浅谈极限思想
极限思想的辩证思考与理解

极限思想的辩证思考与理解引言随着社会的快速发展,各种形式的竞争越来越激烈,只有克服自身的极限,才能在激烈的竞争中立于不败之地。
因此,人们开始尝试突破自己的极限,在这一过程中需要不断地思考,提高自己的辩证思维能力。
本文将从辩证思考的角度去探讨极限思想,分析其本质及发展趋势。
极限思想的本质极限思想是对个人身体、精神和环境等各种因素存在的极限条件,通过挑战和突破这些极限,以超越自我、实现个人价值的一种思想和行为。
可以说,极限思想是突破自身和超越自己的一种全新思维模式。
极限思想充分体现了人们对自身能力的信心和对成功的追求,同时也是一种鼓励个人克服困难和挑战自己的力量。
在实践中,极限思想不仅仅体现在运动等方面,而是涉及到个人人生各方面的挑战,如职业发展、个人成长等。
因此,极限思想的本质不仅仅是对自身的严格要求,而是通过超越极限来实现自我提高,实现人生的价值。
极限思想的发展趋势极限思想作为一种新型的思维模式,不断得到广泛的认同和运用。
随着大众生活水平的提高和人们精神追求的升级,极限思想也在不断地变化和发展中。
在过去,人们往往会将极限设定在各种身体耐力挑战活动上,如爬山、跳伞、潜水等,在这些活动中可以感受到挑战的刺激和成就的喜悦。
但现在,极限思想已经不单纯局限在体育运动上,更多地延伸到职业上、到心理上、到生活中的方方面面。
人们开始对自己的职业和人生更加关注,不断拓宽自己的思维和视野,不断挑战自己的认知界限,成为一种全新的、更加广泛的、更加深层次的思维方式。
同时,随着科技的发展和时代的变迁,人们也需要不断探索、学习更多的知识,锻炼自己的跨界思维能力。
在当前时代,各种行业之间的融合和交错,需要人们具备更多的跨界能力和解决问题的能力,需要更加跨越式的思维模式来进行创新和突破。
尤其是在互联网时代,人们必须具备开辟未知领域、创新自我的能力,始终拥有自信心和勇气,积极迎接机遇和挑战。
因此,在今后的日子里,应该将极限思想看作是人们从容应对未来挑战的重要工具和支撑点。
浅析极限思想的产生与发展9(1)汇编

题 目: 浅析极限思想的产生与发展学 院:数学与信息科学学院 专 业:数学与应用数学 班 级:2011级1班 姓 名:季满 学 号: 20110501005 指导教师: 曹志军2015 年 5月 20 日毕 业 论 文浅析极限思想的产生和发展【摘要】极限思想是一种重要的数学思想,这个理论的完善历经几个世纪。
由远古的萌芽时期,到中世纪后随着微积分的创立和应用得到进一步发展,再到18世纪后随着微积分的严密化极限思想达到成熟,形成完善系统的极限理论,这期间布满了众多数学家和哲学家辛勤的汗水和孜孜追求的奋斗足迹。
极限思想的发展历程,充分体现了人类探索真理、追求创新的宝贵精神,充分体现了人类认识世界和改造世界的强烈愿望。
极限思想是一种重要的数学思想,是辩证法在数学中的完美体现。
本文阐述了对极限思想的辩证理解,阐述了通过极限这一工具,如何从有限认识了无限,从对事物的近似认识到精确认识,从事物的多样性变化中认识了统一性的变化,在直与曲的对立中认识了统一。
【关键词】极限思想;发展;辩证法;辩证统一The emergence and development of the limit idea 【Abstract】limit thought is an important mathematical idea. It is formed through a long historical process. It is from ancient infancy to the further development with the creation and application of calculus in the middle ages. It forms a complete system limit theory with the further close of calculus which is after the eighteenth century. The process is filled with many sweats and the struggle footprints of mathematicians and philosophers. The development process of limit thought fully reflects the human search for truth and the precious spirit which is in pursuit of innovation. The development process of limit thought also fully reflects strong desire to understand the word and transform the world.Limit thought is an important mathematical idea. Dialectics is displayed perfectly in the