电子产品热设计方案规范

电子产品热设计方案规范
电子产品热设计方案规范

电子产品热设计规范

1概述

1.1热设计的目的

采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。

1.2热设计的基本问题

1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度;

1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比;

1.2.3热量、热阻和温度是热设计中的重要参数;

1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的电气和机械、环境条件,同时满足可靠性要求;

1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决;

1.2.6热设计中允许有较大的误差;

1.2.7热设计应考虑的因素:包括

结构与尺寸

功耗

产品的经济性

与所要求的元器件的失效率相应的温度极限

电路布局

工作环境

1.3遵循的原则

1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾;

1.3.2热设计应遵循相应的国际、国内标准、行业标准;

133热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。

1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求;

1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低;

1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。

1.3.7热设计不能盲目加大散热余量,尽量使用自然对流或低转速风扇等可靠性咼的冷却方式。使用风扇冷却时,要保证噪音指标符合标准要求。

1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。

1.3.9冷却系统要便于监控与维护

2热设计基础

2.1术语

2.1.1 温升

指机柜内空气温度或元器件温度与环境温度的差。如果忽略温度

变化对空气物的非线性影响,可以将一般环境温度下(如空调房27C)测量获得的温升直接加上最高可能环境温度获得最恶劣环境下的器件近似温度。例如在空调房内测得某器件温升为40C,则在55C最

高环境温度下该器件的温度将为95C。

2.1.2热耗

指元器件正常运行时产生的热量。热耗不等同于功耗,功耗指器件的输入功率。一般电子元器件的效率比较低,大部分功率都转化为热量。计算元器件温升时,应根据其功耗和效率计算热耗,当仅知道大致功耗时,对于小功率设备,可认为热耗等于功耗,对于大功耗设备,可近似认为热耗为功耗的75%其实为给设计留一个余量,有时直接用功耗进行计算。但注意电源模块的效率比较高,一般为70%~95%对于同一个电源模块,输出功率越小,效率越低。

2.1.3热流密度

单位面积上的传热量,单位w/mh。

2.1.4热阻

热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为C /W或K/W。用热耗乘以热阻,即可获得该传热路径上的温升。

可以用一个简单的类比来解释热阻的意义,换热量相当于电流, 温差相当于电压,则热阻相当于电阻。

以下是一些单板元器件热分析使用的重要热阻概念,这些热阻参数一般由

元器件生产厂商根据标准实验测量提供,可在器件的用户说明书中查出:

2.141 结至空气热阻R a

元器件的热源结(junction )到周围冷却空气(ambient)的总热阻,乘以其发热量即获得器件温升。

2.1.4.2 结至壳热阻R jC

元器件的热源结到封装外壳间的热阻,乘以发热量即获得结与壳的温差。

2.143 结至板热阻

元器件的结与PCB板间的热阻,乘以通过单板导热的散热量即获得结与单板间的温差。

2.1.5导热系数

表征材料导热性能的参数指标,它表明单位时间、单位面积、负的温度梯度下的导热量,单位为W/m.K或W/m:C

2.1.6对流换热系数

反映两种介质间对流换热过程的强弱,表明当流体与壁面的温差

为1 C时,在单位时间通过单位面积的热量,单位为W/mK或W/m C

2.1.7层流与紊流(湍流)

层流指流体呈有规则的、有序的流动,换热系数小,热阻大,流动阻力小;

紊流指流体呈无规则、相互混杂的流动,换热系数大,热阻小,流动阻力大。层流与紊流状态一般由雷诺数来判定。在热设计中,尽可能让热耗大的关键元器件周围的空气流动为紊流状态,因为紊流时

的换热系数会是层流流动的数倍。

2.1.8流阻

反映流体流过某一通道时所产生的静压差。单位帕斯卡或In. water

2.1.9黑度

实际物体的辐射力和同温度下黑体的辐射力之比,在0~1之间。

它取决于物体种类、表面状况、表面温度及表面颜色。表面粗糙,无光泽,黑度大,辐射散热能力强。

2.1.11雷诺数Re(Reynlods)

雷诺数的大小反映了空气流动时的惯性力与粘滞力的相对大小,

雷诺数是说明流体流态的一个相似准则数。其定义一般为式中u为空

气流速,单位m/s; D为特征尺寸,单位m根据具体的对象结构情况取值;为运动粘度,单位m /s。

2.1.12普朗特数Pr(Prandtl)

