最新2017人教版小升初第四届华杯赛决赛一试试题
2017年第22届华杯总决赛小高组一试及详解

么甲第 10 次到达山顶前,有 2 次(第 3 次和第 9 次)当甲到达山顶时,乙正爬向
山顶,且距离山脚 5 处(小于 1 ).
18
3
(法 2): v甲上 : v乙上 : v甲下 : v乙下 6 : 5 : 6 1.5 : 5 1.5 =12 :10 :18 :15
易求: t甲上 : t乙上 : t甲下 : t乙下 15 :18 :10 :12
20174 20172 12 2 20162 2
20174 20174 2 20172 1 20162 2
2 20172 20162 1
2 2017 2016 2017 2016 1
2 4033 1 8065
2017kb b 2016kb 2016k kb b 2016k
k 1b 2016k
匠人之心 精致教学 5
当
k
1 时,无解.当
k
1
时,
b
2016k
k 1
.
k 1,k 1 , b 是整数,所以 k 1 是 2016 的因数.
2016 25 32 7
20174 20162 20172 2 2017 3 20174 20162 20172 2 2017 12 2
20174 20162 2017 12 20162 2 20174 2017 1 2017 12 20162 2
即 a 与 b 有 36 种不同的数值. 综上所述,有 36 种不同的方法.
6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.己知甲、 乙下山速度都是上山速度的 1.5 倍,甲的速度与乙的速度之比是 6 : 5 .两人同时从山脚 开始爬山,经过一段时间后,甲第 10 次到达山顶.问:在此之前,甲在山顶上有多少 次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?
华杯赛试题及答案初一

华杯赛试题及答案初一一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的平方等于81,那么这个数是多少?A. 9B. -9C. 9 或 -9D. 81答案:C3. 一个长方体的长、宽、高分别是3cm、4cm和5cm,其体积是多少立方厘米?A. 12B. 60C. 120D. 240答案:B4. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5 或 -5D. 都不是答案:C5. 以下哪个表达式的结果不是整数?A. 4 + 3B. 7 - 2C. 5 × 3D. 6 ÷ 2答案:D二、填空题(每题2分,共10分)6. 一个数的相反数是-7,这个数是_________。
答案:77. 如果一个角是直角的一半,那么这个角的度数是_________。
答案:45°8. 一个数的平方根是4,这个数是_________。
答案:169. 一个数的立方是27,这个数是_________。
答案:310. 一个数的1/4加上2等于5,这个数是_________。
答案:12三、解答题(每题7分,共21分)11. 一个圆的半径是5厘米,求这个圆的周长和面积。
答案:周长= 2πr = 2 × 3.14 × 5 = 31.4厘米面积= πr² = 3.14 × 5² = 78.5平方厘米12. 一个班级有40名学生,其中1/5的学生是男生,求女生的人数。
答案:男生人数= 40 × 1/5 = 8人女生人数 = 40 - 8 = 32人13. 一个数列的前三项是2, 4, 6,如果这个数列是等差数列,求第10项的值。
答案:等差数列的公差 = 4 - 2 = 2第10项 = 2 + (10 - 1) × 2 = 2 + 9 × 2 = 20结束语本试题旨在考察初一学生对数学基础知识的掌握情况,希望同学们在解答过程中能够体会到数学的乐趣,不断提高自己的解题能力。
201703011第二十二届华杯赛决赛解析(小中a卷)

2 倍。
5. 能被自己的数字之和整除的两位数中,奇数共有 【答案】 5 【考点】 位值原理 【启智数学春季班四年级第 3 讲内容】
个。
【解析】 奇 ×奇 =奇,因此数字和为奇数,又各位为奇数,因此十位只能为偶数。经过枚举 发现,满足条件的两位数有: 21,27,45,63,81 ,共 5 个。
6. 如右图,将一个正方形硬纸片的四个角分别剪去一个等腰直角三角 形,最后剩下一个长方形。正方形边长和三角形直角边长都是整数。
7. 小龙从家到学校的路上经过一个商店和一个游乐场,从家到商店距离是
500 米,用了 7 分
钟;从商店到游乐场以 80 米 / 分钟的速度要走 8 分钟;从游乐场到学校的距离是 300 米,
走的速度是 60 米 / 分钟。那么小龙从家到学校的平均速度是
米 / 分钟。
【答案】 72
【考点】 平均数 【启智数学秋季班四年级第
6
原式 =2016×3=6048.