mathematics. The paper describes the dialectical understanding about limit thought. We recognize the infinite from limited thought and the accurate understanding from approximate understanding through the limit thought. We recognize the unity changes from diversity changes and recognize straight and curved unity from the opposition.【Key Words】limit thought ;development ;dialectics ;dialectical unity目录1 引言 (1)2极限思想的发展分期 (1)2.1极限思想的萌芽时期 (1)2.2极限思想的发展时期 (2)2.3极限思想的完善时期 (2)3极限思想的本质探索 (3)3.1有限运算的规律不能用于无限运算 (3)3.2极限概念的代数化 (3)3.3极限概念的本质 (4)4极限思想的辩证理解 (4)4.1有限与无限的辩证统一 (4)4.2量变与质变的辩证统一 (5)4.3多样性与统一性的辩证统一 (5)4.4直与曲的辩证统一 (5)结论 (6)参考文献 (6)致谢 (7)石家庄学院毕业论文1引言极限思想的萌芽时期可以追溯到2000多年前,其中著名的古希腊哲学家芝诺,提出了一个悖论,那就是运动不存在,从经验上来看,这个悖论的结论是荒谬的,但是由于当时人们的认识有限,特别是对极限缺乏认识,使得这个悖论当时没有人能够给出正确的解释,这也是人们第一次闯进极限这个领域。
中国数学极限思想的例子

中国数学极限思想的例子
极限是微积分的最基本的概念,也是考研学生在学习微积分的时候很难理解的一个概念,了解了极限的概念,对于学习微积分具有很大的意义。
早在春秋战国时期,道家代表人物庄子就有了极限的思想。
据《庄子》“天下篇”中记载:“一尺之锤,日取其半,万事不竭”,意思是说一尺长的木棒每天去掉前一天所剩的一半,如此下去,永远取不完,这反映了古人对极限的一种思考,也提供了一个“无穷小量”的实际例子,这个经典论断,至今在微积分的教学中还经常使用。
我国古代的极限思想与方法主要用于求面积,体积等理论。
刘徽继承和发扬了先秦诸子关于极限的思想,用“割圆术”和“阳马术”等成功地解决了求圆的面积的问题。
刘徽从圆内接正六边形开始,不断割圆,“又按为图,以六瓣之一面乘半径,因而三之,得一二瓣之幂,若又割之,次以一二瓣之一面乘半径,因而六之,则得二一四瓣之幂,割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”。
刘徽以后,探求圆周率有成就的学者,先后有南朝的何承天、皮延宗和祖冲之等人,其中以祖冲之成就最大。
祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算,一直切割到二万四千五百一一六边形,依法求出每个内接正多边形的边长最后求得直径为一丈的圆,它的圆周长在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽
之间。
极限思想和方法的运用,扩大了人们的思维空间,产生了许多重要的结论和经典故事。
极限思想及应用百科

极限思想及应用百科极限思想及应用是数学中的一个重要概念,通过对数列、函数等数学对象在某个趋近于某点的过程中的变化趋势进行研究,从而帮助我们理解数学问题的本质和解决实际应用问题。
下面将从极限的概念、性质以及应用等方面回答这个问题。
首先,极限的概念。
极限可以分为数列的极限和函数的极限两种情况。
对于数列而言,如果存在一个实数L,使得数列中的每一项的差值与L的差值无论多么小,只要足够靠近某一项的时候,都能满足这个条件,则我们说这个数列的极限存在,并且L就是它的极限。
对于函数而言,如果对于函数在某一点x0的一个去心邻域内的每一个x值,函数值与L的差值可以任意小,只要足够靠近x0的时候,都能满足这个条件,则我们说这个函数在x0处的极限存在,并且L就是它的极限。
极限可以用符号“lim”表示,例如数列an的极限为L可以表示为lim an=L,函数f(x)的极限为L可以表示为lim f(x)=L。
其次,极限的性质。
极限具有唯一性、有界性、保号性、四则运算法则等重要性质。
对于唯一性而言,如果数列或函数的极限存在,则它的极限是唯一的。
对于有界性而言,如果数列或函数的极限存在,则它的极限是有界的,也就是说,存在一个数M,使得数列或函数的值都在一个范围内。
对于保号性而言,如果数列或函数的极限存在且大于(小于)零,则它的数列或函数中必然存在正数(负数)。
对于四则运算法则而言,若两个数列或函数的极限都存在,则它们的和差积商的极限也都存在且满足相应的关系。
最后,极限的应用。
极限思想在数学和其他领域的应用非常广泛。
