【推荐】华东师大初中数学九年级下册点、直线、圆与圆的位置关系—巩固练习(基础).doc
直线与圆的位置关系(基础篇)-2022-2023学年九年级数学下册基础知识专项讲练

专题2.2 直线与圆的位置关系(基础篇)(专项练习)一、单选题1.已知⊙O 半径为5,点O 到直线l 的距离为3,则直线l 与⊙O 有公共点( ). A .0个B .1个C .2个D .无法确定2.在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( ) A .与x 轴相切,与y 轴相切 B .与x 轴相切,与y 轴相交 C .与x 轴相交,与y 轴相切D .与x 轴相交,与y 轴相交3.如图,在平面直角坐标系中,以1.5为半径的圆的圆心P 的坐标为(0,2),将P 沿y 轴负方向平移1.5个单位长度,则x 轴与P 的位置关系是( )A .相交B .相切C .相离D .无法确定4.如图,已知Rt ABC ∆中,90C ∠=,3AC =,4BC =,如果以点C 为圆心的圆与斜边AB 有公共点,那么⊙C 的半径r 的取值范围是( )A .1205r ≤≤B .1235r ≤≤ C .1245r ≤≤ D .34r ≤≤5.如图,OA 是⊙О的一条半径,点P 是OA 延长线上一点,过点P 作⊙O 的切线PB ,点B 为切点. 若P A =1,PB =2,则半径OA 的长为( )A.43B.32C.85D.36.已知O的半径为5,直线AB与O有交点,则圆心O到直线AB的距离可能为().A.4.5B.5.5C.6D.77.O的圆心到直线a的距离为3cm,O的半径为1cm,将直线a向垂直于a的方向平移,使a与O相切,则平移的距离是()A.1cm B.2cm C.4cm D.2cm或4cm8.如图,点A的坐标为(-3,-2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A 于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A.(0,-2)B.(0,-3)C.(-3,0)或(0,-2)D.(-3,0)9.如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm10.如图,直线a⊙b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,以O为圆心1cm为半径作圆,当O从点P出发以2 cm/s速度向右作匀速运动,经过t s与直线a 相切,则t 为( )A .2sB .32s 或2sC .2s 或52sD .32s 或52s二、填空题11.如图,⊙O 的半径OC =10cm ,直线l ⊙OC ,垂足为H ,且l 交⊙O 于A ,B 两点,AB =16cm ,则l 沿OC 所在直线向下平移_________cm 时与⊙O 相切.12.如图,直线AB ,CD 相交于点O ,30AOC ∠=︒,圆P 的半径为1cm ,动点P 在直线AB 上从点O 左侧且距离O 点6cm 处,以1cm/s 的速度向右运动,当圆P 与直线CD 相切时,圆心P 的运动时间为 _____s .13.已知Rt △ABC 中,AC =3,BC =4,以C 为圆心,以r 为半径作圆.若此圆与线段AB 只有一个交点,则r 的取值范围为_____.14.在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,若以点C 为圆心,r 为半径的圆与边AB 所在直线相离,则r 的取值范围为 _____;若⊙C 与AB 边只有一个有公共点,则r 的取值范围为 _____.15.如图,半径为5个单位的⊙A 与x 轴、y 轴都相切;现将⊙A 沿y 轴向下平移 ___个单位后圆与x 轴交于点(2,0).16.已知O 的半径为10,直线AB 与O 相交,则圆心O 到直线AB 距离d 的取值范围是______.17.如图,在直线l 上有相距7cm 的两点A 和O (点A 在点O 的右侧),以O 为圆心作半径为1cm 的圆,过点A 作直线AB ⊙l .将⊙O 以2cm/s 的速度向右移动(点O 始终在直线l 上),则⊙O 与直线AB 在_____秒时相切.18.如图,已知在平面直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移________个单位时,它与x 轴相切.三、解答题19.在Rt ABC 中,90C ∠=︒,4BC =,3AC =, (1)斜边AB 上的高为________; (2)以点C 为圆心,r 为半径作⊙C⊙若直线AB 与⊙C 没有公共点,直接写出r 的取值范围; ⊙若边AB 与⊙C 有两个公共点,直接写出r 的取值范围; ⊙若边AB 与⊙C 只有一个公共点,直接写出r 的取值范围.20.如图,O的半径是5,点A在O上.P是O所在平面内一点,且2AP=,过⊥.点P作直线l,使l PA(1)点O到直线l距离的最大值为;(2)若M,N是直线l与O的公共点,则当线段MN的长度最大时,OP的长为.21.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:⊙以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;⊙根据图形提供的信息,在图中标出该圆弧所在圆的圆心D.(2)请在(1)的基础上,完成下列填空:⊙写出点的坐标:D();⊙⊙D的半径= (结果保留根号);⊙利用网格试在图中找出格点E ,使得直线EC与⊙D相切(写出所有可能的结果).22.如图,已知⊙O的半径为5cm,点O到直线l的距离OP为7cm.(1)怎样平移直线l,才能使l与⊙O相切?(2)要使直线l与⊙O相交,设把直线l向上平移xcm,求x的取值范围23.如图,在平面直角坐标系中,O的半径为1,则直线25=-O的位置关y x系怎样?24.如图,30OM=,以M为圆心,r为半径作圆.AOB︒∠=,点M在OB上,且5cm(1)讨论射线OA 与M 公共点个数,并写出r 对应的取值范围;(2)若C 是OA 上一点,53cm OC =,当5cm r >时,求线段OC 与M 的公共点个数.参考答案1.C【分析】根据⊙O半径为5,点O到直线l的距离为3得到直线l与⊙O相交,即可判断出直线l 与⊙O有两个公共点.解:⊙⊙O半径为5,点O到直线l的距离为3,⊙d<r,⊙直线l与⊙O相交,⊙直线l与⊙O有两个公共点.故选:C【点拨】本题考查了直线与圆的位置关系,能根据圆心到直线的距离d与圆的半径r关系判断位置关系是解题关键.