2017-2018学年北师大八年级上第一次月考数学试题含答案
2017-2018学年八年级数学上册 2.4 估算教案 (新版)北师大版

课题:估算教学目标:知识与技能目标:1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小.2.掌握估算的方法,形成估算的意识,发展学生的数感过程与方法目标:1.能估计一个无理数的大致范围,培养学生估算的意识.2.让学生掌握估算的方法,训练他们的估算能力.情感态度与价值观目标:1.鼓励学生积极参与教学活动, 用学到的估算知识去顺利解决实际生活中的难题2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.教学重点:1.让学生理解估算的意义,发展学生的数感.2.掌握估算的方法,提高学生的估算能力.教学难点:掌握估算的方法,并能通过估算比较两个数的大小教学过程:做一做1、求下列各式的值__100_____100__你发现了什么规律被开方数的小数点向左或向右移动两位,那么平方根的小数点向左或向右移动一位。
被开方数的小数点向左或向右移动三位,那么立方根的小数点向左或向右移动一位。
2.0.1)?∵212.5 =∴32<12.5<423 ∵3.52<12.5<3.62∴ 3.5 3.63.5或3.6 。
以上这种解决问题的方法叫夹逼法所谓夹逼法,就是在解题过程中把有关的数量关系式合理地进行加工和整理,使其解限制在某一数值范围内,然后通过解不等式和经过筛选,从而使原问题或解。
探究新知某地开辟了一块长方形的荒地,新建一个以环保为主题的公园。
已知这块荒地的长是宽的2倍,它的面积为400000米2.(1)公园的宽大约是多少?它有1000米(2)如果要求误差小于10米,它的宽大约是多少?与同伴交流。
(3)该公园中心有一个圆形花圃,它的面积是800米²,你能估计它的半径吗?(误差小于1米)解:(1)因为2000×1000=2000000>400000所以公园的宽没有1000m.(2)解:设公园的宽为x米,则它的长为2x米,x·2x=400000 x2=200000?(精确到10)∵ 4402<4502∴ 440<450∴ 445<450∴ x≈450所以它的宽大约是450m(3)设圆形花圃的半径为Rm.πR2=8002800=255Rπ≈∵ 152<255<162∴ 15<16∴ 15.5<16∴ R≈16所以它的半径大约是16m。
2017-2018学年北师大版八年级数学上册教师用书(pdf版):3.2平面直角坐标系

39
利用点的位置特征确定坐标 ʌ 例 2ɔ 已知点 P ( a + 1ꎬ3 - 2a) ꎬ试根据下列条件求出 a 值 并写出点 P 坐标. ㊀ (1) 当点 P 在 x 轴上时ꎻ ㊀ (2) 当点 P 在 y 轴上时ꎻ ㊀ (3) 当点 P 在第一象限ꎬ且到 x 轴的距离为 1 时ꎻ ㊀ (5) 当点 P 到 x 轴与到 y 轴的距离相等时. ㊀ 解:( 1) ȵ 点 P 在 x 轴上ꎬʑ 3-2a = 0ꎬʑ a =
轴分成了四个部分ꎬ分别叫作第一象限㊁ 第二象限㊁ 第三 特征如下:( 请用 + - 0 分别填写)
象限㊁第四象限. 但是坐标轴上的点不属于任何象限. ∙∙∙∙∙∙∙∙∙∙∙∙∙ ㊀ (3) 坐标平面内ꎬ点所在的位置不同ꎬ它的坐标的符号 点的位置 点的横坐标符号 点的纵坐标符号 在第一象限 ㊀ +㊀ ㊀ +㊀ 在第二象限 ㊀ -㊀ ㊀ +㊀ 在第三象限 ㊀ -㊀ ㊀ -㊀ 在第四象限 ㊀ +㊀ ㊀ -㊀ 在 x 轴的正半轴上 ㊀ +㊀ ㊀ 0㊀ 在 x 轴的负半轴上 ㊀ -㊀ ㊀ 0㊀ 在 y 轴的正半轴上 ㊀ 0㊀ ㊀ +㊀ 在 y 轴的负半轴上 ㊀ 0㊀ ㊀ -㊀ 在原点 ㊀ 0㊀ ㊀ 0㊀
㊀ 解:如图ꎬAB 中点坐标为( 3ꎬ1)ꎬ CD 中点坐标为 ( 0ꎬ 3 )ꎬ EF 中点坐
标为( 1ꎬ1)ꎬGH 中点坐标为( 3ꎬ0)ꎬIJ 中点坐标为( -1ꎬ0) .
( 5) ȵ 点 P 到 x 轴与到 y 轴的距离相等ꎬ ʑ ∣ a +1 ∣ = ∣ 3-2a ∣ꎬ ʑ 当 a +1 = 3-2aꎬʑ a = 2 5 5 ꎬʑ P( ꎬ )ꎬ 3 3 3
������������
������������������������������������������������������������������
2017_2018学年八年级数学上册第六章数据的分析2中位数与众数课件新版北师大版

如下表所示:
则这20户家庭日用电量的中位数是( A. 7.5 B. 6 C. 7 D ) D. 6. 5
课堂讲练
新知2 众数 典型例题
【例3】某同学一周中每天完成家庭作业所花时间(单位:
分钟)分别为:35,40,45,40,55,40,48. 则这组
数据的众数是(
B )
A. 35
B. 40
C. 45
4. 五名同学投篮篮球,规定每人投20次,统计他们每人
投中的次数,得到五个数据,若这五个数据的中位数是6, 唯一众数是7,则他们投中次数的总和不会超过 . 29
课堂讲练
新知3 众数、中位数、平均数的特征 典型例题
【例5】某学习兴趣小组参加一次单元测验,成绩统计情
况如下表:(单位:分)
(1)该兴趣小组有多少人?