在数学中,极限的概念是微积分学的基础,通过利用极限思想,可以研究函数的连续性、可导性、积分等重要性质。
在物理学中,极限思想可以用来描述物体在足够小的时间或空间间隔内的瞬时变化情况,比如速度、加速度、力等概念都可以通过求极限来得到。
在工程学中,极限思想可以用来分析和设计复杂的系统,比如电路、机械结构等。
在经济学中,极限思想可以用来评估市场需求和供应的变化,分析企业的效益和利润最大化等问题。
极限思想及其应用开题报告

极限思想及其应用开题报告极限思想及其应用开题报告一、引言极限思想是数学中的重要概念,它在数学分析、物理学、工程学等领域中有着广泛的应用。
本文将探讨极限思想的定义、性质以及在实际问题中的应用。
二、极限思想的定义与性质1. 极限的定义极限是数列或函数在某一点或无穷远处的趋势。
对于数列来说,当数列中的元素随着自变量趋近于某一值时,如果数列的极限存在且唯一,那么我们称该数列收敛,否则称其发散。
对于函数来说,当自变量趋近于某一值时,如果函数的极限存在且唯一,那么我们称该函数在该点连续,否则称其在该点不连续。
2. 极限的性质极限具有一些重要的性质,包括保序性、唯一性、有界性等。
其中,保序性指的是如果一个数列收敛,则它的极限是唯一的;唯一性指的是如果一个函数在某一点连续,则它在该点的极限是唯一的;有界性指的是如果一个数列收敛,则它是有界的。
三、极限思想在实际问题中的应用1. 物理学中的应用在物理学中,极限思想被广泛应用于描述物理量的变化趋势。
例如,对于速度的定义是位移随时间的变化率,即速度等于位移的极限。
通过极限思想,我们可以推导出匀速直线运动、匀加速直线运动等物理规律。
2. 工程学中的应用在工程学中,极限思想被用于解决实际问题,如结构设计、流体力学等。
例如,在桥梁设计中,我们需要考虑桥梁在极限荷载下的变形情况,以确保其安全性。
又如,在流体力学中,我们可以通过极限思想分析流体的速度、压力等参数,从而优化流体传输系统。
3. 经济学中的应用在经济学中,极限思想被用于分析经济现象的变化趋势。
例如,通过对边际效用的极限分析,我们可以确定最优的生产和消费策略。
又如,在市场需求分析中,我们可以通过极限思想推导出需求曲线的斜率,从而评估市场的竞争力。
四、结论极限思想作为数学中的重要概念,在实际问题中有着广泛的应用。
通过对极限的定义与性质的分析,我们可以更好地理解和应用极限思想。
在物理学、工程学和经济学等领域,极限思想为我们解决实际问题提供了有力的工具。
例析极限思想 解决实际问题

例析极限思想解决实际问题
极限思想是一种从极端出发,把问题推向极端,从而找出最优解的思维方式。
它可以用来解决实际问题,如企业管理、组织管理、交通规划、工程设计等。
例如,在企业管理中,企业可以采用极限思想来提高企业效率,比如把最重要的事情放在最优先的位置,把最不重要的事情放在最后的位置,有效地分配企业的资源,提高企业的效率。
在组织管理中,极限思想可以用来解决组织内部的冲突,比如把最重要的事情安排在最优先的位置,把最不重要的事情安排在最后的位置,有效地解决组织内部的冲突,提高组织的效率。
在交通规划中,极限思想可以用来优化交通系统,比如把最重要的道路放在最优先的位置,把最不重要的道路放在最后的位置,有效地解决交通拥堵问题,提高交通的效率。
在工程设计中,极限思想可以用来优化设计,比如把最重要的部分放在最优先的位置,把最不重要的部分放在最后的位置,有效地解决设计中的问题,提高设计的效率。
总之,极限思想可以用来解决实际问题,如企业管理、组织管理、交通规划、工程设计等,有效地提高效率,改善工作效率。
极限思想的探讨

引言极限的思想是近代数学的一种重要思想.所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想.极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的完美应用,同时也为辩证法论证世界提供了丰富的表现例证.有了极限思想,常数和变数、有限和无限、精确和近似、任意和确定、抽象和具体、量变与质变、直线与曲线等矛盾问题在这里都得到了完美的科学体现和辩证的统一.用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果.极限思想作为一种哲学和数学思想,其发展经历了思想萌芽、理论发展和理论完善时期.在其漫长曲折的演变历程中,布满了众多哲学家和数学家们的奋斗足迹,闪烁着人类智慧的光芒.极限理论的形成为微积分提供了理论基础,为人类认识无限提供了强有力的工具,它从方法论上凸显出来高等数学不同于初等数学的魅力,是近现代数学发展的一种重要思想和数学方法.理清极限思想的发展过程,熟练掌握极限解题方法,揭示极限思想的核心内容与哲学思想的内在联系,对理解和解决数学史和数学哲学史上的一些疑难问题问将有重大的帮助.1 产生与发展庞加莱说过:能够作出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和神秘美等能力的人,而且只限于这种人.一切数学概念都来自于社会实践,经过千锤百炼从而被提炼为概念,再经过使用、推敲、充实、拓展,不断完善为经典的理论.