z变换自动控制原理

合集下载

自动控制原理课程简介

自动控制原理课程简介

《自动控制原理》课程简介课程编号:A1620025课程名称:自动控制原理学分/学时:4/64开课学期:第5学期课程类型:专业必修课程课程性质:必修先修课程:《高等数学A(1)》、《高等数学A(2)》、《线性代数》、《电路》、《复变函数与积分变换》、《模拟电子技术》、《数字电子技术》、《信号与系统分析》适用专业:自动化考核方式:考试考核形式:大作业、期中测试、实验评估、期末考试等组合形式建议教材:(1)谢克明编著.自动控制原理(第3版).电子工业出版社,2010年(2)常熟理工学院电气及自动化工程学院自编讲义.自动控制原理实验指导书,校内讲义,2015年内容简介:《自动控制原理》课程是一门研究自动控制系统的基本概念、基本原理和基本分析与设计方法的基础工程课程,本课程主要内容包括自动控制系统建模、自动控制系统分析和自动控制系统设计(校正)三个方面。

通过本课程的教学,让学生掌握分析与综合SISO自动控制系统的经典控制理论与方法,并能初步结合实际,分析和设计控制系统,以及在MATLAB与Simulink支持下对控制系统进行计算机辅助分析和设计。

为今后进一步深入学习和研究其他控制理论与控制系统设计打下坚实的基础。

自动控制原理Automatic Control Theory课程编号:A1620025学分:4学时:64学时(讲课:56学时实验:8 学时实践:0学时)学时:周开课学期:第5学期课程类型:专业必修课程课程性质:必修先修课程:《高等数学A(1)》、《高等数学A(2)》、《线性代数》、《电路》、《复变函数与积分变换》、《模拟电子技术》、《数字电子技术》、《信号与系统分析》适用专业:自动化建议教材:(1)谢克明编著.自动控制原理(第3版).电子工业出版社,2010年(2)常熟理工学院电气及自动化工程学院自编讲义.自动控制原理实验指导书,校内讲义,2015年主要参考书:(1)胡寿松主编.自动控制原理(第5版).科学出版社.2007年(2)李友善主编.自动控制原理(第3版).国防工业出版社.2005年(3)富兰克林,鲍威尔主编; 李中华,张雨浓译著.自动控制原理与设计.人民邮电出版社.2007年开课学院:电气与自动化工程学院修订日期:2018年9月一、课程说明《自动控制原理》课程是自动化专业学生学习和掌握自动控制系统的基本概念、基本原理和基本分析与设计方法的基础工程课程,它是自动化专业的一门专业必修课程,在第五学期开设。

自动控制原理-第9章 离散系统初步

自动控制原理-第9章  离散系统初步

232第9章 线性离散系统初步从控制系统中信号的形式来划分控制系统的类型,可以把控制系统划分为连续控制系统和离散控制系统,在前面各章所研究的控制系统中,各个变量都是时间的连续函数,称为连续控制系统。

随着计算机被引入控制系统,使控制系统中有一部分信号不是时间的连续函数,而是一组离散的脉冲序列或数字序列,这样的系统称为离散控制系统。

离散控制系统是以微处理器及微型计算机为基础,融汇计算机技术、数据通信技术、CRT 屏幕显示技术和自动控制技术为一体的计算机控制系统,它对生产过程进行集中操作管理和分散控制。

离散系统与连续系统相比,有许多分析研究方面的相似性。

利用z 变换法研究离散系统,可以把连续系统中的许多概念和方法,推广应用于离散系统。

本章首先给出信号采样和保持的数学描述,然后介绍z 变换理论和脉冲传递函数,最后研究线性离散系统稳定性、稳态误差、动态性能的分析与综合方法。

9.1 离散系统通常,当离散控制系统中的离散信号是脉冲序列形式时,称为采样控制系统或脉冲控制系统;而当离散系统中的离散信号是数码序列形式时,称为数字控制系统或计算机控制系统。

在理想采样及忽略量化误差情况下,数字控制系统近似于采样控制系统,将它们统称为离散系统。

9.1.1 采样控制系统采样器在采样控制系统中可以有多个位置,用得最多的是误差采样控制的闭环采样系统,其典型结构图如图9-1所示。

图中,S 为采样开关,)(s G h 为保持器的传递函数,)(0s G 为被控对象的传递函数,)(s H 为测量元件的传递函数。

233*图9-1 采样系统典型结构图9.1.2 数字控制系统数字控制系统的典型原理图如图9-2所示。

它由工作于离散状态下的计算机(数字控制器))(s G c ,工作于连续状态下的被控对象)(0s G 和测量元件H(s)组成。

在每个采样周期中,计算机先对连续信号进行采样编码(即D A 转换),然后按控制律进行数码运算,最后将计算结果通过A D 转换器转换成连续信号控制被控对象。

(自动控制原理)采样控制系统

(自动控制原理)采样控制系统
X(s )= M(s ) N(s ) 的多项式, 其中, 其中,M(s )及 N(s )分别为复变量s 的多项式,并
且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (

自动控制原理第7章1

自动控制原理第7章1

|ωXm频(ajxω谱的)|是:频信率号分的量X频,离*(谱散j,信) 其号T1最xk*高(t)频的X[率傅j(为氏ω变km换axs,)为] 如xX(t*)(不jω包) 含T1 k任何X[大j(ω于 kωs )]
频谱|X*(jω)|是以采样频率ωs为周期,由无限多x(t)的频谱|X(jω)|叠加 而成。当ωs≥2ωmax时,离散信号的频谱为无限多个孤立频谱组成的 离散频谱,其中与k=0对应的是采样前原连续信号的频谱,幅值为
2020/12/3
17
零阶保持器的时域特性gh(t)如图所示。它是高度为1宽度为T
的方波。 gh (t)
gh (t)
1
1
0
T
t0
T
t
零阶保持器 gh (t) 1(t) 1(t T ) -1
零阶保持器的传递函数
Gh (s)
1 esT s
零阶保持器频率特性
Gh
(
j
)
1
e jT
j
1 e jT
Gh ( j) j
的闭合时间远小于采样周期T,可认为采样时间τ=0,x(t)在τ内
变化很小,因此x*(t)可用幅值为x(kT),宽度为τ的脉冲序列近似
表示。
x(t)
x* (t )
x(t)
x* (t)
T
4T
o
t
采样过程
o T 2T 3T
t
脉冲序列x*(t)表达式为
x*(t) x(0)[1(t) 1(t )] x(T )[1(t T ) 1(t T )]
ωmax<ω<ωmax)的连续信号采样,当s 采 样2角max频率
或采样频率 fs 2 fmax
则由采样得到的离散信号能够无失真地恢复到原来的连续信号。

自动控制原理第七章采样系统

自动控制原理第七章采样系统

n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S

1 S+1
F (z)=
z z–1

z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t

kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T

z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。

自动控制原理胡寿松第七章解析

自动控制原理胡寿松第七章解析

1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0

11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e

自动控制原理习题及答案

自动控制原理习题及答案

1. 采样系统结构如图所示,求该系统的脉冲传递函数。

答案:该系统可用简便计算方法求出脉冲传递函数。

去掉采样开关后的连续系统输出表达式为对闭环系统的输出信号加脉冲采样得再对上式进行变量替换得2. 已知采样系统的结构如图所示,,采样周期=0.1s。

试求系统稳定时K的取值范围。

答案:首先求出系统的闭环传递函数。

由求得,已知T=0.1s,e-1=0.368,故系统闭环传递函数为,特征方程为D(z)=1+G(z)=z2+(0.632K-1.368)z+0.368=0将双线性变换代入上式得+1 4 +( 7 -0.632K)=0要使二阶系统稳定,则有K>0,2.736-0.632K>0故得到K的取值范围为0<K<4.32。

3. 求下列函数的z变换。

(1). e(t)=te-at答案:e(t)=te-at该函数采样后所得的脉冲序列为e(nT)=nTe-anT n=0,1,2,…代入z变换的定义式可得E(z)=e(0)+P(T)z-1+e(2T)z-2+…+e(n )z-n+…= + e-aT z-1+2Te-2aT z-2+…+n e-naT z-n+…= (e-aT z-1+2e -2aT z-2+…+ne-naT z-n+…)两边同时乘以e-aT z-1,得e-aT z-1E(z)=T(e-2aT z-2+2e-3aT z-3+…+ne-a(n+1)T z-(n+1)+…)两式相减,若|e-aT z-1|<1,该级数收敛,同样利用等比级数求和公式,可得最后该z变换的闭合形式为(2). e( )=答案 e( )=对e( )= 取拉普拉斯变换.得展开为部分分式,即可以得到化简后得(3).答案:将上式展开为部分分式,得查表可得(4).答案:对上式两边进行z变换可得得4. 求下列函数的z反变换(1).答案:由于所以得所以可得(z)的z反变换为e(nT)=10(2n-1)(2).答案:由于所以得所以E(z)的z反变换为e(nT)=-n-1n+2n=2n-n-1(3).答案:由长除法可得E(z)=2z-1-6z-3+10z-5-14z-7+…所以其反变换为e*( )= δ( -T)- δ( - )+1 δ( -5T)-14δ( -7 )+18δ( -9 )+…(4).答案:解法1:由反演积分法,得解法2:由于所以得最后可得z 反变换为5. 分析下列两种推导过程:(1). 令x(k)=k1(k),其中1(k)为单位阶跃响应,有答案:(2). 对于和(1)中相同的(k),有x(k)-x(k-1)=k-(k-1)=1试找出(2)与(1)中的结果为何不同,找出(1)或(2)推导错误的地方。