A. 5,7
B. 6,7
C. 8,6
D. 8,7
课前预习
3.广州市春季某一周的最高气温统计如下表:
则这组数据的中位数与众数分别是(
A )
B. 27.5,28
A. 27,28
C. 28,27
D. 26.5,27
课堂讲练
新知1 中位数 典型例题 【例1】已知数据:2,1,4,6,9,8,6,1,则这组数 据的中位数是( C )
第六 章
2
数据的分析
中位数与众数
课前预习
1.九年级(1)班有12名学生的身高(单位:cm)分别为: 158,159,157,161,158,165,160,164,158,166, 164,156.则这组数据的众数是 是 159.5 . 158 ,中位数
课前预习
2. 某篮球兴趣小组7名学生参加投篮比赛,每人投10个, 投中的个数分别为:8,5,7,5,8,6,8,则这组数据 的众数和中位数分别为( ) D
2017-2018学年广东省深圳中学八年级(下)期中数学试卷(北师大版)及答案

2017-2018学年广东省深圳中学八年级(下)期中数学试卷(北师大版)一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1)C.(﹣2,0)D.(﹣2,﹣1)3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cm A.6 B.8 C.D.57.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+18.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.89.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.410.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<411.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP =2,那么PP′=.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是.18.如图,在△ABC中,点D、E分别在AB、AC边上,AB=AC,BE=BC,AE=DE=DB,那么∠A=度.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.20.已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN 的周长是.三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.25.阅读理解题:(1)原理:对于任意两个实数a、b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>026.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣bD.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、a>b两边都﹣2可得a﹣2<b﹣2,错误;B、a>b两边都乘以﹣3可得﹣3a<﹣3b,错误;C、a>b两边都乘以﹣1可得﹣a<﹣b,正确;D、a>b两边都除以2可得>,错误;故选:C.【点评】此题主要考查了不等式的基本性质.注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B的坐标为(1﹣2,3﹣4),进而可得答案.【解答】解:将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(1﹣2,3﹣4),即(﹣1,﹣1),故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】先求出不等式的解集,在数轴上表示出来即可.【解答】解:移项得,x≥﹣1,故此不等式的解集为:x≥﹣1,在数轴上表示为:.故选:B.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)2【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A和B都不是积的形式,应排除;C中,结果中的因式都应是整式,应排除.D、x2+4x+4=(x+2)2,正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB 的长为()cmA.6 B.8 C.D.5【分析】利用三角形的内角和和角的比求出三边的比,再由最小边BC=4cm,即可求出最长边AB的长.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.【点评】本题很简单,考查的是直角三角形的性质,即在直角三角形中30°的角所对的边等于斜边的一半.7.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+1【分析】直接提取公因式(m+1)进而合并同类项得出即可.【解答】解:(m+1)(m﹣1)+(m+1)=(m+1)(m﹣1+1)=m(m+1).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB 于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.8【分析】根据等腰三角形的性质求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵∠ABC=∠C,AB=8,∴AC=AB=8,∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+BE+CE=13,∴BC+EA+EC=13,即BC+AC=13,∴BC=5,故选:A.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE =3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.10.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<4【分析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.【解答】解:,①+②得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选:D.【点评】此题考查了解二元一次方程组,以及解一元一次不等式,表示出x+y是解本题的关键.11.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3【分析】函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1 .【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1)、x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1,故答案为:x﹣1.【点评】此题主要考查了公因式,正确分解因式是解题关键.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′= 2 .【分析】根据等边三角形的性质得出∠BAC=60°,根据旋转的性质得出AP=AP′,∠BAC=∠PAP′=60°,根据等边三角形的判定得出△APP′是等边三角形,根据等边三角形的性质得出即可.【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴旋转角的度数为60°,即∠PAP′=∠BAC=60°,根据旋转得出AP=AP′,∴△APP′是等边三角形,∴PP′=AP,∵AP=2,∴PP′=2,故答案为:2.【点评】本题考查了等边三角形的性质和判定,旋转的性质等知识点,能求出△APP′是等边三角形是解此题的关键.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为12 .【分析】根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得DE的长,再利用勾股定理得出答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴AD===12.故答案为:12.【点评】此题主要考查了等腰三角形的性质以及直角三角形的性质、勾股定理,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是3<a≤4 .【分析】先求出不等式的解集,根据已知得出关于a的不等式组,即可得出答案.【解答】解:由x﹣a<0得x<a,∵不等式只有三个正整数解,∴3<a≤4,故答案为:3<a≤4.【点评】本题考查了一元一次不等式组的整数解的应用,能得出关于a 的不等式组是解此题的关键.18.如图,在△ABC中,点D、E分别在AB、AC边上,AB=AC,BE =BC,AE=DE=DB,那么∠A=45 度.【分析】设∠A=x,则∠DBE=∠DEB=x,根据题意推出∠ABC=∠C =∠BEC=x,列出方程即可解决问题.【解答】解:∵AE=ED=BD,∴∠A=∠ADE,∠DBE=∠DEB,设∠A=x,则∠DBE=∠DEB=x,∵∠BEC=∠A+∠ABE,BE=BC,∴∠C=∠BEC=x,∵AB=AC,∴∠ABC=∠C=x,∵∠A+∠ABC+∠C=180°,∴x+x+x=180°,∴x=45°故答案为45.【点评】本题考查等腰三角形的性质,解题的关键是灵活应用等腰三角形的性质,重合利用参数解决问题,属于中考常考题型.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A 顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为﹣1 .【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.20.已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是6或10 .【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.【分析】根据一元一次不等式的解法即可求出答案.【解答】解:去分母,得2(2x﹣1)+(5x﹣1)≤6,去括号,得4x﹣2+5x﹣1≤6,移项、合并同类项,得9x≤9,x系数化成1,得x≤1.在数轴上表示不等式的解集如图所示.【点评】本题考查一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x【分析】(1)先提公因式a,再利用平方差公式分解可得;(2)先提取公因式x,再利用完全平方公式分解可得.【解答】解:(1)ax2﹣4ay2=a(x2﹣4y2)=a(x+2y)(x﹣2y);(2)x3﹣8x2+16x=x(x2﹣8x+16)=x(x﹣4)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.【分析】根据角平分线的性质得出BD=DF,利用HL证明Rt△BED与Rt△DFC全等,利用全等三角形的性质证明即可.【解答】证明:∵∠B=90°,AD平分∠BAC,DF⊥AC于F,∴BD=DF,在Rt△BED与Rt△DFC中,∴Rt△BED≌Rt△DFC(HL),∴BE=CF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并构造出全等三角形是解题的关键.25.阅读理解题:(1)原理:对于任意两个实数a、b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>0【分析】由x2﹣x﹣12>0知(x+3)(x﹣4)>0,根据题意得出①或②,再分别求解可得.【解答】解:∵x2﹣x﹣12>0,∴(x+3)(x﹣4)>0,则①或②,解不等式组①,得:x>4,解不等式组②,得:x<﹣3,所以原不等式得解集为x<﹣3或x>4.【点评】本题主要考查解一元一次不等式组,解题的关键是根据有理数乘法的符号法则列出关于x的一元一次不等式组.26.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为a﹣b;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为a+b.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为 4 .(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE =60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN =AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM 的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.。
四年级上册数学试题 - 第一次月考 北师大版 (含答案)

· · · · · · · · · · 10、观察每个钟面,填入时针和分针所成的角的名称。
绝密★启用前· 2017-2018 学年第一学期第一次月考· · · · 四年级数学试卷· · · · : · (时间 70 分钟 满分 100 分)号 · · 位 座· · · 题 号 得 分一二三四五六总 分密 · · · · · · · · · · · · · · · · · · · · · · · · · 二、判断题(对的打“√”错的打“×”,每小题2分,共10分) 1、近似数都比准确数小。
()一、填空题(每空 1 分,共 28 分) 1、10 个千万是(),100 个万是(2、右图用量角器量角方法正确。
( )3、947800000≈10亿。
())。
4、两条平行线间的距离处处相等。
()5、把一个30度的角放在5倍放大镜下,它就成了150度。
( 2、在数位顺序表中,右起第三位是( 是( )位。
)位,第五位是(),()位,第九位) : 号 学三、 选择题(将正确答案的字母填在括号里,每空2分,共16分) 3、找规律:808000,806000,804000,( ),( )。
1、到2014年底,深圳市常住人口为10778900人,四舍五入到万位约是( )。
A 、1077万B 、1000万C 、1078万D 、1080万4、比最大的四位数多 1 的数是( ),比最小的六位数少 1 的数是()。
最新北师大版 八年级(下)期末数学试卷(含答案) (7)

八年级(下)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.(4分)下列各式中,最简二次根式是()A.B.C.D.2.(4分)已知一次函数y=(k﹣1)x+2,若y随x的增大而增大,则k的取值范围是()A.k>1B.k<1C.k<0D.k>03.(4分)菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A.50B.25C.D.12.54.(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁5.(4分)估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.无法确定6.(4分)一组数据为:31,30,35,29,30,则这组数据的方差是()A.22B.18C.3.6D.4.47.(4分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF 8.(4分)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,…,照此规律排列下去,则第个8图中小正方形的个数是()A.48B.63C.80D.9910.(4分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.211.(4分)从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1B.2C.3D.412.(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或B.或C.或D.或二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.14.(4分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=cm.15.(4分)仪征市某活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如表所示:则全体参赛选手年龄的中位数是岁.16.