毫无疑问,极限也是社会实践的产物.1.1 极限思想的产生极限思想的产生可以追溯到古代,战国时代哲学家庄周所著的《庄子.天下篇》中就有关于原始的极限思想的应用:“一尺之棰,日取其半,万世不竭”.意思是一尺长的木棒,第一天取去一半,剩下二分之一尺,第二天再取去二分之一尺的一半,剩下四分之一尺…….按照这样的分法分下去,长度越来越小,但无论多小,永远分不完.也就是说随着分割的次数增加,棰会越来越短 ,长度接近于零,但又永远不会等于零.墨家观点与惠施不同,提出一个“非半”的命题,墨子说“非半弗,则不动,说在端”.意思是说将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点.墨家有无限分割最后会达到一个“不可分”的思想,名家则有“无限分割”的思想.名家的命题论述了有限长度“无限可分”性,墨家的命题指出了无限分割的变化和结果.显然名家和墨家的讨论,对数学理论的发展具有巨大推动作用.已反映出极限思想的萌芽,这无疑成为极限概念产生的丰厚的沃土.但从现有的史料来看,这种思想主要局限于哲学领域,还没有应用到数学上,更加谈不上应用极限的方法来解决数学问题.公元3世纪,我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”.他创造性地将极限思想应用到数学领域.所谓割圆术,具体的方法是把圆周分割得越细,内接多边形的边数越多,其内接正多边形的周长就越是接近圆周.如此不断地分割下去,一直到圆周无法再分割为止,当到了圆内接正多边形的边数无限多的时候,它的周长就与圆周几乎“吻合”,进而完全一致了.刘徽将正多边形的面积算到了3072边形,由此求出的圆周率为3.1416,是当时世界上最早也是最准确的数据.后来祖冲之用这个方法把圆周率的值计算到小数点后七位,这种对于某个值无限接近的思想就是后来建立极限概念的基础.在国外,古希腊时期也有极限思想.古希腊的巧辩派中有相当一批人对几何三大问题感兴趣.安提芬在研究“化圆为方”的问题时想到用边数不断增加的内接正多边形来接近圆面积,当多边形的边数不断加倍时内接正多边形与圆周之间存在的空隙就被逐渐“穷竭”,不过没有具体计算的记载.公元前4世纪,古希腊数学家欧多克斯创立了较严格的确定面积和体积的一般方法—“穷竭法”,这种方法假定量的无限可分性,并且以下面命题为基础:“如果从任何量中减去一个不小于它的一半的部分,从余部中再减去不小于他的一半的另一部分,等等,则最后将留下一个小于任何给定的同类量的量.”应用穷竭法,欧多克斯正确地证明了“圆面积与直径的平方成正比例”以及“球的体积与直径的立方成正比例等结论”.欧多克斯的穷竭法,也已体现出了极限论思想.古希腊最伟大的数学家阿基米德巧妙地运用欧多克斯等人的穷竭法,通过严密的计算,解决了求几何图形的面积、体积、曲线长、计算二值等大量的计算问题.它突破了传统的有限运算,采用了无限逼近的思想,将需要求积的量分成许多微小单元,再利用另一组容易计算总和的微小单元来进行比较,他的无穷小量概念到17世纪被牛顿作为微积分的基础.由此,我们可以看到在数学无穷思想发展之初,古人就己在极限领域开创了一个光辉的起点.1.2极限思想的发展极限思想的进一步发展是与微积分的建立紧密相连的.16世纪的欧洲处于资本主义萌芽时期,生产力发展,生产和技术中大量的问题,只用初等数学的方法已经无法解决,这就要求数学突破传统常量范围,来提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展的社会背景.16世纪,荷兰人斯泰文在考察三角形重心的过程中借助几何直观用极限思想思考问题,将极限概念向前推进了一步,但极限思想仍只停留在思想的层面,没有形成系统的理论体系.进入17世纪,特别是牛顿在建立微积分的过程中,由于极限没有准确的概念,也就无法确定无穷小的概念,利用无穷小运算时,牛顿做出了自相矛盾的推导:在用“无穷小”作分母进行除法时,无穷小量不能为零;而在一些运算中又把无穷小量看作零,约掉那些包含它的项,从而得到所要的公式,显然这种数学推导在逻辑上是行不通的.那么,无穷小量是零还是非零?这个问题困然牛顿也困扰着与牛顿同时代的众多数学家.真正意义上的极限概念产生于十七世纪,由英国数学家约翰瓦里斯提出了变量极限的概念,他认为变量的极限是当变量无限逼近的一个常数,它们的查是一个给定的任意小的量.他的这种描述,把两个无限变化的过程表述出来,揭示了极限的核心内容.约翰的这个表述将极限思想向前做了延伸.到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了极限概念及其理论,他在《分析教程》中指出,“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值.特别地,当一个变量的数值(绝对值)无限地减小使之收敛到极限0,就说这个变量成为无穷小”.柯西把无穷小视为以0为极限的变量,这就澄清了无穷小“似零非零”的模糊认识,这就是说,在变化过程中,它的值可以是非零,但它变化的趋向是“零”,可以无限地接近于零.柯西试图取消极限概念中的几何直观,作出极限的明确定义.