4. 盒子里有一些黑球和白球,将黑球数量变成原来的
5 倍,总的球数将会变成原来的
如果将白球数量变成原来的 5 倍,则总的球数将会变成原来的
倍。
【答案】 4
【考点】 倍数关系
【启智数学春季班四年级第 6 讲内容】
【解析】 黑球数量变成原来的 5 倍: 5 黑 +白 =2(黑 +白) → 白 =3 黑白球数量变成原来的 5 倍:(黑 +5 白) ÷(黑 +白) =(黑 +5×3 黑) ÷(黑 +3 黑) =16÷4 =4
1
华杯赛决赛试题 A (小学中年级组) 2 3. 用 [ x] 表示不超过 x 的最大整数,例如 [10.2]=10 ,则:
第二十二届华杯赛试题(2017)

第二十二届“华罗庚金杯”少年数学邀请赛(2017)一、选择题(每小题10分,共60分。
)1.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由( )拼成。
A.两个锐角蔓角形 B.两个直角三角形 C.两个钝角三角形D.-个锐角三角形和一个钝角三角形2.从1~10这10个整数中,至少取( )个数,才能保证其中有2个数的和等于10。
A.4 B.5 C.6 D.73.小明行李箱锁的密码是由2个数字8与5构成的三位数。
某次旅行,小明忘记了密码,他最少要试( )次,才能确保打开箱子。
A.9 B.8 C.7 D.64.猎豹跑一步长为2米,狐狸跑一步长为1米。
猎豹跑2步的时间狐狸跑3步。
猎豹距离狐狸30米,则猎豹跑( )米可追上狐狸。
A. 90 B.105 C.120 D.1355.题图中的八边形是将大长方形纸片剪去一个小长方形得到的,则至少需要知道( )条线段的长度,才可以计算出这个八边形的周长。
A. 4B. 4C. 5D. 106.一个数串219A,从第4个数字开始,每个数字都是前面3个数字和的个位数。
下面有4个四位数:1113、2226、2125、2215,其中共有( )个不出现在该数串中。
A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分。
)7.计算1000-257-84-43-16=____。
8.已知动车的速度是普快的两倍,动车的速度提高25%即达到高铁的速度,高铁与普快的平均速度比特快快15千米/时,动车与普快的平均速度比特快慢10千米/时,则高铁和普快列车的速度分别是千米/时和千米/时。
9.《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援。
马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水。
马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多支撑天。
17届初一华杯赛试题及答案

17届初一华杯赛试题及答案总分学校____________ 姓名_________ 参赛证号联系电话电子邮件密封线内请勿答题第三届“华罗庚金杯”少年数学邀请赛初赛试卷(初中组)(建议考试时间:xx 年3 月22 日10:00~11:00 )一、选择题(每小题10 分、以下每题的四个选项中,仅有一个是正确的、请将表示正确答案的英文字母写在每题的圆括号内)1、若有理数a、b在数轴上的位置如图1所示、则下列各式中错误的是()、(A)-ab<2 (B)>(C)<(D)<-12、关于数a有下面四个命题: ①若,则a必为0; ②若,则a,a+1,a-1中至少有一个为零;③若,则a=0,或a=1; ④若,则的值必为零、四个命题中正确的个数为()、(A)1 (B)2 (C)3 (D)43、图2(a)是长方形纸带,∠SAB=20,将纸带沿AB折叠成图2(b),再沿BN折叠成图2(c),则图2(c)中的∠TBN为()、(A)(B)(C)(D)4、今有四个数,其中一个数与其它三个数的平均数之和分别为92,86,80,90,那么,这四个数中最大的数等于()、(A)51 (B)48 (C)33 (D)425、依次排列4个数:2,11,8,9、对相邻的两个数,都用右边的数减去左边的数,所得之差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9、这称为一次操作,做二次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9、这样下去,第100次操作后得到的一串数的和是()、(A)737 (B)700 (C)723 (D)7306、如图3所示,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足()、(A)5<S≤6 (B)6<S≤7(C)7<S≤8 (B)8<S≤9二、填空题(每小题10 分,满分40分,第10题每空5分)7、计算:= 、8、如图4所示,圆的半径为2,圆的两条弦AB,CD互相垂直,垂足为E、若圆心O到弦AB的距离OF=1,EF=1、则图中阴影部分的面积等于、(取3、41)9、可将1~30这30个整数写成一行,使得由第二个数开始的每个数都是它前面所排列的所有数之和的约数、则排在第30个位置上的数最大应是、10、把符号“★”放在图5的小方格中,则含有“★”的由小方格组成的正方形个数随“★”的放法而改变、在所有的放法中,含有“★”的正方形个数最多时有个,最少时有个、第三届“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)(建议考试时间:xx年4月19日10:00~11:30)一、填空(每题10分,共80分)1、某地区xx年2月21日至28日的平均气温为-1℃,2月22日至29日的平均气温为-0、5℃,2月21日的平均气温为-3℃,则2月29日的平均气温为、2、已知(新+奥+运)=xx,其中每个汉字都代表0到9的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则算式= 、3、代数和-1xx+2xx-3xx+4xx+…-10031006+10041005的个位数字是、4、用一个平面去截一个长方体,裁面是一个多边形, 这个多边形的边数最多有条、5、一列数1,3,6,10,15,21,…中,从第二个数开始,每一个数都是这个数的序号加上前一个数的和,那么第xx个数是、6、当x取相反数时,代数式ax+bx对应的值也为相反数,则ab等于、7、已知是以x为未知数的一元一次方程,如果,那么的值为、8、在34方格网的每个小方格中心都放有一枚围棋子,至少要去掉枚围棋子,才能使得剩下的棋子中任意四枚都不构成正方形的四个顶点、二、解答下列各题(第题10分,共40分,要求写出简要过程)9、如果一个锐角三角形的三个角的度数都是正整数,且最大角是最小角的4倍,那么这个三角形的最小角的度数可能是哪些值?10、小明将164个桃子分给猴子,余下的几个留给了自己,每只猴子得到了数目相同的桃子,小明留给自己的桃子数是一只猴子的四分之一,问共有多少只猴子?11、下图中,E,F为三角形ABC边上的点,CE与BF相交于P、已知三角形PBC的面积为12, 并且三角形EBP, 三角形FPC及四边形AEPF的面积都相同,求三角形EBP的面积、12、现有代数式x+y, x-y, xy和 ,当x和y取哪些值时,能使其中的三个代数式的值相等?三、解答下列各题(每题15分,共30分,要求写出详细过程)13、对于某些自然数n, 可以用n个大小相同的等边三角形拼成内角都为120的六边形、例如, n=10时就可以拼出这样的六边形,见右图,请从小到大,求出前10个这样的n、14、对于有理数x,用[x]表示不大于x的最大整数, 请解方程第三届“华罗庚金杯”少年数字邀请赛决赛试题参考答案(初一组)一、填空(每题10分,共80分)题号12345678答案1℃2986064二、解答下列各题(每题10分,共40分,要求写出简要过程)9、答案:20,21,22、解答: 设最小角为x, 最大角为4x, 另一个角为y、则由题目的条件得, , ①由①的前两个式子得到: , 解得; 又由①的第三个式子得到, 所以、评分参考:1)给出三个关系①给4分;2)得出范围给4分;3)给出答案给2分、10、答案:10、解答: 设有n只猴子, 小明留给自己p个桃子、每只猴子分到了4p个桃子、则, 所以p是4的倍数, 令, 则, 是4的倍数、令, 则, , 因为n是正整数, 所以、当时, 、评分参考:1)给出p, n的关系给3分;2)得到n, k的最终关系给4分;3)得到答案给3分、11、答案:4解答: 设三角形EBP的面积为X, 连接AP、若令三角形APF的面积为Y, 则三角形AEP的面积为、因为, 而, , 所以有, 解得, 即, 所以X=4、三角形EBP的面积为4、评分参考:1)引出辅助线给2分;2)得到X与Y的关系给4分;3)得到答案给4分、12、答案: , , , 、解答: 首先必须, 否则没有意义、若, 则, 矛盾、所以、若, 则由, 或都得到, 所以, 即、因此, 三个相等的式子只有两种可能:(1)、由后一等式得到, 或, 而是不可能的, 因为此时由第一个等式得到, 矛盾、当时, 由第一个等式得到, 即, 所以、(2)、由后一等式同样得到, 或, 同样, 是不可能的, 而当时, 由第一个等式得到, 所以、评分参考:1)(1)之前给2分;2)(1)和(2)各给4分、三、解答下列各题(每题15分,共30分,要求写出详细过程)13、答案:6,10,13,14,16,18,19,22,24,25、解答: 