当d>r时,直线与圆相离,没有公共点,当d=r时,直线与圆相切,有一个公共点,当d<r时,直线与圆相交,有两个公共点.2.B【分析】由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.解:⊙点(2,3)到x轴的距离是3,等于半径,到y轴的距离是2,小于半径,⊙圆与y轴相交,与x轴相切.故选B.【点拨】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.3.A【分析】根据题意,将圆心点向下平移1.5个单位,即可判断圆与x轴的位置关系.解:如图,圆心P的坐标为(0,2),将P沿y轴负方向平移1.5个单位长度,∴平移后的点P 的坐标为(0,0.5),0.5OP ∴=,半径为1.5,PO r ∴<,∴圆P 与x 轴相交,故选.A【点拨】本题主要考查圆与直线的位置关系,结合题意判断圆与x 轴的位置关系是解题的关键.4.C 【分析】作CD⊙AB 于D ,根据勾股定理计算出AB=13,再利用面积法计算出125CD =然后根据直线与圆的位置关系得到当1254≤≤r 时,以C 为圆心、r 为半径作的圆与斜边AB 有公共点.解:作CD⊙AB 于D ,如图,⊙⊙C=90°,AC=3,BC=4, ⊙22AB 5AC BC + 1122⋅=⋅CD AB BC AC ⊙CD 125=⊙以C 为圆心、r 为半径作的圆与斜边AB 有公共点时,r 的取值范围为1254≤≤r 故选:C【点拨】本题考查了直线与圆的位置关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d :直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d=r ;直线l 和⊙O 相离⇔d >r .5.B 【分析】由题意得, PBO 是直角三角形,设OA =x ,则OB =x ,在Rt PBO 中,1PO x =+,根据勾股定理得,2222(1)x x +=+,解得32x =,即可得. 解:由题意得,1PA =,2PB =,90PBO ∠=︒,⊙PBO 是直角三角形, 设OA =x ,则OB =x ,在Rt PBO 中,1PO x =+,根据勾股定理得,2222(1)x x +=+22421x x x +=++解得32x =, 则半径OA 的长为32,故选B .【点拨】本题考查了圆,勾股定理,解题的关键是掌握这些知识点. 6.A 【分析】根据直线AB 和⊙O 有公共点可知:d ≤r 进行判断. 解:⊙⊙O 的半径为5,直线AB 与⊙O 有公共点,⊙圆心O 到直线AB 的距离0<d ≤5. 故选:A .【点拨】本题考查了直线和圆的位置关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则直线l 和⊙O 相交⊙d <r ;直线l 和⊙O 相切⊙d =r ;直线l 和⊙O 相离⊙d >r .7.D 【分析】根据直线与圆的位置关系,平移使直线a与O相切,有两种情况,一种是移动3-1=2厘米,第二种是移动3+1=4厘米.解:如图,当直线a向上平移至a'位置时,平移距离为3-1=2厘米;当直线a向上平移至a''位置时,平移距离为3+1=4厘米.故答案选:D.【点拨】本题考查了平移,直线与圆的位置关系,熟练掌握知识点并结合图形是解答关键.8.D【分析】连结AQ、AP,由切线的性质可知AQ⊙QP,由勾股定理可知22-AP AQ当AP有最小值时,PQ最短,根据垂线段最短可得到点P的坐标.解:连接AQ,AP.根据切线的性质定理,得AQ⊙PQ;要使PQ最小,只需AP最小,根据垂线段最短,可知当AP⊙x轴时,AP最短,⊙P点的坐标是(−3,0).故选D.【点拨】此题主要考查垂线段的性质,解题的关键是熟知圆的位置关系.9.B【分析】作出OC⊙AB,利用垂径定理求出BC=4,再利用勾股定理求出OC=3,即可求出要使直线l 与⊙O 相切,则需要将直线l 向下平移的长度.解:作OC ⊙AB ,又⊙⊙O 的半径为5cm ,直线l 交⊙O 于A 、B 两点,且弦AB =8cm⊙BO =5,BC =4,⊙由勾股定理得OC =3cm ,⊙要使直线l 与⊙O 相切,则需要将直线l 向下平移2cm .故选:B .【点拨】此题主要考查了切线的性质定理与垂径定理,根据图形求出OC 的长度是解决问题的关键.10.D【分析】利用圆心到直线的距离等于半径即可.解:设圆与直线b 交于A 、B 两点,当O 从点P 出发以2 cm/s 速度向右作匀速运动,OP=2t ,PB=2t+1,PA=2t -1, 当PB=PH 时即2t+1=4,t=1.5与直线a 相切,当PA=PH 时即2t -1=4,t=2.5与直线a 相切.故选:D .【点拨】本题考查圆与直线相切问题,关键掌握圆与直线相切的条件,会利用此条件确定动点圆心的位置,列出等式解方程解决问题.11.4【分析】根据垂径定理可求出182AH AB cm ==,再利用勾股定理可得6OH cm =,从而4CH cm =,再由l 与⊙O 相切,则点O 到直线l 的距离等于OC =10cm ,从而得到l 沿OC所在直线向下平移的距离等于4CH cm =,即可求解.解:⊙直线l ⊙OC ,AB =16cm ,⊙182AH AB cm == ,90AHO ∠=︒ , ⊙10OA OC cm == ,在Rt AOH 中,由勾股定理得22221086OH AO AH cm =-=-= ,⊙4CH OC OH cm =-= ,若l 与⊙O 相切,则点O 到直线l 的距离等于OC =10cm ,⊙l 沿OC 所在直线向下平移的距离等于4CH cm =即l 沿OC 所在直线向下平移4cm 时与⊙O 相切.故答案为:4 .【点拨】本题主要考查了垂径定理,直线与圆的位置关系,勾股定理,熟练掌握相关知识点是解题的关键.12.4或8##8或4【分析】求得当⊙P 位于点O 的左边与CD 相切时t 的值和⊙P 位于点O 的右边与CD 相切时t 的值即可.解:当点P 在射线OA 时⊙P 与CD 相切,如图1,过P 作PE ⊥CD 于E∴PE =1cm ,∵∠AOC =30°∴OP =2PE =2cm∴⊙P 的圆心在直线AB 上向右移动了(6﹣2)cm 后与CD 相切∴⊙P 移动所用的时间=621-=4(秒); 当点P 在射线OB 时⊙P 与CD 相切,如图2,过P 作PE ⊥CD 于E∴PF=1cm∵∠AOC=∠DOB=30°∴OP=2PF=2cm∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,⊙⊙P移动所用的时间=621=8(秒)∴当⊙P的运动时间为4或8秒时,⊙P与直线CD相切.故答案为:4或8.