但柯西的叙述中还存在描述性的词语,如“无限趋近”、“要多小就有多小”等,因此还保留着几何和物理的直观痕迹,没有达到彻底严密化的程度.德国数学家,曾被誉为“现代分析之父”的维尔斯特拉斯提出了极限的定量的定义,给微积分提供了严格的理论基础:“如果对任何,总存在自然数,使得时,不等式恒成立”.这个定义定量地、具体地刻画了两个“无限过程”之间的联系,排除了以前极限概念中的直观痕迹,将极限思想转化为数学的语言,用数学的方法描述,完成了从思想到数学的一个转变,使极限思想在数学理论体系中占有了合法的地位.2 极限思想的应用2.1 极限思想在数学分析中的应用极限思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科.在数学分析中的连续函数、导数、定积分、级数的敛散性、多元函数的偏导数等概念都是利用极限思想的方法来定义的.首先,我们引出极限的定义.定义1:设为数列,为定数.若对任给的正数,总存在正整数,使得当时有,则称数列收敛于,定数称为数列的极限,记作,或,读作“当趋于无穷大时,的极限等于或趋于”.例1:证明事实上,当时,即:,当时,,就有所以2.2 微积分与极限极限思想是分析数学最基本的概念之一,特别是极限思想贯穿整个微积分的始终.微积分思想的确立,微积分理论的掌握与应用,以及数学思维的建立都与极限思想的把握有很大关系.设质点在作直线运动时的运动规律为,则质点在时刻的瞬时速度为:.而平面曲线上过点处的切线斜率为:.问题不同,但在数学上的表现却相同,这我们就可以引出导数的意义:设函数在的某邻域内有定义,若极限(1)存在,则称函数在点处可导,并称该极限为函数在点的导数,记作.令,,则(1)式可改写为(2)所以,导数是函数增量与自变量增量之比的极限.这个增量比称为函数关于自变量的平均变化率,而导数则为在处关于的变化率.若(1)(或(2))式极限不存在,则称在点处不可导.可见,微分学的基本概念导数是用极限来定义的.例 2:设,试证证:两式相减可得因,,所以,又因为,故当,时右端极限为零,原极限获证.微分学很多的定理定义都是利用极限的思想直接或间接定义的.首先引出微分的定义.定义2:设函数定义在点的某邻域内.当一个增量,时,相应地得到函数的增量为.如果存在常数,使得能表示成, (3)则称函数在点可微,并称(3)式中的第一项为在点的微分,记作或.定理1:函数在点可微的充要条件是函数在点可导,而且(3)式中的等于证明【必要性】若在点可微,由(3)式有.取极限后有.这就证明了在点可导且导数等于.【充分性】若在点可导,则在点的有限增量公式表明函数增量可表示为的线性部分与较高阶的无穷小量之和,所以在点可微,且有这个定理的证明就充分利用了极限的思想.微分学的另一基本概念积分也是用极限来定义的.定义3:设是定义在区间上的有界函数,用点将区间任意分成个子区间.子区间及其长度记作.在每个子区间上任取一点并作和式.如果当最大的子区间的长度时,和式的极限存在,并且其极限值与的分发及的取法无关,则称在区间上可积,此极限值称为在区间上的定积分,记作即定义4:设为平面上可求长度的曲线段,为定义在上的函数.对曲线作分割,把分成个可求长度的小曲线段,的弧长记为,分割的细度,在上任取一点.若有极限,切的值与分割与点的取法无关,则称此极限为在上的第一型曲线积分,记作.由上充分体现了极限思想在微积分中无可替代的重要地位,除了以上所述,微积分中还有许多重要的定义也离不开极限思想,极限思想无可争议的成为了微积分的核心.2.3 极限思想在代数中的应用行列式和矩阵是线性代数非常重要的内容,极限思想作为数学研究的重要理论基础,自然而然的被应用于行列式的计算以及矩阵的证明.这里我们会做简单的介绍,从而验证极限思想研究的重要性.定义5:在矩阵中,设阶矩阵,若矩阵中是关于变量的函数,则我们称矩阵为矩阵函数.定义6:在矩阵中,设阶矩阵,,为连续函数,若有,称矩阵函数收敛于矩阵,记作或令.例 3 :设、为阶方阵,则有等式成立(1)若、都为阶可逆矩阵,则,因为、都可逆,则也可逆,所以有:,,故.(2)若时,则,此时有或或、以及都为零矩阵,故有:.(3)若,时,可知在矩阵中至少有一个元素的代数余子式不等于零,不妨设(为中元素的代数余子式):令, ,显然,当时,,此时为可逆矩阵,又因为, 所以:由定义6可得:当时,,所以,即:即:当时有:.类似可证明当时也有成立.关于阶行列式的计算,有的题目运算比较复杂不易发现规律,有的运算量非常庞大,这时我们就可以适当运用极限的思想来求解.例 4:特殊行列式证明:已知利用数学归纳法,当时,;当时,;以此类推,可推测当时, .假设,当时行列式对上式也成立,即:,;当时:按第一行展开====故推测等式成立.综上所述:,时.当时,上述公式不能直接求解,但此时的值仍然存在,可设为常数,令:可知,为关于的连续幂函数,且当时,同样有:当,根据连续函数的性质有:即当时,,可以验证,将时展开计算也得到该表达式.所以:3 极限思想的哲学意义极限理论的建立,使数学摆脱了许多与无穷有关的悖论的困扰,悖论思想是一种探索性的辩证思维,这种思维的追索可以揭示一个概念、一种学说中存在的深刻的内在矛盾性.极限思想正是在这种悖论思维中得以发展和完善的.