设所用的等边三角形的边长单位为1、任何满足条件的六边形的外接三角形一定是一个边长为l的大等边三角形、该六边形可以通过切去边长分别为的等国三角形的角而得到, 其中为正整数, 并且满足, 、又由于用边长为1的等边三角形拼成的一个边长为x (正整数)的等边三角形所需要的个数是、因此, , 其中, , 、(1)时, n可以为、(2)时, n可以为、、(3)时, 与上面不同的n可以为, 、, 、(4)时,与上面不同的n可以为, 、, 、, =36-3=33、(5)时, 与上面不同的n都比27大、(6)时, 可以证明满足要求的n都不小于26、由(1)到(6)可得,前10个满足要求的n为6,10,13,14,16,18,19,22,24,25评分参考:1)写出10个中的1个给1分;2)给出足够的理由,例如(1)之前的部分给5分、14、答案:或、解答: 因为方程左边的第 1、3项都是整数, 所以是整数、注意到,代入方程, 得到, 、所以是整数, 是10的倍数、令, k是整数, 代入得, 其中, 对于有理数x, =、所以有, 、当k取不同整数时, 的情况如下表:k=1=2=3==1==0K的可能值是和3, 相应的和y =10、代入验算得到或、评分参考:1)得到是整数给3分;2)得到关于k的不等式给5人;3)得到列表的结果给5分;3)每个答案各给1分、第四届全国“华罗庚金杯”少年数学邀请赛初赛试卷(初一组)(时间:全文结束》》年3 月14 日10:00~11:00 )总分一、选择题(每小题10 分,满分60分、以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在答卷纸相应的表格内)1、下面四个算式中,正确的是()、(A)(B)(C)(D)2、某班暑假野营沿公路步行从学校到基地,再由基地立即原路返回学校,如果行程每天增加1千米,去时用了4天,返回时用了3天,则学校到该基地的路程是()千米、(A)36 (B)38 (C)40 (D)423、设、是两个负数,,则下面四个数中一定大于而小于的数是()、(A)(B)(C)(D)316564424▲3164、将1。
201703011第二十二届华杯赛决赛解析(小中a卷)

华杯赛决赛试题A(小学中年级组) 1 第二十二届华罗庚金杯少年数学邀请赛决赛试题小学中年级组本文题目由热心家长提供,南京新东方启智数学教师录排,时间仓促,如若有误,欢迎各位家长留言指正!一、填空题(每小题10分,共80分)1.在 2017 个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这2017 个数中有个三位数。
【答案】2016【考点】抽屉原理的基础:最不利原则【启智数学春季班四年级第 8 讲内容】【解析】假设这些自然数中有2个数不满足三位数的条件,则与“任意两个数至少有一个三位数”相矛盾,因此只有 1 个数不是三位数,三位数有:2017-1=2016(个)2.如下图(1)所示,一个棋子从 A 到 B 只能沿着横平竖直的路线,在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方。
如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中 x 代表的数字为。
1344 11 2 2 3 A2Ax211 B3(1)4 B(2)【答案】2【考点】平面图形找规律【启智数学秋季班三年级第 6 讲内容】【解析】每个格子都在某一行某一列上,所以行上的数字和与列上的数字和相等,故:x=(1+3+4+4+1)-(3+1+3+4)=13-11=2(路线如上图)13.用[x]表示不超过 x 的最大整数,例如[10.2]=10,则:[ 2017×3 ] + [ 2017×4 ] + [ 2017×5 ] + [ 2017×6 ] + [ 2017×7 ] + [ 2017×8 ]等于。
11 11 11 11 11 11【答案】6048【考点】定义新运算【启智数学春季班五年级第 15 讲内容】2017×3 2017×8 2017×(3+8)【解析】11 + 11 = 11 = 2017又[x]表示不超过 x 的最大整数,所以[2017×311] + [2017×811] = 2017 − 1 = 2016原式=2016×3=6048.4.盒子里有一些黑球和白球,将黑球数量变成原来的 5 倍,总的球数将会变成原来的 2 倍。
2017年新人教版小升初数学综合素质训练试卷(1)
2017年新人教版小升初数学综合素质训练试卷(1)一、解答题(共10小题,满分0分)1. 用100匹马驮100筐物品,一匹大马驮3筐,一匹中马驮2筐,两匹小马驮1筐。