【点拨】本题考查了直线与圆的位置关系,含30°的直角三角形,解题的关键在于分点P在射线OA和点P在射线OB两种情况进行计算.13.3<r≤4或r=125.【分析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.解:过点C作CD⊙AB于点D,⊙AC=3,BC=4.⊙AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,⊙CD×AB=AC×BC,⊙CD=r=125,当直线与圆如图所示也可以有一个交点,⊙3<r≤4,故答案为3<r≤4或r=125.【点拨】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.14.0<r<245r=245【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,可得答案;根据圆心到直线的距离等于半径时直线与圆只有一个公共点.解:如图,作CH⊙AB于H.在Rt⊙ABC中,⊙⊙ACB=90°,AC=6,BC=8,⊙AB222268AC BC++,⊙S△ABC=12•AC•BC=12•AB•CH,⊙CH=245,⊙以点C为圆心,r为半径的圆与边AB所在直线相离,⊙0<r<245;⊙以点C为圆心,r为半径的圆与边AB所在直线只有一个公共点,⊙r=245.故答案为:0<r <245;r =245. 【点拨】本题考查了点与圆的位置关系,d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内.15.1或9【分析】结合勾股定理和平移的性质进行计算.解:设将A 沿y 轴向下平移x 个单位后,根据题意作图,(2,0),(5,0),'(5,5)C B A x ∴-,由勾股定理:22''CB A B A C +=,222(52)(5)5x -+-=,解得1x =或9,∴应将A 沿y 轴向下平移1或9个单位后圆与x 轴交于点(2,0).故答案为:1或9.【点拨】考查了直线与圆的位置关系及平移的性质,解题的关键是运用方程的思想解决更简单.16.010d ≤<【分析】根据直线AB 和圆相交,则圆心到直线的距离小于圆的半径即可得问题答案.解:⊙⊙O 的半径为10,直线AB 与⊙O 相交,⊙圆心到直线AB 的距离小于圆的半径,即0≤d <10;故答案为:0≤d <10.【点拨】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键.同时注意圆心到直线的距离应是非负数.17.3或4##4或3【分析】根据切线的判定方法,当点O 到AB 的距离为1cm 时,⊙O 与直线AB 相切,然后分两种情况:⊙O 在直线AB 左侧和在直线AB 右侧,进行计算即可.解:⊙直线AB ⊙l ,⊙当⊙O 在直线AB 左侧距AB 的距离为1cm 时,⊙O 与直线AB 相切,此时⊙O 移动了7-1=6cm ,所需时间为6÷2=3s ;当⊙O 在直线AB 右侧距AB 的距离为1cm 时,⊙O 与直线AB 相切,此时⊙O 移动了7+1=8cm ,所需时间为8÷2=4s .故答案为:3或4.【点拨】本题考查了圆与直线的位置关系,切线的判定,明确判定定理是解题的关键.18.1或5欲求直线和圆有几个公共点,关键是求出圆心到直线的距离d ,再与半径r 进行比较.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离. 解:设圆的半径为r ,圆心到直线的距离d ,要使圆与x 轴相切,必须d=r ;⊙此时d=3,⊙圆向上平移1或5个单位时,它与x 轴相切.19.(1)2.4;(2)⊙1205r <<;⊙1235r <≤;⊙125r =或34r <≤ 【分析】(1)勾股定理求得斜边AB ,进而根据等面积法求得斜边上的高;(2)根据圆心到直线的距离与半径比较,根据直线与圆的位置关系以及点与圆的位置关系,即可求得r 的取值范围.解:(1)Rt ABC 中,90C ∠=︒,4BC =,3AC =, 225AB AC BC ∴=+= 设斜边AB 上的高为h ,1122AB h AC BC ⋅⋅=⋅, 341255AC BC h AB ⋅⨯∴===, 故答案为:125(2)⊙若直线AB与⊙C没有公共点,则AB⊙C相离,则r的取值范围是125r<<;⊙若边AB与⊙C有两个公共点,A点在圆外或者圆上,则r的取值范围是1235r<≤;⊙若边AB与⊙C只有一个公共点,则AB⊙C相切,或者A点在圆内,则r的取值范围是125r=-或34r<≤【点拨】本题考查了勾股定理,直线与圆的位置关系以及点与圆的位置关系,理解直线与圆的位置关系以及点与圆的位置关系是解题的关键.20.(1)7;(221【分析】(1)当点P在圆外且,,O A P三点共线时,点O到直线l距离的最大,由此即可得;(2)先确定线段MN是O的直径,画出图形,再在Rt AOP△中,利用勾股定理即可得.解:(1)如图1,l PA⊥,∴当点P在圆外且,,O A P三点共线时,点O到直线l距离的最大,此时最大值为527AO AP+=+=,故答案为:7;(2)如图2,,M N是直线l与O的公共点,当线段MN的长度最大时,线段MN是O的直径,⊥,l PA∴∠=︒,90APOOA=,2AP=,52221∴=-=OP OA PA21【点拨】本题考查了直线与圆的位置关系、勾股定理,正确的作出图形是解题的关键.21.(1)见分析;(2)①(2,0);②5⊙(7,0).【分析】(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;(2)⊙根据第一问画出的图形即可得出D的坐标;⊙在直角三角形AOD中,由OA及OD的长,利用勾股定理求出AD的长,即为圆D 的半径;⊙根据半径相等得出5EF=x,在Rt△CDE和Rt△CEF中,根据勾股定理列出两个式子即可求出x的值,从而求出E点坐标解:(1)根据题意画出相应的图形,如图所示:(2)⊙根据图形得:D(2,0);⊙在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD225OA OD则D的半径为5⊙⊙EC与⊙D相切⊙CE⊙DC⊙△CDE为直角三角形即⊙DCE=90°⊙AD和CD都是圆D的半径,⊙由⊙知,5设EF=x在Rt△CDE中,(52+CE2=(4+x)2在Rt△CEF中,22+x2=CE2⊙(52+(22+x2)=(4+x)2解得,x=1,即EF=1⊙OE=2+4+1=7⊙E点坐标为(7,0)【点拨】此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.22.