(4分)设的整数部分为a,小数部分为b,则的值等于.17.(4分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.18.(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是元.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.(8分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.20.(8分)计算:(1)××(﹣)(2)+3﹣﹣.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.(10分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.23.(10分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,两人一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x(秒)的函数图象,请根据题意解答下列问题:(1)在跑步的全过程中,小明共跑了米,小明的速度为米/秒.(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?24.(10分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.25.(10分)已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以10的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以W(36,10)=406.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x59,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.2017-2018学年重庆市九龙坡区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.【解答】解:A、=,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,符合题意;D、=|a|,故此选项错误;故选:C.2.【解答】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:A.3.【解答】解:菱形的面积=AC•BD=×5×10=25.故选:B.4.【解答】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.5.【解答】解:=10﹣,∵2<<3,∴7<10﹣<8,即的值在7和8之间.故选:B.6.【解答】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选:D.7.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.8.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.9.【解答】解:∵第1个图中小正方形的个数3=12+2×1,第2个图中小正方形的个数8=22+2×2,第3个图中小正方形的个数15=32+2×3,第4个图中小正方形的个数24=42+2×4,……∴第n个图中小正方形的个数为n2+2n,则第8个图中小正方形的个数为82+2×8=80,故选:C.10.【解答】解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.11.【解答】解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.12.【解答】解:如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣414.【解答】解:∵▱ABCD∴∠ADE=∠DEC∵DE平分∠ADC∴∠ADE=∠CDE∴∠DEC=∠CDE∴CD=CE∵CD=AB=6cm∴CE=6cm∵BC=AD=8cm∴BE=BC﹣EC=8﹣6=2cm.故答案为2.15.【解答】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为14岁,∴全体参赛选手的年龄的中位数为14岁.故答案为:14.16.【解答】解:∵2<<3,∴a=2,b=﹣2,∴===2﹣.故答案为:2﹣.17.【解答】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=4,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:18.【解答】解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,∵购进的每一种衬衫的数量都不少于90件,∴a≥90,∴当a=90时,y取得最大值,此时y=﹣50×90+44000=39500,故答案为:39500.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20.【解答】解:(1)原式=﹣=﹣;(2)原式=2+2﹣﹣=0.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.22.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.23.【解答】解:(1)由图象可得,在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)当x=500时,y=1.5×500=750,当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),故小亮的速度为:750÷(400﹣100)=2.5米/秒,小亮在途中等候小明的时间是:500﹣400=100(秒),即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)设小亮出发t秒时第一次与小明相遇,2.5t=1.5(t+100),解得,t=150,答:小亮出发150秒时第一次与小明相遇.24.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠BAE=∠DEA=90°,BD平分∠ABC,∴∠ABD=30°.∴∠DAE=30°.在Rt△ABF中,tan30°=,即,解得AF=.在Rt△AFG中,FG=AF=,∴AG=1.所以四边形ABFG的面积=×2×+×1×=;(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=.在Rt△AFG中,FG=AF=.在Rt△ADE中,AE=.∴AE+FG=+=.∴BF=AE+FG.25.【解答】解:(1)W(20,18)=(1280+2108)÷11=3388÷11=308;(2)①W(a,36)=[3160+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②∵当150W(a,36)+W(b,49)=62767∴150([3160+x+1306+10x)÷11]+(489+1000y+4098+100y)÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=1413,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为1413.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)①∵矩形OABC,OA=3,OC=2∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2∵△APD为等腰直角三角形∴∠P AD=45°∵AO∥BC∴∠BP A=∠P AD=45°∵∠B=90°∴∠BAP=∠BP A=45°∴BP=AB=2∴P(1,2)设直线AP解析式y=kx+b,过点A,点P∴∴∴直线AP解析式y=﹣x+3②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+当x=0时,y=,∴N(0,)∵G'G''=∴△GMN周长的最小值为(2)如图:作PM⊥AD于M∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB∴PD=P A,且PM⊥AD∴DM=AM∵四边形P AEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM ∴△PMD≌△ODE∴OD=DM,OE=PM∴OD=DM=MA∵PM=2,OA=3∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n∴∴直线PE解析式y=2x﹣2。