普朗特数是说明流体物理性质对换热影响的相似准则数。空气的Pr数可直接根据定性温度从物性表中查出。

2.1.13努谢尔特数Nu(Nusseltl)

反映出同一流体在不同情况下的对流换热强弱,是一个说明对流换热强弱的相似准则数。其定义一般为,h为换热系数,单位W/金C;

D为特征尺寸;为导热系数,单位W/m「C。

2.1.14通风机的特性曲线

指通风机在某一固定转速下工作,静压随风量变化的关系曲线。

当风机的出风口完全被睹住时,风量为零,静压最高;当风机不与任何风道连接

电子产品的设计要求

电子产品的设计要求 温州市科技职业学院田祖德 电子产品在设计前必须要按有关标准进行设计,不同的国家和地区有不同的标准;我们在设计产品时要求弄清楚我们所设计的产品是运往什么地方,这些产品在什么样的环境中工作及使用者。使用人员从专业技术人员扩展到办公人员,甚至到一般家庭中的老人、妇女、儿童。电子产品的安全性能已经在很大的使用范围内关系到使用者的人身安全及其周围的环境安全。 因此,我们在设计电路时不单是考虑电路的正确与否,还要考虑产品的整体结构及安全性能。 电子产品的安全设计一般原则: 1.电子产品和设备在正常工作条件下,不得对使用人员以及周围的环境造成危险。 2.设备在单一的故障条件下,不得对使用人员以用周围的环境造成危险。 3.设备在预期的各种环境应力条件下,不会由于受外界影响而变的不安全。 电子产品的安全设计的基本原则: 一.电子产品的安全要求: 1.防电击: 电子产品及设备防电击是所有用电设备的最起码的要求。为此任何电子产品都必须具有足够的防触电的措施。 2.防能量危险: 大电流输出端短路,能造成打火、熔化金属、引起火灾,所以低压电路也能存在危险。 3.防着火: 我们使用的电子产品的格料,一般要使用阻燃料,着火后烟雾小,毒气小的材料做外壳,意外发生火害警情时,不会产生二次着火,烟雾小不影响工作人员逃生,中毒的机会就小。 4.防高温: 凡是外露的零部件一般都是为了散热,那么就要去考虑它的温度,过高的温度可能会造成对使用者的灼伤。 5.防机械危险: 在电器产品中也存在一些运动器件,如电风扇的扇叶,这些都可能造成对使用者的伤害; 另外就是产品的外壳,接合处不能存在刀口状;产品重心、高真空度的器件都是我们设计人员必须去考虑的。 6.防辐射: 辐射分四大类,一是声频辐射,二是射频辐射,三是光辐射,四是电离子辐射。电子产品的使用者对辐射是全然不知的,这完全要靠我们设计人员在设计时认真的去考虑的事情。 7.防化学危险: 二.电子产品产的安全措施 接触某些液态物质,也是存在一些危险的,比如:汞,日光灯的汞蒸气,蓄电池内的酸液,电解电容中的电解液,这些都化学物质,如有泄漏就会对使用都带来伤害的危险。 为了防止以上的情况在产品中出现我们在设计时,必须认真的去考虑如何消除这些问题的存在。 1.为了防止电击可能性存在,我们在设计时要对产品作绝缘处理,一般一个产品都有两个 以上的防电击处理措施,一是基本绝缘条件,二是附加绝缘条件。例如一个电子产品的最基本的绝缘条件是塑胶外壳。电路板或其他电路与外壳间的距离为附加绝缘条件。设计人员不能因为有了附加绝缘条件而降低基本绝缘条件,另外,还可以增加一些其他方法的绝缘方式。 2.大电流在使用中也可能造成危害,大电流的产品在设计过程中要考虑线路漏电流的情 况,这里所说的漏电流,是指对人体有伤害的电流,这种电流在用电设备中是可以想法子去掉