自动控制原理 第七章 第二讲 离散系统的稳定性分析

自动控制原理 第七章 第二讲 离散系统的稳定性分析
R(s)

1 − e −Ts s
K s( s + 1)
C(s)
解:系统的开环传递函数为 Tz 1 (1 − e−T )z G(z) = (1 − z −1 )Z 2 = (1 − z −1 ) − 2 s (s + 1) (z − 1) (z − 1)(z − e−T ) 把T=0.1代入化简得 代入化简得
整理后可得 Routh表为 表为 0.158Kω2+1.264ω+(2.736-0.158K)=0 w2 0.158K 2.736-0.158K w1 1.264 w0 2.736-0.158K
要使系统稳定, 必须使劳斯表中第一列各项大于零, 要使系统稳定 必须使劳斯表中第一列各项大于零 即 0.158K>0 和 2.736-0.158K>0 > > 所以使系统稳定的K值范围是 < < 所以使系统稳定的 值范围是0<K<17.3。 值范围是 。 结论2: 一定 一定, 越大 系统的稳定性就越差 越大, 稳定性就越差。 结论 :T一定,K越大 系统的稳定性就越差。
(1) 单位阶跃输入时 r(t)=1(t) (2) 单位斜坡输入时 r(t)=t (3) 单位加速度输入时 r(t)=t2/2
z R( z ) = z −1
z →1
K p = lim[1 + G ( z )]
Tz R( z ) = ( z − 1) 2
K v = lim( z − 1)G ( z )
π T π ω =− 0 T
Im z平平
π j T
ω=
0
σ
π
-1
ω =0 1 Re
-jT
2 、离散系统稳定的充要条件: 离散系统稳定的充要条件 稳定的充要条件:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z变换自动控制原理
第一部分:什么是z变换
z变换是一种离散域的数学工具,用于将离散时间域信号转换为复频域。

它是傅里叶变换在离散信号处理中的扩展。

z变换通过将离散时间信号表示为复变量z的函数来表示,并通过对z变量进行变换来分析和处理信号。

第二部分:z变换的基本原理
z变换的基本原理是将离散时间信号表示为z的多项式形式,通过对多项式进行变换来得到信号的频域表示。

z变换将离散时间信号转换为复平面上的函数,其中复平面上的点对应于信号的频谱。

通过对z变换进行逆变换,可以将信号从频域转换回时间域。

第三部分:z变换在自动控制中的应用
在自动控制中,z变换广泛应用于系统建模和分析。

通过将差分方程转化为z域的代数方程,可以方便地进行系统性能分析和设计。

以下是一些z变换在自动控制中的常见应用:
1. 系统传递函数表示:z变换可以将差分方程转换为系统的传递函数表示,从而方便地分析系统的频域特性和稳定性。

2. 系统响应分析:通过对z变换后的系统传递函数进行频域分析,可以获得系统的幅频特性和相频特性,进而评估系统的稳定性和性能。

3. 控制器设计:z变换可以用于控制器的设计和分析。

通过将控制器的差分方程转化为z域的传递函数,可以方便地进行控制器的频域设计和性能评估。

4. 离散控制系统建模:z变换可以将连续时间域的控制系统建模转换为离散时间域,从而方便进行离散控制系统的分析和设计。

5. 信号处理:z变换在离散信号处理中也有广泛应用。

通过z变换,可以对离散信号进行滤波、频谱分析等操作。

总结:
本文介绍了z变换的基本原理和在自动控制中的应用。

z变换是一种离散域的数学工具,可以将离散时间信号转换为复频域,方便进行系统建模和分析。

在自动控制中,z变换广泛应用于系统传递函数表示、系统响应分析、控制器设计、离散控制系统建模和信号处理等方面。

通过对z变换的理解和应用,可以更好地理解和设计自动控制系统。

相关文档
最新文档