备战上学期期末考试八年级数学优质好题精选:专题08_二元一次方程(有答案)-优选
一、单选题1.(2016-2017学年浙江省台州市书生中学七年级下学期期中考试数学试卷(带解析))下列方程组中是二元一次方程组的是( )A. B. 437{1x y y z +=-= C. 2{3x y y +== D. 225{4x y x y +=-=【答案】C2.(福建师范大学第二附属中学2016-2017的二元一次方程2318x y +=的正整数解的个数有( )个 A. 1 B. 2 C. 3 D. 4 【答案】B【解析】2x+3y=18, 解得:x=3+182y -,21世纪教育 当y=2时,x=6;当y=4时,x=3, 则方程的正整数解有2对, 故选B.3.(山东省威海市文登区八校(五四学制)2016-2017学年七年级下学期期中考试数学试题)下列各组数中①2{2x y ==; ②2{1x y ==;③2{2x y ==-;④1{6x y ==是方程410x y +=的解的有( )A. 1个B. 2个C. 3个D. 4个 【答案】B4.(2016-2017学年浙江省台州市书生中学七年级下学期期中考试数学试卷)已知方程组2{22x y kx y +=+=的解满足x+y=2,则的算术平方根为( ). A. 4 B. ﹣2 C. ﹣4 D. 2 【答案】D【解析】试题分析:把两个方程相加可得3x+3y=2+,两边同除以3可得x+y=23k+=2,解得=4,因此的算术平方根为2. 故选:D.5.(人教版数学七年级下册(贵州专版) 期末综合检测)已知2,{1x y ==是二元一次方程组8,{-1mx ny nx my +==的解,则2m- n 的算术平方根为 ( )±2 【答案】B6.(河南省洛阳市2016-2017学年七年级(下)期末数学试卷)关于x,y的方程组的解为,则=()A. ﹣3B. 3C. 81D. ﹣81【答案】B【解析】把代入方程组得:,解得:,则==3,故选B.7.(2017年河北省石家庄市裕华区中考数学模拟试卷(3月份))关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A. ﹣B.C. ﹣D.【答案】A【解析】分析:将x=1代入方程x+y=3求得y的值,将x、y的值代入x+py=0,可得关于p的方程,可求得p.本题解析根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=,故选:A.8.(山东省龙口市第五中学(五四学制)2016-2017学年七年级下学期期中考试)关于x,y的方程组244x y a x y a +=⎧⎨-=⎩的解是方程3x+2y=10的解,那么a 的值为( )A. ﹣2B. 2C. ﹣1D. 1 【答案】B【解析】解方程组244x y ax y a+=⎧⎨-=⎩可得,代入方程3x+2y=10可得6a-a=10,解得a=2,故选B.9.(河南省周口市西华县2016-2017学年七年级下学期期末考试)已知1{2x y ==是二元一次方程组32{1x y m nx y +=-= 的解,则m n -的值是( ) A. 1 B .2 C .3 D .4 【答案】D【解析】把x=1,y=2分别代入方程组的两个方程可得m=7,n=3,所以m-n=7-3=4,故选D. 10.(山东省淄博市临淄区边河乡中学2016-2017学年八年级下学期期中考试)已知密文和明文的对应规则为明文a 、b 对应的密文为ma-nb 、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l 【答案】C11.(新疆乌鲁木齐市第九十八中学2016-2017学年七年级下学期第二次月考)若2{1x y =-=是方程组1{7ax by bx ay +=+=的解,则(a+b )·(a -b )的值为( )A. -353 B. 353C. -16D. 16 【答案】C12.(山东省济南兴济中学北师大版八年级上册第五章二元一次方程组单元检测题)方程组25{328y x x y =--=消去y 后所得的方程是( )21·世纪*教育网A. 3x -4x +10=8B. 3x -4x +5=8C. 3x -4x -5=8D. 3x -4x -10=8【:21·世纪·教育·网】 【答案】A 【解析】25{328y x x y =--=①②,把①代入②得:3x −2(2x −5)=8, 去括号得:3x −4x +10=8, 故选A.13.(福建省漳州市北师大版八年级数学上册校本作业)用代入法解方程组2{ 27x y x y +=-=,①,②正确的解法是( )A. 先将①变形为2x y =+,再代入②B. 先将①变形为2x y =-,再代入②C. 先将②变形为72y x =-,再代入①D. 先将②变形为72yx -=,再代入① 【答案】B【解析】根据解二元一次方程的代入法,将①变形为x =2-y 后可知,变形后A 是错误的,B 是正确的; 将②变形为x =7+y2或y =2x -7可知,变形后C 和D 都是错误的. 故选B.14.(2017-2018学年人教版七年级下册 第八单元 二元一次方程组 单元测试)已知方程5m -2n =1,当m 与n 相等时,m 与n 的值分别是( )A. 2{2m n == B. 3{ 3m n =-=- C. 1{ 1m n =-=- D. 13{ 13m n ==【答案】D15.(北师大版八年级数学上册同步练习:5.8 三元一次方程组)已知方程组3{ 5x y mx y +=-=的解是方程x ﹣y=1的一个解,则m 的值是( ) A. 1 B. 2 C. 3 D. 4 【答案】C【解析】试题分析:首先将方程组进行重组可得: 3{ 1x y x y +=-=,解得: 2{1x y ==,将其代入mx-y=5可得:2m-1=5,解得:m=3,故选C .16.(2017-2018学年八年级数学上册(北师大版)检测卷期末达标测试卷)如果二元一次方程组3{9x y a x y a+=-=的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A.34 B. -47 C. 74 D. -43【答案】B 【解析】解方程组3{9x y a x y a+=-=可得6{3x a y a==-,又因方程组3{9x y a x y a+=-=的解是二元一次方程2x -3y +12=0的一个解,可得2×6a-3(-3a )+12=0,解得a=47-.故选B . 17.(2017年秋北师大版八年级数学上册章末检测卷第5章二元一次方程组)若|a +b -1|+(a -b +3)2=0,则a b的值( )21*cnjy*com A. 1 B. 2 C. 3 D. -1 【答案】A【解析】试题分析:根据非负数的性质可得: 1{ 3a b a b +=-=-,解得: 1{2a b =-=,则()211b a =-=,故选A .18.(2017年秋北师大版八年级数学上册章末检测卷第5章二元一次方程组)若方程组(){312y kx b y k x =+=-+有无穷多组解,则2+b 2的值为( )A. 4B. 5C. 8D. 10 【答案】B19.(山东省淄博市临淄区第八中学2016-2017学年八年级下学期期中考试)二元一次方程组的解的和为10,则的值等于( )A. 4B. 10C. 24D.【答案】C 【解析】,①+②,得5(x+y)=2+2, x+y=, 则=10,解得=24, 故选:C20.(江苏省泰州市姜堰区2017年中考适应性考试(二)数学试题)我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;.已知x 、y 满足方程[][][][]329{30x y x y +=-=,则[]x y +可能的值有( )A. 1个B. 2个C. 3个D. 4个 【答案】B。
北师大版八年级下册数学 第二章 一元一次不等式与一元一次不等式组 同步课时练习题(含答案)
