求解两个序列的最长公共子序列的递推次序
运筹学教案动态规划

运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。
2. 掌握动态规划的基本原理和方法,能够解决实际问题。
3. 学会使用动态规划解决最优化问题,提高解决问题的效率。
二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。
2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。
3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。
四、教学准备1. 教材:《运筹学导论》或相关教材。
2. 课件:动态规划的基本概念、原理、方法及应用案例。
3. 编程环境:为学生提供编程实践的平台,如Python、C++等。
五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。
2. 讲解:讲解动态规划的基本原理和方法。
3. 案例分析:分析实际问题,展示动态规划的应用。
4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。
5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。
2. 案例分析:评估学生运用动态规划解决实际问题的能力。
3. 编程实践:评估学生动手实现动态规划算法的能力。
4. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。
2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。
3. 了解动态规划在、数据挖掘等领域的应用。
八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。
2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。
3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。
《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);
Pascal动态规划-复习

[题2] 数塔
● 如下图所示的数塔,从顶部出发,在每一结点可以选择向左下走或是 向右下走,一直走到底层,要求找出一条路径,使路径上的数的和最 大。数塔层数用n表示,1<=n<=100。
[题2] 数塔
贪心法。时间上有保证,但得不到最优解。主要原因是贪心法只顾 眼前利益,不考虑长远利益。 在规定时间内得到正确结果,唯一的方法就是“动态规划”。
dpl(i,j)=min{dpl(i-1,j)+v(i,j),dpl(i,j-1)+h(i,j)}
[题5] 机器分配
【问题描述】 总公司拥有高效生产设备M台,准备分给下属的N个公司。各分公司
若获得这些设备,可以为国家提供一定的盈利。问:如何分配这M台设
备才能使国家得到的盈利最大?求出最大盈利值。其中M≤15,N≤10。 分配原则:每个公司有权获得任意数目的设备,但总台数不得超过总设
下面以示意图表示动态规划的过程:所选路径为:9-12-10-18-10
注意分析时,有以下几个特点:
(1)将问题划分成了4个阶段;
(2)每个阶段均得到了“部分”的最优解,得到最优解时,需要进行条件判断;
(3)从最下面一层往顶层推导。
[题3] 棋盘路径问题
【题目简介】 有一个n*m的棋盘,左下角为(1,1),右上角为(n,m),如下图: 有一颗棋子,初始位置在(1,1),该棋子只能向右走或者向上走,问该 棋子从(1,1)到(n,m)一共有几条路径? 输入:两个整数n和m 输出:一个数,路径总数
● 第i级台阶,可以从第i-2级台阶迈2级台阶到达,也 可以从第i-1级台阶迈1级台阶到达
上楼梯问题
● 慢在哪里?
● 重叠的问题被计算了多次! ● 例如:计算f[5]时,f[5]=f[3]+f[4];而f[4]=f[3]+f[2], 此时,f[3]又被计算了一遍。 ● 每次计算f[i]时,都要递归到f[0]或f[1]! ● 时间复杂度变成了O(N!)
第3章-动态规划算法

算法复杂度分析:
算法matrixChain的主要计算量取决于算法中对r, i和k的3重循环。循环体内的计算量为O(1),而3重 循环的总次数为O(n3)。因此算法的计算时间上界 为O(n3)。算法所占用的空间显然为O(n2)。
22
3.1.4 构造最优解 若将对应m[i][j]的断开位置k记为s[i][j],在计算出最 优值m[i][j]后,可递归地由s[i][j]构造出相应的最优 解。 s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在 矩阵Ak和Ak+1之间断开,即最优的加括号方式应为 (A[i:k])(A[k+1:j)。
21
m[2][5]
min
m[2][2] m[3][5] m[2][3] m[4][5]
p1 p2 p5 p1 p3 p5
0 2500 35 2625 1000
15 35 5
20 20
13000 7125
m[2][4] m[5][5] p1 p4 p5 4375 0 3510 20 11375
}
}
T(Apxq*Bqxr)=O(p*q*r)
10
A, B, C, D
A 5010 B 1040 C 4030 D 305
(A((BC)D)) (A(B(CD))) ((AB)(CD)) (((AB)C)D) ((A(BC))D)
计算量分别为:16000, 10500, 36000, 87500, 34500
矩阵的连乘积可以有许多不同的计算次序。这种 计算次序可以用加括号的方式来确定。若一个矩 阵连乘积的计算次序完全确定,也就是说该连乘 积已完全加括号,则可以依此次序反复调用2个 矩阵相乘的标准算法计算出矩阵连乘积。
DP教案(1)