电子产品结构工程师必读的书

推荐电子产品结构工程师读的书(49) 多次收到新入行的工程师咨询邮件,问:作为一个电子产品结构工程师,应该读哪些专业书,我均写邮件婉拒。一则因为我读书很杂;二则因为问者并没有详细介绍其工作内容,所以不能贸然推荐。 最近因为在写这个专业的工程应用书,所以系统梳理了自己读过的中外专业书,故不揣浅薄,将其列出。有几本英文书我读的是老版本,现有了新版本,故列出的是新版。 记得30年前我的技术启蒙老师龚维蒸对我说过,要想成为一个专业的工程师,首先要花3年时间将这个专业的代表书通读一遍;然后再化3年跟踪这个专业的新技术,这主要是读专业杂志和参加技术研讨会;同时结合自己的技术工作,通过10年的积累,就可以走在这个专业的前列了。 据我了解,从事这个专业的工程师约有60%是纯机械专业毕业的,所以对电子产品结构设计的特殊性认识不深,知识的结构也有待完善.一个专业工程师基本功一定要扎实,知识要全面,再加上逻辑思维能力,这技术实践中不断总结经验,才能成为成为高手。 推荐的书分中文和英文两部分,不可否认的是,中文书的内容,大多可以从英文书中找到相应的内容,当代,科学技术的传播路径就是从西方到东方的过程。所以当达到一定水准,就可以读英文原版书,这样才能开阔了视野,跟上专业发展的步伐。如果要分个等级的话,中文书可以说是专业入门,英文书则是从入门到精通。读者可以根据自己的工作内容需要,选择部分书籍来读。 所列的书是结构设计专业工程师需要读的书,可能有偏颇之处,也请专业人士不吝指教。读者有兴趣的话,可以先读这些书,然后再找一些同类书比较,这样就走进了学术研究的领域,对自己将有更大的提高。 1. 龚维蒸电子设备结构设计基础东南大学1994. 2. 邱成悌电子设备结构设计原理东南大学2005. 3. 钟明湖电子产品结构工艺(第二版)(附光盘)高等教育出版社2008. 4. 赵惇殳电子设备热设计电子工业出版社2009. 5. 区健昌电子设备的电磁兼容性设计理论与实践电子工业出版社2010. 6. 马宁伟电子产品结构材料特性及其选择方法人民邮电出版社2010. 7. 王健石电子机械工程设计手册中国标准出版社2006 8. 陈文亮板料成形CAE分析教程机械工业出版社2005. 9. 丁玉梅等译塑料连接技术设计师和工程师手册(原著第二版)化学工业出版社2006. 10.杨桂通弹性力学简明教程清华大学出版社2006. ---------------------------------------------- 11.Ronald A. Walsh. Electromechanical Design Handbook.McGraw-Hill Professional, Jan 2000. 12.James J.Allen. Micro Electro Mechanical System Design 1 edition.CRC Press,July 2005. 13. Ralph Remsburg.Thermal Design of Electronic Equipment 1 edition(Electronics Handbook Series).CRC Press, Sep. 2000 14.Tim Williams. EMC for Product Designers 4 edition , Fourth Edition.Newnes, April 2007. 15.Charles Harper. Electronic Materials and Processes Handbook,McGraw-Hill Professional March 2009. 16.General Design Principles for DuPont Engineering Polymers. DuPont Design Guide. 17.Designing With Plastic The Fundamentals.Ticona Design Guide. 18.Sheet Metal Design Handbook. Quality Tool Design Guide. 19.Donail R. Askeland Essentials of Materials Science and Engineering.thomson learning, 2004.

航空器电子产品热设计

航空器电子产品热设计 现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。 机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。 图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。 传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。 图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。 机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。对流换热系数的大小与近壁面的流体温度分布梯度成正比,而近壁面的流体温度分布梯度与近壁面的流体速度分布有关,因此,要得到准确的对流换热系数,必须精确求解流体速度分布,尤其是近壁面附面层内的速度分布。八十年代末九十年代初,由于受计算机速度的限制,直接求解三维复杂流场的湍流Navier-Stokes方程从而得到准确的流体速度分布几乎是不可能,因此发展了一些半经验、半解析的电子系统冷却分析软件,这些分析中的流体剖面速度分布是根据经验给定的解析式,对于简单流场,这样的解析表达式能较好地符合,而对于真实复杂流场,误差较大。ANSYS CFX通过直接求解三维湍流Navier-Stokes方程来得到准确的流体速度分布,从而能准确给出对流换热系数