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组同步课时练习题2.1不等关系01基础题知识点1不等式的意义1.(2017·太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是(A)A.两种客车总的载客量不少于500 人B.两种客车总的载客量不超过500 人C.两种客车总的载客量不足500人D.两种客车总的载客量恰好等于500人2.有下列数学表达式:①3<0;②4x+5>0;③x=3;④x+x;⑤x≠-4;⑥x+2>x+1.其中是不等式的有4 个.2知识点2列不等式3.某电梯标明“载客不超过13人”,若载客人数为x,x 为自然数,则“载客不超过13人”用不等式表示为(C)A.x<13 C.x≤13 B.x>13 D.x≥134.如图为一隧道入口处的指示标志牌,图1 表示汽车的高度不能超过3.5 m,由此可知图2 表示汽车的宽度l(m)应满足的关系为l≤3.限制高度限制宽度图1 图25.用适当符号表示下列关系:(1)x的绝对值是非负数;解:|x|≥0.15(2)a的3倍与b的的和不大于3;1解:3a+b≤3.5(3)x与17的和比它的5 倍小.解:x+17<5x.02中档题6.小新买了一罐八宝粥,看到外包装标明:净含量为330±10 g,那么这罐八宝粥的净含量x 的范围是(D)A.320<x<340 C.320<x≤340 B.320≤x<340 D.320≤x≤3407.下列叙述:①a是非负数,则a≥0;②“a减去10不大于2”可表示为a-10<2;③“x 的倒数超过10”可表2 21x示为>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是(C)A.1 C.3 B.2 D.48.在数轴上,点A 表示2,点B 表示-0.6,点C 在线段A B 上,点C 表示的数为a,则用不等关系表示为-0.6≤a≤2.9.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5 分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为10n-5(20-n)>90.03 综合题10.请设计不同的实际背景来表示下列不等式:(1)x>y ;(2)2.0≤x ≤2.6;(3)3a +4b ≤560.解:答案不唯一,如:(1)八年级(1)班的男生比女生多,其中男生 x 人,女生 y 人.(2)某班级男生立定跳远成绩 x 在 2.0 米到 2.6 米之间.(3)3 条长裤和 4 件上衣的总价不超过 560 元,其中长裤单价 a 元,上衣单价 b 元.2.2 不等式的基本性质01 基础题知识点 1 不等式的基本性质1.若 a<b ,则下列各式中一定成立的是(B)A .-3a<-3b C .a +c>b +cB .a -3<b -3D .2a>2b2.(2017·成都期末)若 x>y ,则下列式子中错误的是(D)x y A .x -3>y -3 C .x +3>y +3B. > 3 3D .-3x>-3y 3.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A .a >bB .a +2>b +2D .2a >3bC .-a <-b 4.下列说法不一定成立的是(C)A .若 a >b ,则 a +c >b +cB .若 a +c >b +c ,则 a >bC .若 a >b ,则 ac >bc 2 2D .若 ac >bc 则 a >b2 2, 5.由不等式 a >b 得到 am <b m 的条件是 m <0.6.已知 m <n ,下列关于 m ,n 的命题:①6m >6n ;②-3m <-3n ;③m -5<n -5;④2m +5>2n +5.其中正确命 题的序号是③.7.小燕子竟然推导出了 0>5 的错误结论.请你仔细阅读她的推导过程,指出问题到底出在哪里.已知 x >y ,两边都乘 5,得 5x >5y .①两边都减去 5x ,得 0>5y -5x .②即 0>5(y -x).③两边都除以(y -x),得 0>5.④解:错在第④步.∵x >y ,∴y -x <0.不等式两边同时除以负数(y -x),不等号应改变方向才能成立.知识点 2 将不等式化为“x >a ”或“x <a ”的形式8.(2017·太原期中)下列不等式的变形过程中,正确的是(D)A .不等式-2x >4 的两边同时除以-2,得 x >2B .不等式 1-x >3 的两边同时减去 1,得 x >2C .不等式 4x -2<3-x 移项,得 4x +x <3-2x 3 x 2D .不等式 <1- 去分母,得 2x <6-3x 9.将下列不等式化成“x>a”或“x<a”的形式.(1)x -5<1; (2)2x>x -2;解:x<6. 解:x>-2.12(3)x>-3;(4)-5x<-2.2解:x>-6.解:x>.502中档题10.若点P(x-2,y-2)在第二象限,则x与y的关系正确的是(D)A.x≥y C.x≤y B.x>y D.x<y11.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为(C)A.■●▲C.■▲●B.▲■●D.●▲■12.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-c C.ac>bc B.a+c<b+c a cD.<b b13.已知x-y=3,若y<1,则x的取值范围是x<4.14.下列变形是怎样得到的?1 21 2(1)由x>y,得x-3>y-3;1 21 2解:两边都除以2,得x>y.1 21 2两边都减去3,得x-3>y-3.1 21 2(2)由x>y,得(x-3)>(y-3);解:两边都减去3,得x-3>y-3.1 21 2两边都除以2,得(x-3)>(y-3).(3)由x>y,得2(3-x)<2(3-y).解:两边都除以-1,得-x<-y.两边都加上3,得3-x<3-y.两边都乘2,得2(3-x)<2(3-y).15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.。
专题01-三角形的证明-2017-2018学年下学期期末复习备考八年级数学之热点难点突破练(北师大版)(原卷版)
三角形的证明【知识梳理】一、等腰三角形1.等腰三角形的定义:____________的三角形是等腰三角形.2.等腰三角形的性质(1)等腰三角形两底角____________;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,简称:____________;(3)等腰三角形是轴对称图形,有条对称轴.3.等腰三角形的判定方法(1)定义判定:一个三角形中,如果有两条边____________,那么这个三角形是等腰三角形.(2)判定定理:等角对等边,即一个三角形中,如果有两个角相等,那么这两个角所对的边____________.4.等边三角形的性质等边三角形的各角都____________,并且每—个角都等于;等边三角形是轴对称图形,有条对称轴.5.等边三角形的判定(1)三边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于的等腰三角形是等边三角形.二、直角三角形1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角________;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的____________ ;【例题精讲】考点一、等腰三角形的性质例1若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm考点二、等腰三角形的有关角的计算例2如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°考点三、等腰三角形中的分类讨论问题例3如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7考点四、等边三角形的性质例4如图,已知△ABC为等边三角形,高AH=5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_________cm.考点五、角平分线的性质与判定例5如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.