• 在分治算法中,为了解决一个大问题,我们总是将 它分解成两个或更多的小问题,然后分别解决每个 小问题,再把各小问题的解答组合起来就得到原来 问题的解。小问题通常和原问题本质相似,只是规 模小些,一般都可以用递归的方法来解决,如汉诺 塔问题和快速排序都是例子。 • 有些问题当把问题分解成子问题,使之能够从这些 子问题的借得到原问题的解时,子问题的数目太多, 如果把每个子问题再分解,必将得到更多的子问题, 以至于最后解决问题需要耗费指数级的时间。
动态规划算法的基本步骤
如果碰到一个问题,能够满足以上两个条件的话, 那么就可以去进一步考虑如何去设计使用动态 规划: (1)划分阶段。把一个问题划分成为许 多阶段来思考 (2)设计合适的状态变量(用以递推的角 度) (3)建立状态转移方程(递推公式) (4)寻找边界条件(已知的起始条件) 如果以上几个步骤都成功完成的话,我们 就可以进行编程了。
算法分析
• 根据动态规划的原理,由后往前进行搜索。 1·对a(n)来说,由于它是最后一个数,所以当从a(n)开始查找时, 只存在长度为1的不下降序列; 2·若从a(n-1)开始查找,则存在下面的两种可能性: ①若a(n-1)<a(n)则存在长度为2的不下降序列a(n-1),a(n)。 ②若a(n-1)>a(n)则存在长度为1的不下降序列a(n-1)或a(n)。 3·一般若从a(i)开始,此时最长不下降序列应该按下列方法求出: 在a(i+1),a(i+2),…,a(n)中,找出一个比a(i)大的且最长的不下 降序列,作为它的后继。 • 4.用数组b(i),c(i)分别记录点i到n的最长的不降子序列的长度和点i 后继接点的编号
最长不下降序列拓展二
求本质不同的最长不下降序列个数有多少个? 如:1 2 3 4 6 5 8 10 9 有, 1 2 3 4 6 8 10 , 1 2 3 4 5 8 10, 1 2 3 4 6 8 9 ,1 2 3 4 5 8 9 都是本质不同的。 但对于 1 2 2 3 3 5 4 f 1 2 2 3 3 5 4 t 1 1 1 2 2 4 4 答案有8个,其中4个1 2 3 5 ,4个1 2 3 4
简述动态规划的最优性原理及应用

简述动态规划的最优性原理及应用1. 动态规划的最优性原理动态规划是一种求解最优化问题的方法,它通过将问题分解为更小的子问题,并通过保存中间结果来减少重复计算的次数。
1.1 最优子结构性质动态规划的最优性原理基于最优子结构性质。
最优子结构性质指的是一个问题的最优解包含其子问题的最优解。
当一个问题满足最优子结构性质时,我们可以用递归的方式将问题分解为更小的子问题,然后通过解决这些子问题来得到原问题的最优解。
1.2 重叠子问题性质动态规划的最优性原理还依赖于重叠子问题性质。
重叠子问题性质指的是在求解一个问题时,我们会多次遇到相同的子问题。
通过保存中间结果,我们可以避免对相同的子问题重复计算,从而提高算法的效率。
2. 动态规划的应用动态规划的最优性原理可以应用于解决各种不同的问题,包括最长公共子序列、背包问题、图的最短路径等。
2.1 最长公共子序列最长公共子序列问题是指在两个序列中找到一个最长的公共子序列,该子序列不需要在原序列中是连续的。
通过动态规划的最优性原理,我们可以将最长公共子序列问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
2.2 背包问题背包问题是指在给定的容量下,选择一些物品放入背包中,使得物品的总价值最大。
通过动态规划的最优性原理,我们可以将背包问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
2.3 图的最短路径图的最短路径问题是指在一个带有加权边的有向图中,找到从一个节点到另一个节点的最短路径。
通过动态规划的最优性原理,我们可以将图的最短路径问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
3. 动态规划的实现步骤使用动态规划求解问题的一般步骤如下:1.定义状态:明确问题所求解的状态是什么,一般用函数或数组表示。
2.确定状态转移方程:通过分析问题的最优子结构,构建状态转移方程,表示当前状态与前一个状态之间的关系。
3.初始化边界条件:根据问题的实际情况,初始化边界条件,来解决最小规模的子问题。
五大算法