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

电子产品热设计规范

电子产品热设计规范 1概述 1.1热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2热设计的基本问题 1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3热量、热阻和温度是热设计中的重要参数; 1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的 电气和机械、环境条件,同时满足可靠性要求; 1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6热设计中允许有较大的误差; 1.2.7热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2热设计应遵循相应的国际、国内标准、行业标准; 1.3.3热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7热设计不能盲目加大散热余量,尽量使用白然对流或低转速风扇等可靠性局的冷却方式。使用风扇冷却时,要保证噪首指标符合标准要求。 1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9冷却系统要便于监控与维护 2热设计基础 2.1术语 2.1.1 温升

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

电子产品设计规范案例

1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对内部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE 后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户提供完整的电子方案,甚至实物; 2。建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE的曲面作为参考依据;所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小范围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm; 另外面/底壳壁厚4.00mm的医疗器械我也做过,是客人担心强度一再坚持的,其实3.00mm 已经非常保险了,壁厚太厚很容易缩水,也容易产生内应力引起变形,担心强度不足完全可以通过在内部拉加强筋解决,效果远好过单一的增加壁厚; 建摸阶段第三步,制作装配图,将拆画出各个零部件按装配顺序分别引入,选择参考中心重合的对齐方式;放入电子方案,如LCD,LED,BATTERY,COB。。。将各个零部件引入装配图时,根据需要将有些零部件先做成一个组件,然后再把组件引入装配图时。 例如做翻盖手机时,总装配图里只有两个组件,上盖是一个组件,下盖是一个组件。上盖组件里面又分为A壳组件,B壳组件和LCD组件。下盖组件里面又分为C壳组件,D壳组件,主板组件和电池组件等。还可以再往下分 3、初始造型阶段:分三个方面; A:由造型工程师设计出产品的整体造型(ODM);可由客户选择方案或自主开发。 B: 客户提供设计资料,例如:IGS档(居多)或者是图片(OEM)。 C: 由原有的外形的基础上更改;可由客户选择方案或自主开发。 4 建摸阶段第四步,位置检查,一般元件的摆放是有位置要求的。 例如:LCD的位置可以这样思考,镜片厚度1.50mm,双面帖厚度0.20mm,面壳局部掏薄厚

电子产品结构设计的标准及原则

电子产品结构设计的标准及原则 一、壁厚设计原则 塑胶材料基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm 为上限从经济角度来看过厚的产品不但增加物料成本 延长生产周期增加生产成本。从产品设计角度来看过厚的产品增加产生气孔的可能性大大削弱产品的刚性及强度。 模具的温度都比塑材的熔融温度低,当塑材刚从唧嘴中进入模具时,由于模具的温度更低,在模具表面会形成一层结晶层,约有0.2MM,造成能通过胶料的空间非常小,需要非常大的注塑压力,很有可能造成无法填满,现在有一些薄壁注塑技术就是应此而生的。最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题 二、筋位设计原则 加强筋的作用加强筋在塑胶部件上是不可或缺的功能部份。加强筋增加产品的刚性和强度而无需大幅增加产品切面面积对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道助模腔充填,对帮助塑料流入部件的支节部份很大的作用。设计原则加强筋一般被放在塑胶产品的非接触面其伸展方向,应跟随产品最大应力和最大偏移量的方向选择加强筋的位置,亦受制於一些生产上的考虑如模腔充填、缩水及脱模等 三、柱位设计原则 1.支柱突出胶料壁厚是用以装配产品、隔开物件及支撑承托其他零件之用。 2.空心的支柱可以用来嵌入件、收紧螺丝等。 四、止口设计原则 反叉骨设计的一般尺寸 A、止口与反止口息息相关 配合使用。反止口的作用与止口相反,反止口是防止B壳朝外变形,同时防止A壳朝内缩。 B、反止口是做在母止口的那个壳上。 C、设计反止口时要注意离公扣单边8.0MM 至少6.0MM,因为扣位要变形 五、卡扣设计原则原理