(1)将直线l向上平移2cm或12cm;(2)2cm<x<12cm.【分析】(1)由切线的判定与性质和平移的性质即可得出结果;(2)由(1)的结果即可得出答案.解:(1)⊙⊙O的半径为5cm,点O到直线l的距离OP为7cm,⊙将直线l向上平移7-5=2(cm)或7+5=12(cm),才能使l与⊙O相切;(2)由(1)知,要使直线l与⊙O相交,直线l向上平移的距离大于2cm且小于12cm,⊙2cm<x<12cm,x的取值范围为:2cm<x<12cm.【点拨】本题考查了切线的判定与性质、平移的性质、直线与圆的位置关系等知识;熟练掌握切线的判定与性质是解题的关键.23.相切,理由见详解【分析】首先画出直线25y x =-+O 作OC AB ⊥,垂足为C ,再根据函数关系式求得5A ⎫⎪⎪⎝⎭,(5B ,进而利用勾股定理得到5AB =1OC =,从而得到结论圆心点O 到直线25y x =-O 的半径,可见直线25y x =-+O 的位置关系是:相切.解:结论:直线25y x =-+O 的位置关系是:相切理由:画出直线25y x =-O 作OC AB ⊥,垂足为C ,如图:⊙直线AB 的解析式为25y x =-⊙令0x =,解得5y =0y =,解得5x =⊙5A ⎫⎪⎪⎝⎭,(5B ⊙5OA =5OB =⊙在Rt AOB 中,根据勾股定理得2252AB OA OB =+ ⊙1122AOB S AB OC OA OB =⋅=⋅⊙552152OC ABOA OB ⋅=== ⊙O 的半径为1 ⊙圆心点O 到直线25y x =-O 的半径,即d r =⊙直线25y x =-O 的位置关系是相切.【点拨】本题考查了直线与圆的位置关系、一次函数图像上点的坐标特征、勾股定理、利用三角形的面积求线段长等知识点,熟练掌握相关知识是解题的关键.24.(1)见分析 (2)0个【分析】(1) 作MN OA ⊥于点N ,由30,5cm AOB OM ︒∠==,可得点M 到射线OA 的距离1 2.5cm 2d MN OM ===,根据直线与圆的位置关系的定义即可判断射线OA 与圆M 的公共点个数;(2) 连接CM .可得53ON =,由53cm,OC =可得ON CN =,得到5cm CM OM ==,故当5cm r >时,可判断线段OC 与M 的公共点个数.解:(1)如图,作MN OA ⊥于点N .30,5cm AOB OM ︒∠==,⊙点M 到射线OA 的距离1 2.5cm 2d MN OM ===. ⊙当 2.5cm r =时,M 与射线OA 只有一个公共点; 当0cm 2.5cm r <<时,M 与射线OA 没有公共点; 当2.5cm 5cm r <时,M 与射线OA 有两个公共点;当5cm r >时,M 与射线OA 只有一个公共点.(2)如图,连接CM . 1 2.5cm,2MN OM == 53ON ∴=. 53cm,OC =ON CN∴=,CM OM∴==.5cmr>时,线段OC与M的公共点个数为0.⊙当5cm【点拨】本题主要考查了直线与圆的位置关系,根据圆心到直线的距离判断位置关系是解题的关键.。
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)

中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。
华东师大版九年级下册数学:(2014年8月第1版 )圆与圆的位置关系

返回
(三)、两圆的位置关系
返回
从公共点个数判断:
1.没有公共点
相离(外离,内含)
2.有1个公共点
相切(外切,内切)
3.有2个公共点
相交
返回
(四)、对称性:
圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组 成轴对称图形,那么对称轴是什么?我们一起来看下面的实验。
从以上实验我们可以看到,两个圆一定组成一个轴对称图形,其对称轴
是两圆连心线。当两圆相切时,切点一定在连心线上。当两圆相交时,
连心线垂直平分公共弦
性质
返回
(五)、探索圆心距与两圆半径的关系
返回
(六)、两圆位置关系的判定
返回
练习:
1.把自行车的两个轮子看作二个圆,则它们的
位置关系是( 外离 ),公共点有( 0 )个
内容 导航
复习 引入
新知 讲解
本讲 小节
课后 作业
二、复习 引入
1、点与圆的位置关系
2、直线与圆的位置关系 学.科.网 3、两个圆的位置关系 如何呢?这就是我们 这节课要解决的问题
C
Rd
dO
A
d
B
返回
大家思考一下,在现实生活中 你见过两个圆的哪些位置关系 学.科.网 呢?
返回
返回
(二、摆一摆)
时,切点一定在连心线上;当两圆相交时,连心线垂直平分公共弦
返回
课后作业:
1.⊙O1与⊙O2的半径分别为R、r,圆心距d,在下列情 况下,两个圆的位置关系如何?(a级题) 1、R=6cm r=3cm d=4cm 2、R=6cm r=3cm d=0cm 3、R=3cm r=7cm d=4cm 4、R=1cm r=6cm d=7cm 5、R=6cm r=3cm d=10cm 6、R=3cm r=5cm d=1cm 7、R=5cm,r=3cm,d=3cm;
【优文档】数学九年级下华东师大版直线与圆的位置关系课件PPT

点和圆的位置关系有几种?
⑴点在圆内
·P r O
用数量关系如何来判断呢?
(令OP=d ) d<r
⑵点在圆上
r ·
P
O
d=r
⑶点在圆外
r
· P
O
d>r
2
2)若AB和⊙O相切,则
相你切认为货轮继续向东航行途中会有触礁的危险吗? C.
相(交2)d=1,Dr=.
已知:⊙O的半径为5cm,圆心O与直线AB的距离为d,
验来体会一下吗? 2用)数若量A关B和系⊙如O何相来切判,则断呢?
你认为货轮继续向东航行途中会有触礁的危险吗?
3
●
●
O
O
(地平线)
●
O a(地平线)
4
(1)直线和圆没有公共点时, 叫做直线和圆相离。
(2)直线和圆有唯一个公共点, 叫做直线和圆相切, 这条直线叫圆的切线, 这个公共点叫切点。
(3)直线和圆有两个公共点, 叫做直线和圆相交, 这条直线叫圆的割线, 这两个公共点叫交点。
(叫2做)直根线据和性圆质相,交由,_____________________
置关系?你能设计一个模拟实 的设关⊙系 O的来半判径断为。r,圆心O到直线L的距离为d,
相根交据条件填D写. d的范围: (32)直d=线1, 和r=圆有两个公共点,
用这数条量 直关线系叫如圆何的来割判线断,呢?
所这以两个(公1)共当点r叫=2交cm点时。,
(这3两)个公共点叫交点。
(总3结):当判r=定3直cm线时与,圆的位置关系的方法有____种:
你认为直线与圆有哪些位 置相关切系?你能设计一个模拟实
C.