一、分治算法在计算机科学中,分治法是一种很重要的算法。
字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作一次比较即可排好序。
n=3时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法所能解决的问题一般具有以下几个特征:1) 该问题的规模缩小到一定的程度就可以容易地解决2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
lcs算法详解

程序员编程艺术第十一章:最长公共子序列(LCS)问题0、前言程序员编程艺术系列重新开始创作了(前十章,请参考程序员编程艺术第一~十章集锦与总结)。
回顾之前的前十章,有些代码是值得商榷的,因当时的代码只顾阐述算法的原理或思想,所以,很多的与代码规范相关的问题都未能做到完美。
日后,会着力修缮之。
搜遍网上,讲解这个LCS问题的文章不计其数,但大多给读者一种并不友好的感觉,稍感晦涩,且代码也不够清晰。
本文力图避免此些情况。
力保通俗,阐述详尽。
同时,经典算法研究系列的第三章(三、dynamic programming)也论述了此LCS问题。
有任何问题,欢迎不吝赐教。
第一节、问题描述什么是最长公共子序列呢好比一个数列S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则S称为已知序列的最长公共子序列。
举个例子,如:有两条随机序列,如 1 3 4 5 5 ,and 2 4 5 5 7 6,则它们的最长公共子序列便是:4 5 5。
注意最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence, LCS)的区别:子串(Substring)是串的一个连续的部分,子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。
比如字符串acdfg同akdfc 的最长公共子串为df,而他们的最长公共子序列是adf。
LCS可以使用动态规划法解决。
下文具体描述。
第二节、LCS问题的解决思路穷举法解最长公共子序列问题时最容易想到的算法是穷举搜索法,即对X的每一个子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列,并且在检查过程中选出最长的公共子序列。
X和Y的所有子序列都检查过后即可求出X和Y的最长公共子序列。
X的一个子序列相应于下标序列{1, 2, …, m}的一个子序列,因此,X共有2m个不同子序列(Y亦如此,如为2^n),从而穷举搜索法需要指数时间(2^m * 2^n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解两个序列的最长公共子序列的递推次序
求解两个序列的最长公共子序列的递推次序可以通过动态规划算法实现。
假设有两个序列A和B,分别为A[1...m]和B[1...n],定义
dp[i][j]表示序列A[1...i]和B[1...j]的最长公共子序列的长度。
递推公式为:
当A[i] = B[j]时,dp[i][j] = dp[i-1][j-1] + 1
当A[i] ≠ B[j]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
其中,dp[i-1][j-1]表示如果A[i]和B[j]相等,则最长公共子序列长度加1;dp[i-1][j]表示如果A[i]和B[j]不相等,则将A[i]从序列A中删除,继续比较A[1...i-1]和B[1...j]的最长公共子序列长度;dp[i][j-1]表示如果A[i]和B[j]不相等,则将B[j]从序列B中删除,继续比较A[1...i]和B[1...j-1]的最长公共子序列长度。
最终,dp[m][n]即为序列A和B的最长公共子序列的长度。
根据递推公式,可以从dp[1][1]开始,按照顺序计算dp[i][j],直到计算到dp[m][n]为止。
具体的递推次序为:
1. 先计算dp[1][1]
2. 再计算dp[2][2]
3. ...
4. 最后计算dp[m][n]
计算dp[i][j]时,需要用到dp[i-1][j-1],dp[i-1][j],dp[i][j-1]这
三个位置的值,因此需要按照从左到右,从上到下的顺序计算。
所以,递推次序为从左到右,从上到下依次计算dp[i][j]。