电子产品研发工艺设计规范教材

研发工艺设计规范 1.范围和简介 1.1 范围 本规范规定了研发设计中的相关工艺参数。 本规范适用于研发工艺设计 1.2简介 本规范从PCB外形,材料叠层,基准点,器件布局,走线,孔,阻焊,表面处理方式,丝印设计等多方面,从DFM角度定义了PCB的相关工艺设计参数。 2.引用规范性文件 下面是引用到的企业标准,以行业发布的最新标准为有效版本。 3 术语和定义 细间距器件:pitch≤0.65mm异型引脚器件以及pitch≤0.8mm的面阵列器件。 Stand off:器件安装在PCB板上后,本体底部与PCB表面的距离。 PCB表面处理方式缩写: 热风整平(HASL喷锡板):Hot Air Solder Leveling 化学镍金(ENIG):Electroless Nickel and Immersion Gold 有机可焊性保护涂层(OSP):Organic Solderability Preservatives 说明:本规范没有定义的术语和定义请参考《印刷板设计,制造与组装术语与定义》(IEC60194)4. 拼板和辅助边连接设计 4.1 V-CUT连接 [1]当板与板之间为直线连接,边缘平整且不影响器件安装的PCB可用此种连接。V-CUT为直通型,不能在中间转弯。 [2]V-CUT设计要求的PCB推荐的板厚≤3.0mm。 [3]对于需要机器自动分板的PCB,V-CUT线两面(TOP和BOTTOM面)要求各保留不小于 1mm的器件禁布区,以避免在自动分板时损坏器件。

图1 :V-CUT自动分板PCB禁布要求 同时还需要考虑自动分板机刀片的结构,如图2所示。在离板边禁布区5mm的范围内,不允许布局器件高度高于25mm的器件。 采用V-CUT设计时以上两条需要综合考虑,以条件苛刻者为准。保证在V-CUT的过程中不会损伤到元器件,且分板自如。 此时需考虑到V-CUT的边缘到线路(或PAD)边缘的安全距离“S”,以防止线路损伤或铜,一般要求S≥0.3mm。如图4所示。

最新电子产品结构设计过程资料

电子产品的结构设计过程 一个完整产品的结构设计过程 1.ID造型; a.ID草绘............ b.ID外形图............ c.MD外形图............ 2.建模; a.资料核对............ b.绘制一个基本形状............ c.初步拆画零部件............ 1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对内部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户

提供完整的电子方案,甚至实物; 2。建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE 的曲面作为参考依据; 所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小范围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm; 另外面/底壳壁厚4.00mm的医疗器械我也做过,是客人担心强度一再坚持的,其实3.00mm 已经非常保险了,壁厚太厚很容易缩水,也容易产生内应力引起变形,担心强度不足完全 可以通过在内部拉加强筋解决,效果远好过单一的增加壁厚; 建摸阶段第三步,制作装配图,将拆画出各个零部件按装配顺序分别引入,选择参考中心 重合的对齐方式;放入电子方案,如LCD,LED,BATTERY,COB。。。将各个零部件引入装配图时,根据需要将有些零部件先做成一个组件,然后再把组件引入装配图时。 例如做翻盖手机时,总装配图里只有两个组件,上盖是一个组件,下盖是一个组

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

电子产品结构设计应考虑的影响因素

电子产品结构设计应考虑的影响因素 电子产品的特点决定了它的结构更复杂,涉及设计过程中的许多相关过程。在电子产品的组织安排中,设计人员理当商酌应用寿命,经济效益,环境保护,维护和资源等因素,在对电子产品结构设计时要充分考虑到电子产品的功能,综合考虑电子产品生产和维修、产品设计零件材料、产品功效实现、产品用户使用、产品使用寿命、产品经济效益等影响因素。 标签:电子产品;结构设计;影响因素 电子产品的影响不仅需要通过合理的设计来实现,还需要通过电子产品的结构设计优化来实现。电子产品的结构设计与原有的合理设计相辅相成,是不可分割的。然而,一些电子产品设计师只注重功能设计,忽视产品设计中的结构设计。在电子产品的组织计划中,应充分商酌到电子产品零部件的生产和维护,产品的设计,产品的功效,产品的用户,产品的寿命以及产品的影响因素等经济效益。纵观中国电子产品结构设计的现状,一些设计师把功能原理作为电子产品设计的一个主要因素。组织计划时常被忽视,设计师综合电子产品的特征和策划要求,在设计过程中,对其生产维护、零件材料、功效、应综合考虑使用寿命和产品效益,提高电子产品整体水平性能和设计质量。 一、电子产品的特点分析 1.1电子产品的组成相当复杂,密度非常大 电子产品比较精密,其结构组成复杂,密度大是其主要的特点。由于电子产品结构复杂密度大,所以在结构设计上要求更合理。 1.2工作环境变化多样,外部影响大 电子产品工作的环境大都为环境比较复杂,温度湿度要求比较高,电磁干扰等影响比较大等等。 1.3可靠性要求非常严格 电子产品的主要目的是提高各种精确的数据,所以对于可靠性要求比较高,准确度要求比较精准。 1.4功能要求和精度要求都非常高 电子产品对操作控制的要求更高。将精密机械应用当中,也是其发展当中的一个显著的特征。 二、电子产品结构设计的要求与原则