学习极限思想对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力,形成正确的世界观和人生价值观都有极好的作用.极限思想的哲学意义主要表现在以下几个方面:(1)极限思想是变与不变的对立统一.“变”与“不变”反映了事物运动变化与相对静止的两种不同状态,是事物两种对立的矛盾状态.辩证唯物主义观点认为,它们在一定条件下可以相互转化.极限思想的研究提供了“变”与“不变”相互转化的方法和理论依据.使得人们能够由“不变”认识了“变”,实现了“变”中求得“不变”.因为有了极限的思想和方法,为人们解决事物变化中的问题提供了科学方法,形成了实用有效的“微元法”.(2)极限思想是有限与无限的对立统一.有限与无限有着本质的不同,但二者又有联系,无限是有限的发展,同时借助极限法,从有限认识无限.例如,在极限式,中对应数列中的每一项,这些不同的数值既有相对静止性,又有绝对的运动性.数列中的每一项和是确定不变的量,是有限数;随着无限增大,有限数向无限接近,正式这些有限数的无限变化,体现了无限运动的变化过程,这种无限运动变化结果是数值.因此在极限思想中无限是有限的发展,有限是无限的结果,他们既是对立又是统一的.(3)极限思想是近似与精确的对立统一.近似与精确在一定条件下可以相互转化,这种转化是理解数学运算的重要方法.在极限抽象的概念中,引入“圆内接正多边形面积”,其内接多边形面积的近似值是该圆面积,当多边形的边数无限增大时,内接多边形的面积无限接近于圆的面积,取极限值后就可以得到圆面积的精确值,这就是借助极限法,从近似认识精确.虽然近似与精确是两个性质不同、完全对立的概念,但是通过极限法,建立两者之间的联系,在一定条件下可以相互转化.因此,近似与精确既是对立又是统一的.(4)极限思想是量变与质变的对立统一.辩证唯物主义认为,事物是处于不断变化过程中的,是量变和质变的统一.量变是事物发生变化的前提和准备条件,质变是事物变化的必然结果.当事物的量积累到一定的基础、达到事物变化的度时就一定发生质变.极限思想生动地诠释了马克思主义这一科学原理.例如对任何一个圆内接正多边形来说,当它边数加倍后,得到的还是内接正多边形,是量变,不是质变.但是,不断地让边数加倍,无限地进行下去的时候,多边形就质变为圆,多边形面积就转化为圆的面积.极限的思想方法让我们从量变认识到了质变.(5)极限思想是过程与结果的对立统一.过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一.例如,平面内一条曲线上某点的切线斜率为.当曲线上的点无限接近于点的过程中,是变化过程,是变化结果.一方面,无论曲线上点多么接近点,都不能与点重合,同样曲线上变化点的斜率也不等于,这体现了过程和结果的对立性;另一方面,随着无限接近过程的进行,斜率越来越接近,二者之间有紧密的联系,无限接近的变化结果使得斜率等于了,这体现了过程与结果的统一性.所以,极限思想是过程与结果的对立统一.(6)极限思想是否定与肯定的对立统一.任何事物的内部都包含着肯定因素和否定因素,都是肯定方面和否定方面的对立统一.单位圆和它的内接正多边形分别是两个事物的对立面,内接正多边形是事物对自身的肯定,其中也包含着否定,这种内在的否定因素是通过圆内接正多边形的边数的改变来体现的.随着圆内接正多边形的边数逐渐增加到无穷时,内接正多边形的面积转化为圆的面积,促使该事物转化为自己的对立面.由肯定达到自身的否定,这体现了否定与肯定的对立;圆的内接正多边形和圆虽然是两个对立的事物,但是二者之间有紧密的联系,圆内接正多边形的面积可以转化为圆的面积,而圆是通过逐步增加内接正多边形的边数来实现的,从而建立了两者的联系,体现了否定与肯定的统一.小结极限的思想方法作为人类发现数学问题和解决数学问题的一种重要手段,它不仅是我们学习极限或高等数学所必须理解的,也是我们解决数学问题或实际问题所必须掌握的思想方法.它使得局部与整体,微观与宏观,过程与状态,瞬间与阶段的联系更加明确.使我们既可以居高临下,从整体角度考虑问题,又可以析理入微,从微分角度考虑问题.它的产生为数学的发展增加了新的动力,使数学得以在新的领域不断开拓新的道路,也使哲学找到了更多新的用以描述和论证世界的工具.本文从极限的产生与发展入手,描述了极限思想产生的背景,前进的过程,再到完善。
微积分学教学中的极限思想

微积分学教学中的极限思想极限思想定义为一个数列或函数在无限趋近于某个点时所具有的性质。
简单来说,极限描述了一个变量在无穷大或无穷小的情况下所表现出来的行为。
在微积分学中,极限的概念被广泛应用,如求导、积分、级数展开等等。
极限具有一些重要的性质。
例如,极限的唯一性表明,数列或函数的极限点是唯一的;保序性表明,如果一个数列的每一项都比另一个数列的大,那么它们的极限也具有相同的顺序;还有归结原则,它表明如果一个数列的极限存在,那么它的子数列的极限也必定存在且相等。
微积分基本定理是微积分学中的一个重要定理,它用极限的思想阐述了导数和积分之间的关系。
简单来说,微积分基本定理表明,函数的导数等于函数在某一点的瞬时变化率,而函数的积分则等于函数在某个区间上的面积。