问大、中、小各有多少匹?2. 一个两位数除以7,所得的商和余数相等。
求适合条件的这些两位数。
3. 房间里有凳子和椅子若干,每张凳子有3条腿,每把椅子有4条腿,当他们都被人坐下后,共有35条腿(包括人腿在内).问房间里有凳子、椅子、人各多少?4. 一个学生发现自己1998年的年龄正好等于他出生那一年的年份的末两位数字之和。
问这个学生1998年是多少岁?5. 在一个盒子里装有蟋蟀和蜘蛛若干只,共有46只脚,问盒子里蟋蟀和蜘蛛各有多少只?(蟋蟀6只脚,蜘蛛8只脚)6. 小王若用10元钱买油菜籽,芥菜籽和萝卜籽100包。
油菜籽3角钱一包,芥菜籽4角钱一包,萝卜籽1角钱7包。
问小王能买三种菜籽各多少包?7. 10元钱买15张邮票,其中有4角、8角、1角的三种。
问各买了几张?8. 大塑料桶可以装油5千克,小塑料桶可以装油3千克。
问装油50千克需要大、小塑料桶各多少个?9. 有5元一张和10元一张的人民币各若干张,共计50元。
问每种人民币各多少元?10. 有5元一张和10元一张的人民币各若干张,共计160元。
已知5元币的张数比10元币的多,而10元币的张数的2倍比5元币多。
问两种人民币各有多少张?参考答案与试题解析2017年新人教版小升初数学综合素质训练试卷(1)一、解答题(共10小题,满分0分)1.【答案】此题暂无答案【考点】二元一次常够组的求解【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】有余使爱除法【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】年因湾题【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】钱水较题【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】不定方正间分析求解【解析】此题暂无解析【解答】此题暂无解答。
2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述
2017年第22届华杯赛决赛模拟试题(1)(小学高年级组)(时间:90分钟,满分:150分)一、填空题。
(每小题10分,共80分)1.2016年1月24日,“华罗庚金杯中外少年数学精英趣味对抗赛”在美国开赛,2016年7月18日,“华罗庚金杯少年数学邀请赛30周年纪念大会”召开,已知2016年1月24日是星期日,2016年7月18日是星期 。
【难度】★★【考点】周期问题【答案】一【解析】注意2016年是闰年。
1月25日至1月31日共31-25+1=7(天);2月至6月共29+31+30+31+30=151(天);7月1日至7月18日共18天。
故20166年1月25至7月18日共7+151+18=176(天)。
176÷7=25……1,故2016年1月24日之后第176天为星期一。
2.计算:=⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--1541212322211%2532394475.0 。
【难度】★★【考点】计算 【答案】92 【解析】原式 = ⎥⎦⎤⎢⎣⎡--÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--+-15412123212124196394443 = ⎪⎭⎫ ⎝⎛--÷+⨯⎪⎭⎫ ⎝⎛⨯-154125351419743 = ⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-1543241973 =15641920⨯⨯ = 92 3.如图,将侧面积是314平方厘米的圆柱体,切拼成一个近似长方体,表面积比原来增加 厘米。
(π取3.14)【难度】★★【考点】几何【答案】100【解析】设圆柱体高为h,底面积的半径为r.则2πrh=314,rh=50.增加面积为2rh=100(平方厘米)。
4.仅使用加、减、乘、除、括弧,可由4个4运算得到3。
例如(4 + 4 + 4)÷4 = 3。
请你另给一种运算算式。
【难度】★★【考点】巧填运算符号【答案】(4×4 - 4)÷4 = 3【解析】三个4很容易得到3,即4-4÷4=3.将除以4看成乘以1/4,利用乘法分配率可将3个4变成4个4,即4-4÷4=(4×4-4)除以4.5.将自然数从1开始,按图所表示的规律排列。
华杯赛初一初赛试题及答案