电子产品的结构设计与工艺

电子产品的结构设计与工艺 电子产品的结构设计与工艺包含相当广泛的技术内容,涉及力学、机械学、化学、电 学、热学、光学、无线电电子学、金属热处理、工程心理学、环境科学、美学等多门 基础学科。 将其作为一门课,只能重点介绍电子产品结构设计与工艺的基础知识。主要包括如下 内容。 (一)电路设计与结构设计的极念 一个完整的电子产品由两个相对独立的部分组成 因此其设计也相应地分为电路设计和结构设计。 电路设计是指根据产品的性能要求和技术条件,制定方框图或电路原理图,画出 PcB印制板,并进行必要的线路计算,初步确定元器件参数,制作好印制电路板并做 相应 的实验,确定出最终的电路团的设计过程。 结构设计是指根据电路设计提供的资料(电路图和元器件资料),并考虑产品的性能 要求、技术条件等,安装固定电路板,合理放置特殊元器件。与此同时还要进行各种 防护 设计和机械结构设计,最后组成一部完整的产品,并给出全部工作图的设计过程。 实质上电路设计完成后还不能成为一台电子产品,要变成一台电子产品,还必须完成 很多的结构设计内容。目前,结构AVX钽电容设计在电子产品设计中,占有较大的工作且,它直接关 系到电子产品的性能和技术指标的实现。电子产品结构设计已发展成一门独立的综合 学 科。在设计电子产品的过程中,电路和结构设计很难截然分开,这就要求电路设计者 和结

构设计者协同配合,密切合作,才能圆满完成设计任务。作为电路设计人员,掌捏和了解 结构与工艺知识,密切与结构设计人员配合,是很有益的。 I二]电子产品结构设计与工艺的内容 1.整机机械结构与造型设计 (1)结构件设计。包括机柜、机箱(贴片钽电容或插入单元)、机架、机壳、底座、面板 装置及其附件的设计。 (2)机械传动装置设计。根据信号的传递或控制过程中,对某些参数(电的或机的) 的调节和控制所必需的各种执行元件进行合理设计,方便操作者使用。 (3)总体外观造型与色彩设计。从心理学及生物学的角度来设计总体及各部件的形 状、大小及色彩,以便给人以美的享受。 (4)整体布局。在完成上述各方面的设计后,合理安排整体结构布局、互相之间的连 接形式及结构尺寸的确定等,做到产品既好用又好看。 2.整机可靠性设计 研究电子产品产生故障的原因,可靠性的表示方法及提高产品可靠性的措施。 3.热设计 研究温度对电子产品产生性能的影响及各种散热方法。 4.防护与防腐设计 主要研究各种恶劣环境(如潮湿、盐雾、霉菌等)对电子产品的影响及防护方法 5.隔振与缓冲设计 讨论振动与冲击对电子产品钽电容的影响及隔振缓冲的方法。 6.电磁兼容性设计 研究电子产品如何提高抗干扰能力和减小对外界的干扰 地设计等。

