用下的变形和应力分布规律。
有限元模拟是一种数值计算方法,可以通过将材料划分成多个小区域,近似求解对应的微分方程,得到材料的应力和变形信息。
本文将探讨圣维南原理在有限元模拟中的应用。
1.2 本文结构本文将按照以下结构对圣维南原理的有限元模拟进行全面、详细、完整且深入地探讨。
1.圣维南原理简介2.有限元方法概述3.圣维南原理的有限元建模步骤4.圣维南原理的有限元模拟实例分析5.结论与展望二、圣维南原理简介2.1 原理概述圣维南原理是由法国的物理学家圣维南(Barré de Saint-Venant)提出的。
原理表明,当材料受到外部载荷作用时,在远离载荷集中区域的地方,材料的应变和应力分布几乎不受载荷的具体形状和大小影响,只受载荷的总体效果影响。
也就是说,当材料足够远离载荷区域时,可以将载荷看作是完全分布在材料上的,而不再考虑具体的载荷形状。
2.2 适用范围圣维南原理适用于线弹性材料受到小应变、小变形和小应力情况下的力学分析。
对于非线性材料、大应变和大变形的情况,圣维南原理的适用性将受到限制。
三、有限元方法概述3.1 什么是有限元方法有限元方法是一种将连续介质离散化的数值计算方法,将连续的材料划分成多个小单元,通过对每个单元进行有限元分析,近似求解材料的应力、应变等物理量。
有限元方法通过求解以下微分方程来描述材料的行为:其中,σ为应力张量,ε为应变张量,C为弹性模量矩阵,F为外力矢量。
3.2 有限元方法的步骤有限元方法可以分为以下几个步骤:1.几何建模:对要分析的结构进行几何建模,选择合适的坐标系和节点。
2.选择适当的有限元类型和形状函数。
3.网格划分:将结构划分成多个小单元,构建有限元网格。
4.建立节点位移和约束:确定各个节点的位移和约束条件。
基于有限元法验证圣维南原理

基于有限元法验证圣维南原理圣维南原理(Saint-Venant's principle)是结构力学的基本原理之一,用于描述原点附近一个点的剪力和弯矩与距离原点较远的地方施加的力和力矩之间的关系。
该原理可以通过有限元法进行验证。
有限元法是一种数值分析方法,广泛应用于工程领域。
它将结构划分为许多小的单元,通过计算每个单元的力和位移来近似求解整个结构的行为。
为验证圣维南原理,我们可以通过有限元法建立一个简化的结构模型。
假设我们有一个简单的悬臂梁,其长度为L、截面积为A、杨氏模量为E,并施加一个在距离原点处施加的力F。
首先,我们将梁划分为多个小单元,每个单元的长度为ΔL。
然后,我们根据材料的本构关系以及几何约束条件,建立结构的刚度矩阵和载荷向量。
对于每个单元,我们可以假设其形变是线性的,并利用梁的几何约束条件来推导出局部坐标系与全局坐标系之间的关系。
然后,利用局部坐标系中的应力-应变关系,我们可以得到每个单元的刚度矩阵。
接下来,我们将所有单元的刚度矩阵组装成整个结构的刚度矩阵,并将力向量组装为载荷向量。
根据位移与力的关系,我们可以通过求解线性方程组来得到结构的位移。
最后,我们可以利用得到的位移来计算结构上不同点的剪力和弯矩,并与理论解进行比较。
根据圣维南原理,当距离原点较远的地方施加的力和力矩趋于零时,该点的剪力和弯矩也会趋于零。
通过对模型的计算结果进行分析,我们可以验证圣维南原理。
如果模型中的剪力和弯矩在距离原点较远的地方确实趋于零,那么圣维南原理就得到了验证。
需要注意的是,由于有限元法是一种数值近似方法,验证结果可能会受到一些误差的影响。
因此,在进行验证时,我们需要合理选择模型的划分和参数,并进行适当的误差分析。
总结起来,通过建立一个简化的结构模型,并利用有限元法进行计算和分析,我们可以验证圣维南原理。
这种方法不仅可以验证圣维南原理,还可以用于研究和分析其他结构力学问题。
圣维南原理及其证明

圣维南原理及其证明:历史与评述赵建中云南大学资源、环境与地球科学学院地球物理系,昆明650091 摘要圣维南原理(Saint-Venant’s Principle)是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题。