(2)1)若直AB线和和⊙圆O没相有切Байду номын сангаас,则共点时,
九年级数学下册 28.2.1 点与圆的位置关系精练习精析

点与圆的位置关系(30分钟 50分)一、选择题(每小题4分,共12分)1.如图,☉O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与☉O的位置关系是( )A.在☉O内B.在☉O上C.在☉O外D.以上都有可能2.(2012·攀枝花中考)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题有( )A.1个B.2个C.3个D.4个3.☉O的半径为R,圆心到点A的距离为d,且R,d分别是方程x2-6x+8=0的两根,则点A与☉O的位置关系是( )A.点A在☉O内部B.点A在☉O上C.点A在☉O外部D.点A不在☉O上二、填空题(每小题4分,共12分)4.设OA=m,☉O的半径r=n,且|m-1|+=0,则点A在圆________.5.(2012·广元中考)在同一平面上☉O外一点P到☉O上一点的距离最长为6cm,最短为2cm,则☉O的半径为________cm.6.(2012·阜新中考)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为________cm的圆形纸片所覆盖.三、解答题(共26分)7.(8分)如图所示,已知☉O和直线l,过圆心O作OP⊥l,P为垂足,A,B,C为直线l上的三个点,且PA=2cm,P B=3cm,PC=4cm,若☉O的半径为5cm,OP=4cm,判断A,B,C三点与☉O的位置关系.8.(8分)如图,☉O是△ABC的外接圆,且半径为10,∠A=60°,求弦BC的长.【拓展延伸】9.(10分)如图,某部队在灯塔A的周围进行爆破作业,A的周围3km内的水域为危险区域,有一渔船误入离A处2km的B处,为了尽快驶离危险区域,该船应沿哪条航线方向航行?为什么?答案解析1.【解析】选A.连结OA,则在直角△OMA中,根据勾股定理得到OA==<5.因而点A与☉O 的位置关系是在☉O内.2.【解析】选B.等边三角形是轴对称图形但不是中心对称图形;在同圆或等圆中,相等的弦所对的圆周角相等或互补;任意三角形都有且只有一个外接圆;垂直于弦的直径平分弦并且平分弦所对的两条弧.故③④正确.3.【解析】选D.解方程x2-6x+8=0,得R=2或4,d=4或2.当R=2,d=4时,点A在☉O外部;当R=4,d=2时,点A在☉O内部;综上所述,点A不在☉O上.4.【解析】根据非负性的性质,显然绝对值与根号里都应等于0,从而得m=1,n=3,所以m<r,即圆心到点A的距离小于半径,所以点A在☉O的内部.答案:内5.【解析】☉O外一点P到☉O上一点的距离最长为6cm,最短为2cm,则直径为4cm,∴半径为2cm.答案:26.【解析】如图:作☉O的直径CD,连结BD,∵圆周角∠A,∠D所对弧都是,∴∠D=∠A=60°.∵CD是直径,∴∠DBC=90°.∴sin∠D=.又∵BC=3cm,sin60°=,解得:CD=2cm.∴圆O的半径是cm.∴△ABC能被半径至少为cm的圆形纸片所覆盖.答案:7.【解析】PA=2cm,OA==2<5,所以A在☉O内部;PB=3cm,OB==5,所以B点在☉O上;PC=4cm,OC==4>5,所以点C在☉O外.8.【解析】如图:作OD⊥BC于点D,∴BD=CD.∵∠A=60°,∴∠BOC=120°,又∵O B=OC=10,∴∠BOD=60°.在Rt△OBD中,sin∠BOD ===,∴BD=5.∴BC=2BD=10.【归纳整合】有关三角形外心的计算问题,常与垂径定理、勾股定理相结合,构造直角三角形来解.有时还利用方程思想设出未知数,列出关于未知数的方程,这是几何问题中求线段长的常用方法之一.9.【解析】该船应沿航线AB方向航行离开危险区域,理由如下:如图,设航线AB交☉A于点C,在☉A上任取一点D(不包括C关于A的对称点),连结AD,BD,在△ABD中, ∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.。
【精编版】华东师大初中数学九年级下册圆周角—巩固练习(基础)

圆周角—巩固练习(基础)【巩固练习】一、选择题1.(2016•张家界)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°2.如图所示,∠1,∠2,∠3的大小关系是().A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠13.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°(第3题图)(第4题图)(第5题图)5.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°6.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°二、填空题7.(2016•嘉定区一模)在⊙O中,已知=2,那么线段AB与2AC的大小关系是.(从“<”或“=”或“>”中选择)8.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么___________________.9.如图,AB是⊙O的直径,弦CD⊥AB于H,BD∥OC,则∠B的度数是 .10.如图,△ABC 内接于⊙O ,AB =BC ,∠BAC =30°,AD 为⊙O 的直径,AD =2 3 ,则BD = .11.如图,已知⊙O 的直径MN =10,正方形ABCD 四个顶点分别在半径OM 、OP 和⊙O 上, 且∠POM =45°,则AB = .(第11题图) (第12题图)12.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,则∠A+∠B+∠C=________度.三、解答题13. 如图所示,AB ,AC 是⊙O 的弦,AD ⊥BC 于D ,交⊙O 于F ,AE 为⊙O 的直径,试问两弦BE 与CF 的大小有何关系,说明理由.14.(2015•嵊州市一模)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠D=70°,求∠CAD 的度数; (2)若AC=8,DE=2,求AB 的长.15.如图,⊙O 中,直径AB =15cm ,有一条长为9cm 的动弦CD 在上滑动(点C 与A ,点D 与B 不重合),CF ⊥CD 交AB 于F ,DE ⊥CD 交AB 于E .ODABC(第10题图)(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.【答案与解析】一、选择题1.【答案】D【解析】∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.2.【答案】D;【解析】圆内角大于圆周角大于圆外角.3.【答案】A;【解析】∵弦AB∥CD,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.4.【答案】B;【解析】∠ACD=64°-27°=37°,∠AOD=2∠ACD=74°.5.【答案】A;【解析】∠BAD=12∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.6.【答案】D;【解析】如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.二、填空题7.【答案】<【解析】如图,∵=2,∴=,∴AC=BC,在△ABC中,AC+BC>AB,∴AB<2AC,故答案为:<.8.【答案】相等,这两条弦也相等;9.【答案】60°;10.【答案】3;11.【答案】;【解析】如图,设AB=x,在Rt⊿AOD 中:x²+(2x)²=5², x=, 即 AB的长=.第11题第12题12.【答案】90°;【解析】如图,连结AB、BC,则∠CAD + ∠EBD +•∠ACE=∠CBD +∠EBD +•∠ABE=∠ABC=90°.三、解答题13.【答案与解析】BE=CF.理由:∵AE为⊙O的直径,AD⊥BC,∴∠ABE=90°=∠ADC,又∠AEB=∠ACB,∴∠BAE=∠CAF,.∴BE CF∴BE=CF.14.【答案与解析】解:(1)∵OA=OD,∠D=70°,∴∠OAD=∠D=70°,∴∠AOD=180°﹣∠OAD ﹣∠D=40°, ∵AB 是半圆O 的直径, ∴∠C=90°, ∵OD ∥BC ,∴∠AEO=∠C=90°, 即OD ⊥AC , ∴=,∴∠CAD=∠AOD=20°; (2)∵AC=8,OE ⊥AC , ∴AE=AC=4,设OA=x ,则OE=OD ﹣DE=x ﹣2, ∵在Rt △OAE 中,OE 2+AE 2=OA 2,∴(x ﹣2)2+42=x 2, 解得:x=5, ∴OA=5,∴AB=2OA=10.15.【答案与解析】(1)如图,作OH ⊥CD 于H ,利用梯形中位线易证OF=OE ,OA=OB ,所以AF=BE ,AF+EF=BE+EF , 即AE=BF .(2)四边形CDEF 的面积是定值.连结OC ,则22215OH=OC -CH =-=6229()()2, 11()2O 6922S CF DE CD H CD =+⋅=⋅⋅⋅=⨯=54(cm 2).。
九年级数学下册 圆与圆的位置关系课件 华东师大
C、4
O1 A
D、5
B C O2
7.如图,建筑工地的地面上有三根外径都 是1米的水泥管两两相切摞在一起,则其 最高点到地面的距离为______m.