(提示:过P 作PE⊥直线BA)考点六、线段的垂直平分线例6如图,在锐角中,,.尺规作图:作BC边的垂直平分线分别交AC,BC于点D、保留作图痕迹,不要求写作法;在的条件下,连结BD,求的周长.【达标测试】一、单选题(本题共10小题,每题3分,满分30分)1.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( )A. 1∶1∶2B. 1∶3∶4C. 9∶25∶36D. 25∶144∶1692.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E.则∠EDC的大小是()A. 20°B. 30°C. 40°D. 50°3.如图,△ABC的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1 B. 1:2:3 C. 2:3:4 D. 3:4:54.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A. 40° 40°B. 80° 20°C. 50° 50°D. 50° 50°或80° 20°5.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A. 60° B. 70° C. 80° D. 90°6.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D 为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 6B. 8C. 9D. 107.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是();A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形8.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则∠1+2∠+∠3等于()A. 90° B. 120° C. 150° D. 180°9.一个三角形的三边长为15,20,25,则此三角形最大边上的高为()A. 10B. 12C. 24D. 4810.在等边三角形ABC中,D ,E 分别是BC,AC 的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在().A. A点处B. D点处C. AD的中点处D. △ABC三条高线的交点处二、填空题(本题共10小题,每题3分,满分30分)11.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.12.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是________.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6,沿DE折叠,使得点A与点B重合,则折痕DE的长为_________.14.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,△ADF的周长为7,则AC的长为__________.15.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点E,交BC于点D,若∠B=35°,则∠CAD=________°.16.如图所示,BD⊥AC于点D ,DE∥AB ,EF⊥AC于点F ,若BD平分∠ABC ,则与∠CEF相等的角(不包括∠CEF)的个数是________.17.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=______________时,△AOP为等腰三角形.18.18.如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连结BD.若AD=12cm,则BC的长为__________ .19.如图,△ABC中,∠ABC=120°,BD平分∠ABC,点P是BD上一点,PE⊥AB于E,线段BP的垂直平分线FH 交B C于F,垂足为H.若BF=2,则PE的长为 .20.如图 , 等边△A1C1C2的周长为 1, 作C1D1⊥A1C2于D1, 在C1C2 的延长线上取点C3, 使D1C3=D1C1, 连接D1C3, 以C2C3为边作等边△A2C2C3; 作C2D2⊥A2C3于D2, 在C2C3的延长线上取点C4, 使D2C4=D2C2, 连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧 , 如此下去 , 则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1的周长和为_______.(n≥2,且n为整数).(面积之和?)三、解答题(本题共7小题,满分60分)21.如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,BC=8.求△AEG周长.22.两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,点B,C,E在同一条直线上,连接CD.求证:CD⊥BE.23.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.如图,在△ABC中,AD是∠BAC的平分线,且∠B=∠ADB,过点C作CM垂直于AD的延长线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.25.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.26.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是__________,△AEF的周长是__________;(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.27.在△ABC中,AB=AC,AB的垂直平分线交AC于点N,交BC的延长线于点M,∠A=40°.(1)求∠NMB的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?。
2017-2018学年高中数学(北师大版)5:课时跟踪检测(二十一)简单线性规划的应用含答案
课时跟踪检测(二十一)简单线性规划的应用层级一学业水平达标1.有5辆可载货物6吨的汽车,4辆可载货物4吨的汽车,要运送最多的货物完成这项运输任务的线性目标函数为()A.z=6x+4y B.z=5x+4yC.z=x+y D.z=4x+5y解析:选A 设6吨的车辆为x辆,4吨的车辆为y辆,则运送货物的吨数为z=6x+4y.2.某电脑用户计划使用不超过500元的资金购买单价为60元和70元的单片软件和盒装磁盘,根据需要,软件至少买三片,磁盘至少买两盒,则不同的购买方式共有()A.5种B.6种C.7种D.8种解析:选C 设买x片软件,y盒磁盘,则错误!即错误!当x=3时,y可取2,3,4;当x=4时,y可取2,3.当x=5时,y可取2;当x=6时,y取2.共7种不同的购买方式.3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2 000元B.2 200元C.2 400元D.2 800元解析:选B 设需使用甲型货车x辆,乙型货车y 辆,运输费用z元,根据题意,得线性约束条件错误!求线性目标函数z=400x+300y的最小值.作出不等式组表示的平面区域如图所示,在点A处z取得最小值,z min=2 200。
4.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1。
2万元0.55万元韭6吨0.9万元0。
3万菜元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) A.50,0 B.30,20C.20,30 D.0,50解析:选B 设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年上学期第一次月考
初二数学试卷
一、选择题(每题3分,共36分)
1.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ).