电子产品热仿真规范

电子产品热仿真规范

1.目的 1.1.规范我司产品热仿真建模标准。 1.2.供热传工程师在建模过程中作参考。 2.范围 2.1.本规范明确规定我司产品热仿真过程中的方法和要求,适用于我司单板级、系统级 等所有产品的热仿真。 2.2.本规范适用于FLOTHERM热仿真软件。 3.定义 3.1.导热系数:是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C), 在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米.度),w/(m.k)3.2.辐射:是能量以电磁波或粒子(如阿尔法粒子、贝塔粒子等)的形式向外扩散。自 然界中的一切物体,只要温度在绝对温度零度以上,都以电磁波和粒子的形式时刻不停地向外传送热量,这种传送能量的方式被称为辐射。 4.职责 4.1.热仿真负责人 4.1.1.热传工程师:负责产品开发阶段的热仿真分析,并按模板要求输出热仿真报告。 4.2.热仿真报告审核人: 4.2.1.直接主管:负责对热仿真报告及散热方案进行审核。 4.2.2.项目经理:组织项目成员对热仿真报告及散热方案评审。 5.工作程序 5.1.背景 5.1.1.热仿真分析技术介绍 电子设备热仿真软件是基于计算传热学技术(NTS)和计算流体力学技术(CFD),发展电子设备散热设计辅助分析软件。它可以帮助热设计工程师验证、 优化热设计方案,满足产品快速开发的需要,并可以显著降低产品验证热测试 的工作量。 其主要思想是:把原来在时间域和空间域上连续的物理量的场,如温度场、速度场、压力场等,用一系列有限个离散点上的变量值的集合来代替,通过一 定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后 计算机数值计算求解代数方程组获得场变量的近似值。 目前商业的热仿真软件种类繁多,有基于有限体积法的Flotherm、I-deas、Icepak、CFDesign、Thermal、Cool it、Betasoft,及基于有限元的Ansys等, 其中Flotherm、I-deas、Icepak占据绝大部分的市场份额。 5.1.2.热仿真优点和作用

电子产品结构设计规范--范文

电子产品结构件设计规范—范文 一,目的本规范的目的是指导结构件工程师快速和准确的完成产品的结构件设计工作,能更好的与流程保持同步,提高产品设计的标准化。 二,范围 本规范适用于塑胶电子产品的结构件设计工作。本规范可作为结构件工程师的工作指导书和新进工程师的培训资料。 三,权责 结构件工程师应严格按照本规范进行结构件设计工作,同时按照此规范进行文件的输出和召开结构件评审会议。 四,定义工业设计:在塑胶电子产品行业,工业设计指产品的造型设计,包括产品的外形设计,产品的颜色搭配。 结构件设计:产品的各组成部分的结构尺寸设计,装配关系的确定,模具加工工艺的确定,产品制造工艺的确定,产品检测工艺的确定。 模具设计:产品中塑胶部分和五金部分在开制模具过程中需遵照的尺寸范围和性能的规 五,内容 1,产品结构件设计在开发工作中的作用 产品开发的工作一般分为;产品的工业设计,产品的结构件设计,产品的电路设计,产品工艺设计,产品的包装设计。具体见附表1-产品的开发流程表。产品开发工作的细化要 求各个部门之间要有良好的协作关系。在产品开发初期,项目经理对产品可行性作大量的工作,如产品的市场前情的调查,样品的试制,性能的测试和成本的核算等。产品的设计工作主要是将成功的试验室产品转化成可量产化产品的过程,即实现产品设计和检测的电子化, 产品制造的流水线化的过程。 在产品开发中,无论何种电子产品,无论结构件部分占主导,还是电路部分占主导,结构件设计应该