A
. O1
. . O2 P O3
B
定圆O 的半径是4cm,动圆P 的半径是1cm. ⑴设⊙O 和⊙P相外切,点P 与点O 的距离是多少?点P可以在
什么样的线上移动?
解:因为⊙O与⊙P外切,
所以OP=4+1=5(cm).
点P在以O为圆心,以 5cm为半径的圆上运动.
P
·
1cm
O
· 4cm
⑵设⊙O和⊙P相内切,情况又怎样?
解:因为⊙O与⊙P内切,
P
·
所以OP=4-1=3(cm).
·
O
点P在以O为圆心,以 3cm为半径的圆上运动.
试一试
圆和圆的位置关系
今有一圆形硬币,在这硬币的周围排列几枚同样
演示:
返回
下一页 小结
观察与思考
通过刚才演示的观察,想象一下两圆有没 有出现公共点?公共点的个数是怎样的?
思考:这两圆的 位置关系?
外离: 两个圆没有公共点,并且每个圆上的
点都在另一个圆的外部时,叫做这两
个圆外离。
强调 概念 要点
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/172022/1/17January 17, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/172022/1/172022/1/171/17/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/172022/1/17
中考总复习:圆的有关概念、性质与圆有关的位置关系--巩固练习(基础)
中考总复习:圆的有关概念、性质与圆有关的位置关系—巩固练习(基础)【巩固练习】一、选择题1. 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是( )A .相交B .相离C .内切D .外切2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°,AC∥OD,则∠AOC 的度数 ( )A. 70°B. 60°C. 50°D. 40°3.如图所示,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .»»BDBC第2题 第3题 第5题 第6题4.(2015•黑龙江)如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150°5.如图所示,△ABC 内接于圆O ,∠A =50°;∠ABC =60°,BD 是圆O 的直径,BD 交AC 于点E ,连接DC ,则∠AEB 等于( )A .70°B .110°C .90°D .120°6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配成与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A .第①块B .第②块C .第③块D .第④块二、填空题7.(2015•雁江区模拟)如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为 .8.如图所示,⊙O的直径AC=8 cm,C为⊙O上一点,∠BAC=30°,则BC=________cm.第8题第9题9.两圆有多种位置关系,图中(如图所示)不存在的位置关系是__________.10.如图所示,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=______.11.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为 .第10题第11题第12题12.如图所示.B是线段AC上的一点,且AB:AC=2:5.分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为________.三、解答题13.已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(1) 如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(2)如图②,连接CD、CE,若四边形ODCE为菱形.求ODOA的值.14. 如图所示,在Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心、OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.15.(2015•上城区二模)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.l16. 如图,已知∠ABC=90°,AB=BC.直线与以BC为直径的圆O相切于点C.点F是圆O上异于B、Cl的动点,直线BF与相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使CD,请说明你的理由.【答案与解析】一、选择题1.【答案】D;O O=7,根据圆与圆位置关系的判定可知两圆外切.【解析】两圆半径之和3+4=7,等于两圆圆心距122.【答案】D;【解析】由AB是⊙O的直径,点C、D在⊙O上,知OA=OC,根据等腰三角形等边对等角的性质和三角形内角和定理,得∠AOC=180°-2∠OAC.由AC∥OD,根据两直线平行,内错角相等的性质,得∠OAC=∠AOD.由AB是⊙O的直径,∠BOD=110°,根据平角的定义,得∠AOD=180°-∠BOD=70°.∴∠AOC=180°-2×70°=40°.故选D.3.【答案】C;【解析】由垂径定理知A、B、D都正确.4.【答案】C;【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.5.【答案】B;【解析】∵∠A=50°,∴∠D=50°,又∵BD是直径,∴∠BCD=90°,∴∠DBC=90°-50°=40°,∠ABD=60°-40°=20°,∴∠BEC=50°+20°=70°,∴∠AEB=180°-70°=110°.6.【答案】B;【解析】因为第②块含有圆周的一部分,可以找到圆心,量出半径.其他块都不行.二、填空题7.【答案】2;【解析】如图,作点B关于MN的对称点B′,连接OA、OB′、AB′,由轴对称确定最短路线问题可知,AB′与M的交点即为所求的使PA+PB的值最小的点,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵B为弧AN的中点,∴∠NOB′=×60°=30°,∴∠AOB′=90°,∴△AOB′是等腰直角三角形,∵⊙O的半径为2,∴AB′=2,即PA+PB的最小值为为2.8.【答案】4;【解析】因为AC为直径,根据直径所对的圆周角为直角,得∠ABC=90°,则BC=AC·sin∠BAC=4(am).9.【答案】相交;【解析】认真观察、判断可发现每两圆间不存在的位置关系是:相交.10.【答案】27°;【解析】如图,连结OB,由AB与⊙O相切于点B,得∠ABO=90°,因为∠A=36°,所以∠AOB=54°,所以∠C=27°.11.【答案】4;【解析】连接OC,则由直线PC是圆的切线,得OC⊥PC.设圆的半径为x,则在Rt△OPC中,PC=3,OC= x,OP=1+x,根据地勾股定理,得OP2=OC2+PC2,即(1+x)2= x2+32,解得x=4.即该半圆的半径为4.12.【答案】4:25;三、解答题13.【答案与解析】(1) 如图①,连接OC ,则OC=4.∵AB 与⊙O 相切于点C ,∴OC⊥AB. ∴在△OAB 中,由OA=OB ,AB=10得1AC AB 52==.∴ 在△RtOAB 中,OA ===.(2)如图②,连接OC ,则OC=OD.∵四边形ODCE 为菱形,∴OD=DC.∴△ODC 为等边三角形.∴∠AOC=60°.∴∠A=30°.∴1OC 1OD 1OC OA 2OA 2OA 2===,,即.14.【答案与解析】解:(1)∵ AB 切⊙O 于D ,∴OD ⊥AB .在Rt △AOC 和Rt △AOD 中,,.OC OD AO AO =⎧⎨=⎩ ∴Rt △AOC ≌Rt △AOD(HL).(2)设半径为r ,在Rt △ODB 中,,解得r =4.2223(1)r r +=+ 由(1)有AC =AD ,∴,2229(3)AC AC +=+ 解得AC =12,∴.22111112945482222S AC BC r πππ=-=⨯⨯-⨯=-g 15.【答案与解析】解:(1)∵∠ADB=∠ACB ,∠BAD=∠BFC ,∴∠ABD=∠FBC ,又∵AB=AD ,∴∠ABD=∠ADB ,∴∠CBF=∠BCF ,∵∠BFC=2∠DFC=80°,∴∠CBF==50°;(2)令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD 是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180°﹣2α,又∵AB=AD ,∴∠ACD=∠ACB ,∴∠ACD=∠ACB=90°﹣α,∴∠CFD+∠FCD=α+(90°﹣α)=90°,∴∠CDF=90°,即CD ⊥DF .16.【答案与解析】解:(1)∵直线与以BC 为直径的圆O 相切于点C ,l ∴∠BCE=90°,又∵BC 为直径,∴∠BFC=∠CFE=90°.∴∠CFE=∠BCE.∵∠FEC=∠CEB,∴△CEF∽△BEC.∴CE EF BE EC =.∵BE=15,CE=9,即:9EF 159=,解得:EF=275.(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD.同理:∠AFB=∠CFD.∴△CDF∽△BAF.②∵△CDF∽△BAF,∴CF CD BF BA =.又∵△CEF∽△BCF,∴CF CE BF BC =.∴CD CE BA BC=.又∵AB=BC,∴CE=CD.(3)当F 在⊙O 的下半圆上,且»»2BF BC 3=时,相应的点D 位于线段BC 的延长线上,且使CD.理由如下:CE.在Rt△BCE 中,tan∠CBE=CEBC =,∴∠CBE=30°,∴»CF所对圆心角为60°.∴F 在⊙O 的下半圆上,且»»2BF BC 3=.。