A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,13
2.下列说法错误的是( )
A、5是25的算术平方根 B、1是1的一个平方根
C、(-4)2的平方根是-4 D、0的平方根与算术平方根都是0
3.化简43的结果是( )
A、3 B、±3 C、9 D、±9
4.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
A.25 B.14 C.7 D.7或25
5.下列运算正确的是( )
A、xxx32 B、12223 C、5252 D、xbaxbxa
6.若23303xy,则2011xy等于( )
A.2011 B.2011 C.1 D.
1
7.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点
B处吃食,点B与点A相对,要爬行的最短路程(π取3)是( )
A.20cm B.10cm C.14cm D.无法确定
8.估算76-3的值在( )
A.4与5之间 B.5与6之间 C.6与7之间 D.7与8之间
9.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的
三个数的算术平方根,则这个密码箱的密码可能是( )
A.123 B.189 C.169 D.248
10.实数a,b在数轴上对应点的位置如图2-2所示,则化简代数式2aba的结果是( )
A.b B.2a C.a D.
b
0cba
11.如图,正方形ABCD的面积为100 cm2,△ABP为直角三角形,∠P=90°,
且PB=6 cm,则AP的长为( )
A.10 cm B.6 cm C.8 cm D.无法确定
12. 图2中的小方格都是边长为1的正方形,试判断△ABC的形状为( )
A.钝角三角形 B. 锐角三角形
C. 直角三角形 D.以上都有可能
二、填空题(每题2分,共20分)
13.2-5的绝对值是________,161的算术平方根是________.
14.明明家的卫生间地面恰好由120块相同的正方形地砖铺成,若该地面的面积是10.8 m2,则每块
正方形地砖的边长是__________ m.
15.若4<a<5,则满足条件的整数a有__________个.
16.已知x,y都是实数,且y=x-3+3-x+4,则yx=________.
17.在△ABC中,∠C=90°, 若BC∶AC=3∶4,AB=10,则BC=_____,AC=_____.
18.如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为_____.
19.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,
则S=________.
20.甲、乙两位探险者在沙漠中进行探险,某日早晨8:00甲先出发,他以6km/h的速度向东行走,
1h
后乙从同一地点出发,他以5km/h的速度向北行走,上午10:00时甲、乙两人相距_____km.
21.已知一个正数的平方根是32x和56x,则这个数是
_______.
22.将1、2、3、6按图2所示的方式排列,若规定(m,n)表示第m排从左到右第n个数,
P
C B
D
A
则(4,2)与(21,2)表示的两数的积是______.
三、解答题(共64分)
23.(共6分,每题3分)求下列各式中x的值:
(1)25x2-64=0; (2)343(x+3)3+27=0.
24.(共18分,每题3分)计算下列各题
(1)12263223 (2)2015031π3
(3)23281273 (4)49916144
(5)20155 (6)113185043252
25.(6分)已知:如图,四边形ABCD中,1ABBC,3CD,1AD,且90B.试求:
(1)BAD的度数
.
(2)四边形ABCD的面积.(结果保留根号)
26.(6分)小红和小军周日到郊外放风筝,风筝飞得又高又远,小红让小军跑到风筝的正下方,并
测出两人之间的距离为60米,小红发现已将100米的风筝线放完了,小红想了想就说出风筝飞了多
高,小红知道自己身高为1.6米,(手与头顶齐平)请画出示意图,并计算风筝离地面多高.
27.(6分)已知21a的平方根是17,31ab的算术平方根是6,求4ab的算术平方根.
28.(6分)有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD
折叠,使它落在斜边AB上,且与AE重合,求CD的长。
D
C
B
A
29.(10分)如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:
(1)边AC,AB,BC的长;
(2)点C到AB边的距离;
(3)求△ABC的面积。
30.(6分)观察下列一组等式,解答后面的问题:
(2+1)( 2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(
5
-4)=1,…
(1)根据上面的规律,计算下列式子的值:
1111
2016121324320162015
.
(2)利用上面的规律,比较1112与1213的大小.
初二数学参考答案
一、选择题
1-5 CCCDD 6-10 DBBAA 10-12 CC
二、填空题
13、25 21 14、0.3 15、8 16、64
17、6,8 18、10 19、31 20、13 21、16 22、3,6
三、解答题
23、(1)23364 (2)2 (3)326
(4)0 (5)32 (6)2
24、(1)58x (2)5x
25、(1)135BAD (2)2122ABCD四边形S
26、81.6米
27、7494ba
28、CD=3
29、(1)AC=5 AB=13 BC=10
(2)点C到AB的距离是13137
(3)27ABCS
30、
解:(1)根据规律,可得nnnn111(n≥1).
1111
21324320162015
20161
=2132432016201520161
=2016120161=2015.
(2)因为111211121,121312131,又12131112,
所以1213111121.所以1112>1213.