这个定理将极限的思想贯穿了微积分的始终,是微积分学的核心。
极限思想在微积分学中的应用非常广泛。
例如,利用极限的概念求函数的导数和积分;还有级数展开,即将一个函数展开成无穷级数的形式,以便于计算和研究它的性质。
极限思想还在微分方程、多元函数等领域有着广泛的应用。
极限思想是微积分学教学中的核心概念之一。
它不仅是一种数学思想,更是一种科学思考方式。
通过极限思想,我们可以更好地理解函数的变化趋势、无穷小量和无穷大量等方面的概念,以及它们在数学分析和实际问题中的应用。
因此,在微积分学教学中,教师应该注重极限思想的讲解和应用,帮助学生深刻理解和掌握这一重要概念,为后续的学习和研究打下坚实的基础。
随着科学技术的发展,极限思想在各个领域的应用越来越广泛,尤其在数学、物理、工程和技术等领域发挥着至关重要的作用。
在微积分学教学中,教师应该紧密结合实际应用,让学生更好地了解极限思想的实际价值,激发学生的学习热情和兴趣。
教师还应该引导学生主动思考和探索极限思想在其他学科和生活中的应用,培养学生的创新意识和实践能力。
极限思想是微积分学教学的核心和灵魂,是数学分析和实际问题中不可或缺的重要概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
浅谈极限思想
摘要
极限思想谈的是数学中的思维问题,它的广泛使用是由数学本身的发展所
决定的。本文以数学发展史为基础,从一些典型例子中寻找极限思想的产生与发
展,主要是以历史辩证唯物主义观来重新分析、概述有关极限思想的问题和函数
极限概念小结极限思想应用的举例。
关键词
极限 函数 导数
综述
极限思想的发展过程、简介
极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为
基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思
想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先
设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求
的未知量;最后用极限计算来得到这结果。
极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函
数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:
“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限
思想来研究函数的一门学科”。
1.极限思想的产生与发展
(1)极限思想的由来
与一切科学的思想方法一样,极限思想也是社会实践的产物。极限的
思想可以追溯到古代,刘徽的割圆术就是建立在直观基础上的一种原始的
极限思想的应用1;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对
无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归
谬法来完成了有关的证明。
到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古
希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃
1
http://www.math168.com/sxsh/873.htm 2009年12月29日
2
了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个
实用概念的方向”
(2)极限思想的发展
极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧
洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的
问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统
范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极
限发展、建立微积分的社会背景。
起初牛顿和莱布尼茨以无穷小概念为基础建立微积分,后来因遇到了
逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。牛顿用路程
的改变量s与时间的改变量t之比ts/表示运动物体的平均速度,让
s
无限趋近于零,得到物体的瞬时速度,并由此引出导数概念和微分学理论。
他意识到极限概念的重要性,试图以极限概念作为微积分的基础,他说:
“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止
前互相靠近,使得其差小于任意给定的差,则最终就成为相等”2。但牛顿
的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。