华东师大版数学九年级下册第28章圆28.2与圆有关的位置关系
O 相交 d r
E Fl
【跟踪训练】 判断 1.直线与圆最多有两个公共点.
(√ )
2.若直线与圆相交,则直线上的点都在圆内.( × )
3.若A是⊙O上一点,则直线AB与⊙O相切.( × )
4.若C为⊙O外的一点,则过点C的直线CD与⊙O 相交
或相离.( × )
.O .
A
.O .C
填空:
1.已知⊙O的半径为5 cm,点O到直线a的距离为3 cm,则 ⊙数O是与_直__线__a_的_.位置关系是_相__交__;直线a与⊙O的公共点个
┐ B
C B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
【跟踪训练】
1.判断:
((12))经 三过角三形点的一外定心可就以是作这圆个三.(角形×两边)垂直平分线的交
点.(
)
(3)三√角形的外心到三边的距离相等.(
)
(4)经过不在同一直线上的四点能作一个圆.(
0个
4.直线m上一点A到圆心O的距离等于⊙O的半径,则直线 m与⊙O的位置关系是 相切或相交 .
小结:利用圆心到直线的距离与半径的大小关系来判定直 线与圆的位置关系.
5.已知⊙O的半径为5 cm, 圆心O与直线AB的距离为d, 根
据条件填写d的范围:
1)若AB和⊙O相离, 则
;
2)若AB和⊙O相切, 则
不能作出.
经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个 顶点的圆叫做这个三角形的外接圆(circumcircle).三角形外接圆的圆心 叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三 角形.三角形的外心就是三角形三条边的垂直平分线的交点.
华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(提高)
《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;6.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角:(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系1.判定一个点P 是否在⊙O 上.设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法:当时,在⊙O 上.3.直线和圆的位置关系:设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质: (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系:设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.两圆的五种位置关系可以概括为三类:要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算 1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R 的弧长.圆心角为,半径为R ,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R ,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质【高清ID 号:362179 高清课程名称:《圆》单元复习 关联的位置名称(播放点名称):经典例题3】1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点, 设OP=x,则x的取值范围是().A.-1≤x≤1 B.≤x≤2C.0≤x≤2 D.x>2有公共点时,0≤OP≤,举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().类型二、弧、弦、圆心角、圆周角的关系及垂径定理BF交CG于点E,求证:CE=BE.【思路点拨】主要用垂径定理及其推论进行证明. 【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE .∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =. ∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【高清ID 号:362179 高清课程名称:《圆》单元复习 关联的位置名称(播放点名称):经典例题1-2】【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10 OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】 (1)如图(2),作O 1E ⊥O 2O 3)324AB cm ∴=+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【总结升华】四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E长即可.类型四、圆中有关的计算4.如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O 的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【答案与解析】解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O 于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5.ABC D BC DB DC DA +=如图,△是等边三角形,是上任一点,求证:.【思路点拨】由已知条件,等边△ABC 可得60°角,根据圆的性质,可得∠ADB =60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.【答案与解析】延长DB 至点E ,使BE =DC ,连结AE∵△ABC 是等边三角形∴∠ACB =∠ABC =60°,AB =AC∴∠ADB =∠ACB =60°∵四边形ABDC 是圆内接四边形∴∠ABE =∠ACD在△AEB 和△ADC 中,∴△AEB ≌△ADC∴AE =AD∵∠ADB =60°∴△AED 是等边三角形∴AD =DE =DB +BE∵BE =DC∴DB +DC =DA.【总结升华】本例也可以用其他方法证明.如:(1)延长DC 至F ,使CF =BD ,连结AF ,再证△ACF ≌△ABD ,得出AD =DF ,从而DB +CD =DA.(2)在DA 上截取DG =DC ,连结CG ,再证△BDC ≌△AGC ,得出BD =AG ,从而DB +CD =DA.6.(2016•十堰)如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【思路点拨】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【答案】D;【解析】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【总结升华】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
点、直线、圆与圆的位置关系—巩固练习(基础)
【巩固练习】
一、选择题
1.已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于( ).