是主要部分,结构设计的好坏直接决定产品是否能够成功实现预期的目标,产品开发的工作是否按期完成,电路设计的空间是否得到充分保障,空间位置是否得到优化,生产工艺是否合理,生产效率是否得到保证,这些将决定产品开发的成功与否。 2.结构件设计流程2.1.产品开发的工作应该以产品质量为目标进行的产品设计过程。在国际上,产品 开 发已经被列入质量考核的一项内容。如IS09000,APQP六西格马等。在各个行业中,为了统 一产品的质量标准,行业标准同样规范了产品的开发标准。因此,公司会根据以上标准制定适合本公司的开发标准规范。产品开发工程师应熟悉本公司标准规范,并以此规范为指导进行设计工作。 2.2.产品开发工作同样涉及到开发部与其他部门的协作。项目经理应该清楚产品开发过程中,各协作部门的信息的沟通,保证产品开发工作的顺利完成,应该以会议的形式将协作的部分列入开发的流程中。 2.3.在产品开发过程中,项目经理按照开发流程,应及时将每一阶段的工作完成并形 成文件,从DR1?DR4的过程中,应及时进行检讨的工作,保证产品开发的每个阶段工作完成的同时,检讨工作和文件也应及时完成。 3.结构件设计的技术性 3.1.结构件工程师应具有相关专业的技术知识,如机械结构的组成,相关专业数语的掌握,产品组成部分的材质和成型工艺;掌握相关设计软件的使用方法,如熟练使用PR0E 等三维软件,和AUTOCAD等二维软件。 3.2.结构件工程师应积极了解同行业产品的结构设计水平,收集优质产品的技术性资料。并结合本公司的技术水平进行技术的革新,完善本公司的开发的技术工作。 3.3.公司应建立完善的技术培训机制,提高设计人员的技术水平,培养内部优秀的技术人员。建立高水平的技术平台,组建优秀的技术开发团队。 4.结构件设计工程师成长的连续性 4.1.技术人员的稳定性是保证公司产品质量的重要部分,因此,技术人员成长必须要有连续性,即工程师始终具有向上的精神,技术无止境,而是缺少动力,保证技术人员的工

浅谈热设计

浅谈电子产品热设计 (一)、热设计中的常用词汇 电子产品中经常会用到“热阻”(K/W)这个词。在图1的示例中,连接A和B 的管道越细,水就越难流出,A和B之间的水位差也就越大。相反,加粗管道后,AB之间的水位差将会消失。这种阻碍水流动的作用就相当于热阻。举例来说,当热流量为1W、温度上升1K时,热阻就是1K/W。在热设计中,热阻扮演着非常重要的角色。因为只要知道热阻,就能构思出散热措施,例如“如果要制造热阻为5K/W的散热片,尺寸大约会达到50mm×50mm×30mm”、“热阻为0.1K/W、因此必须要有风扇”等等。 发热量和散热量也是热设计的常用词汇,但二者都属于“热流量”(W),表示1秒的时间中产生或转移的热量。 “热容量”(J/K)也是一个重要参数。热容量相当于图1中水箱A的底面积。如果底面积大,即使加入大量的水,水位也不容易上升。相反,如果底面积小,即使只加入少量的水,水位也会猛涨。热也是如此,如果是热容量大的大铁块,就算发热量大,温度也很难升高。相反,如果是热容量小的小塑料容器,哪怕发热量不大,温度也会迅速升高。 也就是说,热容量代表的是水位上涨1m需要注入多少L水,即使温度升高1K需要多少J热量。假设热容量为1J/K,热流量为1W。此时,1 秒钟将有1J的热能流入;而每吸收1J的热量,温度会升高1K。因此,如果忽略热量的流失,1秒的时间中温度会升高1K。由此可知,只要知道了热容量,就能推算出温度的升降。 热容量等于“比热×重量”,计算非常简单(注1)。比热是单位质量物质的热容量,单位为J/kg·K(或J /kg·℃)。质量则是体积×密度。比热和密度都是物理性质,可以在手册中查到,而且,体积是由尺寸决定的,因此,只要知道材料和尺寸,就能计算出热容量。至于印刷电路板等复合材料,在计算出各种材料的热容量之后,相加即为总的热容量。 (注1)热阻的计算方式因热传导、热对流、热辐射等热移动的方式而异,非常复杂。 “热流密度”(W/m2)在图1中指的通过管道时热流量的密度,也叫热通量。通常来说,通过的热量是发热量,发热量除以表面积即为热流密度。因为发热量代表发热能力,表面积代表散热能力,所以,热流密度就相当于发热能力与散热能力之比。因为物体内的热量只能通过该物体与空气接触的面、也就是表面释放,所以,在热量通过的部分中,表面积是最重要的条件。 热流密度与温度的上升量成正比,热流密度越大,温度上升越多。反言之,通过管理热流密度,可以使温度控制在一定水平以下。例如,在印刷电路板上安装部件时,热流密度等于部件的总发热量除以印刷电路板的总表面积。如果采用自然空冷,一般来说,热流密度达到400W/m2以上就容易发生故障,因此要控制在300W/m2左右。如上所述,通过

相关文档
最新文档