华杯赛初一初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 计算下列表达式的值:\( 3^2 - 2 \times 3 + 1 \)A. 1B. 4C. 7D. 9答案:A3. 如果 \( a \) 和 \( b \) 是两个连续的自然数,且 \( a > b \),那么 \( a - b \) 的值是:A. 1B. 2C. 3D. 4答案:A4. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{3} \)D. \( \frac{5}{6} \)答案:B5. 如果一个圆的半径是 \( r \),那么它的面积是:A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi r \)D. \( \pi \)答案:A6. 一个长方体的长、宽、高分别是 \( l \)、\( w \) 和 \( h \),那么它的体积是:A. \( l \times w \)B. \( w \times h \)C. \( l \times w \times h \)D. \( l + w + h \)答案:C7. 如果一个数的平方根是 \( x \),那么这个数是:A. \( x^2 \)B. \( 2x \)C. \( x + x \)D. \( x - x \)答案:A8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 零C. 负数D. 所有选项答案:D10. 如果一个数的立方是 \( -27 \),那么这个数是:A. 3B. -3C. 9D. -9答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是 \( -a \),那么这个数是 ______ 。
最新2017人教版密卷(人教版)小升初考试数学试卷及答案 (2)
最新2017人教版密卷(人教版)小升初考试数学试卷及答案 (2)最新精品真题试卷(人教版)小升初入学考试数学试卷班级:________ 姓名:________ 得分:________一、选择题:(每小题4分,共16分)1、在比例尺是1:xxxxxxx的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。
A、15点B、17点C、19点D、21点答案:B解析:根据题目所给的比例尺和距离可以求出实际距离为9×xxxxxxx=xxxxxxxx米,再根据速度和距离可以求出到达B港的时间为9÷24=0.375小时,即上午6点加上0.375小时等于上午6点37分,换算成24小时制即为17点。
2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。
A、10B、12C、14D、16答案:C解析:根据题目所给的条件可以列出方程4×t=6,解得t=1.5分钟,即将一根木棒锯成1段需要1.5分钟。
同理,将这根木棒锯成7段需要6+(7-4)×1.5=14分钟。
3、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。
A、提高了50%B、提高40%C、提高了30%D、与原来一样答案:A解析:假设原来车间有100人,产量为100单位,改革后人员减少20%变为80人,产量增加20%变为120单位,那么工作效率就是120÷100×100%-100%=20%,即提高了50%。
4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D 作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。
A、18B、19.2C、20D、32答案:B解析:假设每人每天的劳务费为x元,那么A、B、C三人完成这件工作所应得的报酬分别为6x、5x、4x元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品试卷
第四届华杯赛决赛一试试题
1.在100以内与77互质的所有奇数之和是多少?
2.图1,图2是两个形状、大小完全相同的大长方形,
在每个大长方形内放入四个如图3所示的小长方形,斜线区域是空下来
的地方,已知大长方形的长比宽多6cm,问:图1,图2中画斜线的区
域的周长哪个大?大多少?
3.这是一个道路图,A处有一大群孩子,这群孩子向东
或向北走,在从A开始的每个路口,都有一半人向北走,另一半人向东
走,如果先后有60个孩子到路口B,问:先后共有多少个孩子到路口C?
4.表示一个四位数,表示一个三位数,A,B,
C,D,E,F,G
代表1至9的不同的数字。已知,问:
乘积的最大与最小值差多少?
5.一组互不相同的自然数,其中最小的数是1,最大的
数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的