A.65° B.50° C.45° D.40°
2.如图,AB是⊙O的直径,直线EC切⊙O于B点,若∠DBC=α,则( ).
A.∠A=α B.∠A=90°-α C.∠ABD=α D.∠2190oABD
第1题图 第2题图
3.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d应满足的条
件是( )
A.d=3 B. d<3 C. d≤3 D.d>3
4.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点
P,则∠ADP的度数为( )
A.40° B. 35° C. 30° D. 45°
5.已知⊙O1和⊙O2的半径分别为1和5,圆心距为3,则两圆的位置关系是( )
A.相交 B. 内切 C. 外切 D.内含
6.(2016•宜昌)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相
等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵
树中需要被移除的为( )
A.E、F、G B.F、G、H C.G、H、E D.H、E、F
二、填空题
7.在△ABO中,OA=OB=2cm,⊙O的半径为1cm,当∠ABO= 时,直线AB与⊙O相切.
8.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.
2
9.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.
10.如图所示,以O为圆心的两个同心圆中,大圆的弦是小圆的切线,C为切点,若两圆的半径分别
为3cm和5cm,则AB的长为__________cm.
11.如图所示,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,
则∠ADC=________.
第10题图 第11题图 第12题图
12.如图,施工工地的水平地面上,有三根外径都是1 m的水泥管,两两相切地堆放在一起,其最高
点到地面的距离是_________.
三、解答题
13.如图,AB是⊙O的弦,OC⊥OA,交AB与点P,且PC=BC,
求证:BC是⊙O的切线.
14. AB是⊙O的直径,BC切⊙O于B,AC交⊙O于D点,过D作⊙O的切线DE交BC于E.求证:CE=BE.
15.(2016•海淀一模)如图,AB,AD是⊙O的弦,AO平分BAD.过点B作⊙O的切线交AO的延
长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.
(1)求证:CD是⊙O的切线;
(2)若3AEDE,求AF的长.
3
【答案与解析】
一、选择题
1.【答案】B;
【解析】连结OA、OB,则∠AOB=130°,∠PAO=∠PBO=90°,所以∠P=50°.
2.【答案】A;
【解析】∵AB是⊙O的直径,∴∠ADB=90°,∠A+∠ABD=90°,
又 ∵直线EC切⊙O于B点,∴α+∠ABD=90°,∴∠A=α,故选A.
3.【答案】C;
【解析】直线l可能和圆相交或相切.
4.【答案】C;
【解析】解:连接BD,
∵∠DAB=180°﹣∠C=60°,
∵AB是直径,
∴∠ADB=90°,
∴∠ABD=90°﹣∠DAB=30°,
∵PD是切线,
∴∠ADP=∠ABD=30°,
故选:C.
5.【答案】D;
【解析】内切、外切分别对应d=R+r,d=R-r,它们起着分界作用.在⊙O1和⊙O2相对运动时依次产生
外离、外切、相交、内切、内含五种位置关系,圆心距逐渐变小,而相内切和外切起着分界作
用,所以先计算d+r和d-r,因为圆心距d=3<R-r,所以“内含”.
6. 【答案】A;
【解析】∵OA==,∴OE=2<OA,所以点E在⊙O内,
OF=2<OA,所以点F在⊙O内,
OG=1<OA,所以点G在⊙O内,
OH==2>OA,所以点H在⊙O外,故选A.
二、填空题
7.【答案】120°.
【解析】如图,连接OC,
∵⊙O与直线AB相切于点C;
4
∴OC⊥AB;而OA=2,OC=1,
∴∠A=30°;而OA=OB,
∴∠B=∠A=30°,
∴∠AOB=180°﹣60°=120°,
故答案为120°.
8.【答案】26cm.
9.【答案】20πcm.
10.【答案】8.
【解析】因为AB切小⊙O于C,连OA、OC,如图,
由切线的性质知OC⊥AB,又由垂径定理得AC=BC,
在Rt△AOC中,AO=5,OC=3.
∴ AB=2AC=8(cm).
11.【答案】25°.
【解析】∵OA⊥AB,∠OBA=40°,
∴ ∠BOA=50°,
∴ ∠ADC=12∠BOA=25°.
12.【答案】(1+23) m.
【解析】由于三个圆两两外切,所以圆心距等于半径之和,所以三个圆心为顶点的三角形是边长
为1 m的等边三角形,最高点到地面距离是等边三角形的高加上一个直径.
等边三角形的高是22131-=22(),故最高点到地面的距离是(1+23) m.
三、解答题
13.【答案与解析】
证明:∵PC=BC,
∴∠CPB=∠CBP,
而∠APO=∠CPB,
∴∠CBP=∠APO,
∵OC⊥OA,
∴∠A+∠APO=90°,
而OA=OB,
∴∠A=∠ABO,
∴∠CBP+∠ABO=90°,
∴OB⊥BC,
5
∴BC是⊙O的切线.
14.【答案与解析】
证法1:连结DB.
∵AB是直径,
∴∠ADB=90°.
∴∠BDC=90°.
∵BC、DE是切线,
∴BE=ED.
∴∠EBD=∠EDB.
∵∠EBD+∠C=90°,且∠EDB+∠EDC=90°,
∴∠EBD+∠C=∠EDB+∠EDC.
∴∠C =∠EDC.
∴ED=EC.
∴BE=EC.
证法2:连结OD、OE.
∵DE切⊙O于D,
∴OD⊥DE.
∴∠ODE=90°.
同理∠B=90°.
∵OB=OD,且OE=OE,
∴△ODE≌△OBE.
∴∠BOE=∠EOD.
∴∠BOE=∠A.
∴OE∥AC.
∵O是AB中点,
∴E是BC中点.
∴BE=EC.
15. 【答案与解析】(1) 证明:如图,连接OD.
∵BC为⊙O的切线,
∴90CBO.
∵AO平分BAD,
∴12.
∵OAOBOD,
∴1=4=2=5.
∴BOCDOC.
∴△BOC≌△DOC.
∴90CBOCDO.
∴CD为⊙O的切线.
6
(2) ∵AEDE,
∴AEDE.
∴34.
∵124,
∴123.
∵BE为⊙O的直径,
∴90BAE.
∴123430.
∴90AFE .
在Rt△AFE中,
∵3AE,303,
∴332AF.