本文以圣维南原理研究中最重要的事件为线索,对圣维南原理的发展历史作了综述,对重要的研究工作和结果进行了评论;发表和论证了图平定理不是圣维南原理的数学表达、一般的圣维南原理不成立、修正的圣维南原理可以证明为真等观点;介绍了建立修正的圣维南原理的数学方法;阐述了研究圣维南原理证明问题的意义;目的在于引起对这些有关圣维南原理的基本问题的关注和讨论,促进圣维南原理研究的繁荣和发展。
关键词圣维南原理,历史,图平定理,证明,否证,数学表达,修正,意义中图分类号:0343.2AMS Subject Classifications: 74G50引言弹性力学的圣维南原理已经有一百多年的历史了[1,2]。
早期有关原理有重要的文章[39] 。
波西涅克(Boussinesq)[3]于1885年、勒夫(Love)[4]于1927 年分别发表了圣维南原理的一般性陈述。
然而Mises[5]认为勒夫陈述不清楚并提出修改的陈述,其后的论证既可以看作是对一般的Mises 陈述的否证,又可以看作是对具有特殊条件的Mises 陈述的证明。
Sternberg [6]赞同Mises的修改,他的论证也可以既看作是对Mises 陈述(Sternberg称为圣维南原理的传统陈述)的一般性的否证,又看作是对附加了条件的Mises 陈述的证明。
Truesdell[10]于1959年断言,如果关于等效载荷的圣维南原理为真,它“必须是”线性弹性力学“一般方程的数学推论”。
这就从理性力学的角度提出了圣维南原理的证明问题,圣维南原理被视为一个数学命题,其真理性需要证明。
毫无疑问,圣维南原理的数学证明成了一个学术热点。
为了揭示原理隐秘的内涵,或者说破解原理之谜,学者们花费了巨大的努力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圣维南原理概念及应用
圣维南原理(Saint-Venant's principle)是结构力学中的一个基本原理,用于分析结构中的局部应力和变形情况。
该原理由法国工程师圣维南(Adhémar Jean Claude Barré de Saint-Venant)于1850年提出。
1.配筋设计:在混凝土结构设计中,圣维南原理可以用于确定钢筋的布置和数量。
根据原理,当受压区域扩展到一定距离时,混凝土已经能够充分承受全部或部分荷载,因此钢筋的布置可以逐渐减少或停止。
这样可以节省材料成本,同时保证结构的安全性。
2.桥梁设计:桥梁常常受到集中载荷作用,例如车辆通过桥梁时的荷载。
根据圣维南原理,在桥梁超过集中荷载作用区域之后,结构各个部分的应力和变形将逐渐趋于均匀分布。
因此,在桥梁设计中,可以通过局部应力和变形的分析,确定结构各个部分的尺寸和形状,以满足结构的强度和稳定性要求。
3.弹性力学分析:圣维南原理常常用于弹性力学分析中,用于研究结构受到集中载荷作用时的应力和变形情况。
根据原理,当点载荷作用于结构后,结构会出现局部应力和变形,但这些局部效应将逐渐衰减,直至远离载荷作用点处不再有显著影响。
4.土力学应用:土力学中的圣维南原理主要用于分析岩土体中的应力和变形情况。
例如,在地基工程中,当地基承受集中载荷时,通过圣维南原理可以确定地基中的应力分布和变形情况。
这对于评估地基的稳定性和设计土方工程具有重要意义。
5.材料力学分析:在材料力学中,圣维南原理被用于研究材料的局部破坏行为。
根据原理,当材料受到集中载荷作用时,局部应力集中在载荷
作用点附近,然后逐渐衰减。
这对于研究材料的破坏机理和优化材料性能具有重要意义。
总之,圣维南原理是结构力学中一个重要的基本原理,用于分析结构的局部应力和变形情况。
应用领域广泛,涵盖了混凝土结构设计、桥梁设计、弹性力学分析、土力学应用和材料力学分析等。
通过合理应用圣维南原理,可以提高结构的安全性和稳定性,同时优化设计和施工方案。