牛顿所运用的极限概念,只是接近于下列直观性的语言描述:“如果当n
无限增大时,n无限地接近于常数A,那么就说n以A为极限”。
这种描述性语言,人们容易接受,现代一些初等的微积分读物中还经
常采用这种定义。但是,这种定义没有定量地给出两个“无限过程”之间
的联系,不能作为科学论证的逻辑基础。
(3)极限思想的完善
极限思想的完善与微积分的严格化密切联系。在很长一段时间里,微
积分理论基础的问题,许多人都曾尝试解决,但都未能如愿以偿。这是因
为数学的研究对象已从常量扩展到变量,而人们对变量数学特有的规律还
不十分清楚;对变量数学和常量数学的区别和联系还缺乏了解;对有限和
无限的对立统一关系还不明确。这样,人们使用习惯了的处理常量数学的
2
http://www.math168.com/sxsh/289.htm 2009年12月29日
3
传统思想方法,就不能适应变量数学的新需要,仅用旧的概念说明不了这
种“零”与“非零”相互转化的辩证关系。
到了18世纪,罗宾斯、达朗贝尔与罗依里埃等人先后明确地表示必须
将极限作为微积分的基础概念,并且都对极限作出过各自的定义。其中达
朗贝尔的定义是:“一个量是另一个量的极限,假如第二个量比任意给定
的值更为接近第一个量”,它接近于极限的正确定义;然而,这些人的定
义都无法摆脱对几何直观的依赖。事情也只能如此,因为19世纪以前的算
术和几何概念大部分都是建立在几何量的概念上面的。
首先用极限概念给出导数正确定义的是捷克数学家波尔查诺,他把函
数f的导数定义为差商Δy/Δx的极限f′(x),他强调指出f′(x)
不是两个零的商。3 波尔查诺的思想是有价值的,但关于极限的本质他仍未
说清楚。
到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述
了极限概念及其理论,他在《分析教程》中指出:“当一个变量逐次所取
的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这
个定值就叫做所有其他值的极限值,特别地,当一个变量的数值(绝对值)
无限地减小使之收敛到极限0,就说这个变量成为无穷小”。
为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的
定义,给微积分提供了严格的理论基础。所谓 n=A,就是指:“如果对任
何ε>0,总存在自然数N,使得当n>N时,不等式|n-A|<ε恒成立”。
这个定义,借助不等式,通过ε和N之间的关系,定量地、具体地刻
划了两个“无限过程”之间的联系。因此,这样的定义是严格的,可以作
为科学论证的基础,至今仍在数学分析书籍中使用。在该定义中,涉及到
的仅仅是数及其大小关系,此外只是给定、存在、任取等词语,已经摆脱
了“趋近”一词,不再求助于运动的直观。
众所周知,常量数学静态地研究数学对象,自从解析几何和微积分问
世以后,运动进入了数学,人们有可能对物理过程进行动态研究。之后,
维尔斯特拉斯建立的ε-N语言,则用静态的定义刻划变量的变化趋势。
3
http://www.math168.com/dtxx/16191.htm 2009年12月29日
4
这种“静态——动态——静态”的螺旋式的演变,反映了数学发展的辩证
规律。
2.建立概念的极限思想
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几
乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍
函数理论和极限的思4想方法,然后利用极限的思想方法给出连续函数、导
数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积
分和曲线积分与曲面积分的概念。如:
(1)函数在点连续的定义,是当自变量的增量时,函数值的增量趋于
零的极限。
(2)函数在点导数的定义,是函数值的增量与自变量的增量之比,当
时的极限。
(3)函数在上的定积分的定义,是当分割的细度趋于零时,积分和式
的极限。
(4)数项级数的敛散性是用部分和数列的极限来定义的。
3.解决问题的极限思想
极限思想方法是数学分析乃至全部高等数学必不可少的一种重要方
法,也是数学分析与初等数学的本质区别之处。数学分析之所以能解决许
多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、
曲面体体积等问题),正是由于它采用了极限的思想方法。
有时我们要确定某一个量,首先确定的不是这个量的本身而是它的近似值,
而且所确定的近似值也不仅仅是一个而是一连串越来越准确的近似值;然后通过
考察这一连串近似值的趋向,把那个量的准确值确定下来。这就是运用了极限的
思想方法。
参考文献:
①http://baike.baidu.com/view/1821658.htm 2009年12月27日
5
②http://blog.sina.com.cn/s/blog_58260f420100c1dv.html 2009年12月27
日
③胡农.高等数学.高等教育出版社.2006年九月第一版