上海市虹口区2018年最新中考数学二模试卷及答案解析
2018年上海市中考数学试题及答案解析(word版)

2018年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
上海市各区2018届中考数学二模试卷精选汇编压轴题专题(有答案)

上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA,12=AC ,AC ∥OB ,联结AB . (1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H图8图10图8∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分图10长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO O AC DBO BA C DBAOxx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G . (1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)A BCDGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC =g ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则2241174AD CAx x AC CBx -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或117+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分) ∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分) 定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)ABCD图9备用图②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD , 在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =, ①如果AQ EQ QP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQ QP QE =,∴AQ PBQP AP==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, A 第25题图B P OC DE · 第25题备用图ABOCDDA · POE那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC ,∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;第25题图(2)(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) (备用图)CBA (第25题图)CBEF DADEBACF∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.DEBACFDC25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ················ (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n ·········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON=90o,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA= x,∠COM的正切值为y.(1)如图9-2,当AB⊥OM时,求证:AM =AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,O MNDCBA图9-1ONDCBA图9-2NMO备用图在Rt △ODM中,==OD =DM y OD,1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x(第25题图)CBA DE(备用图)CBADECBA DE则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅ ∴365CP =……………………………1分 ②设CP =t ,则54PE t =- ∵∠ACB =90°,∴AP ∵AE ∥CD ∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么2595t AQ +== ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
2018年虹口区高三二模数学word版(附解析)(2021年整理)

2018年虹口区高三二模数学word版(附解析)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年虹口区高三二模数学word版(附解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年虹口区高三二模数学word版(附解析)(word版可编辑修改)的全部内容。
上海市虹口区2018届高三二模数学试卷2018。
04一. 填空题(本大题共12题,1—6每题4分,7—12每题5分,共54分) 1。
已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是 2。
直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a =3。
已知(0,)απ∈,3cos 5α=-,则tan()4πα+=4. 长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++=5。
已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=6。
从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 7. 已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q =8. 若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 9。
如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于10。
2018年上海市虹口区高三二模数学卷(含答案)

1A虹口区2017学年度第二学期期中教学质量监控测试高三数学试卷(时间120分钟,满分150分)2018.4一.填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分)1.已知(,]A a=-∞,[1,2]B=,且A Bφ⋂≠,则实数a的范围是.2.直线(1)10ax a y+-+=与直线420x ay+-=互相平行,则实数a=.3.已知(0,)απ∈,3cos5α=-,则tan()4πα+=.4.长方体的对角线与过同一个顶点的三个表面所成的角分别为α,β,γ,则222c o s c o s c o sαβγ++=.5.已知函数20()210xx xf xx-⎧-≥⎪=⎨-<⎪⎩,则11[(9)]f f---=.6.从集合{}1,1,2,3-随机取一个为m,从集合{}2,1,1,2--随机取一个为n,则方程221x ym n+=表示双曲线的概率为.7.已知数列{}n a是公比为q的等比数列,且2a,4a,3a成等差数列,则q=_______.8.若将函数6()f x x=表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x=+-+-+-++-则3a的值等于.9.如图,长方体1111ABCD A BC D-的边长11AB AA==,AD=,它的外接球是球O,则A,1A这两点的球面距离等于.10.椭圆的长轴长等于m,短轴长等于n,则此椭圆的内接矩形的面积的最大值为_______.11.[]x是不超过x的最大整数,则方程271(2)2044x x⎡⎤-⋅-=⎣⎦满足x<1的所有实数解是.12.函数()sinf x x=,对于123nx x x x<<<<且[]12,,,0,8nx x xπ∈(10n≥),记1223341()()()()()()()()n nM f x f x f x f x f x f x f x f x-=-+-+-++-,则M的最大值等于.二.选择题(每小题5分,满分20分) 13.下列函数是奇函数的是( )..A ()1f x x =+ .B ()s i n c o sf x x x =⋅.C ()arccos f x x = .D 0()0x x f x x x >⎧=⎨-<⎩14.在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P 在线段BC 上运动且满足PC k BC =⋅,当PM PN ⋅取得最小值时,实数k 的值为( ).A 12 .B 13 .C 14 .D 1815.直线:10l kx y k -++=与圆228x y +=交于A ,B 两点,且AB =过点A ,B 分别作l 的垂线与y 轴交于点M ,N ,则MN 等于( ).A.B 4 .C.D 816.已知数列{}n a 的首项1a a =,且04a <≤,14464n n n n na a a a a +->⎧=⎨-≤⎩,n S 是此数列的前n 项和,则以下结论正确的是( ).A 不存在...a 和n 使得2015n S = .B 不存在...a 和n 使得2016n S = .C 不存在...a 和n 使得2017n S = .D 不存在...a 和n 使得2018n S =三.解答题(本大题满分76分)17.(本题满分14分.第(1)小题7分,第(2)小题7分.) 如图,直三棱柱的底面是等腰直角三角形,1AB AC ==,2BAC π∠=,高等于3,点1M ,2M ,1N ,2N 为所在线段的三等分点.(1)求此三棱柱的体积和三棱锥112A AM N -的体积; (2)求异面直线12A N ,1AM 所成的角的大小.18.(本题满分14分.第(1)小题7分,第(2)小题7分.)已知ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.P 2P 1C 1A N 2N 1(1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.19.(本题满分14分.第(1)小题6分,第(2)小题8分.)平面内...的“向量列”{}n a ,如果对于任意的正整数n ,均有1n n a a d +-=,则称此“向量列”为“等差向量列”,d 称为“公差向量”.平面内的“向量列”{}n b ,如果01 ≠b 且对于任意的正整数n ,均有1n n b q b +=⋅(0q ≠),则称此“向量列”为“等比向量列”,常数q 称为“公比”. (1)如果“向量列”{}n a 是“等差向量列”,用1a 和“公差向量”d 表示12n a a a +++; (2)已知{}n a 是“等差向量列”,“公差向量”(3,0)d =,1(1,1)a =,(,)n n n a x y =;{}n b 是“等比向量列”,“公比”2q =,1(1,3)b =,(,)n n n b m k =.求1122n n a b a b a b ⋅+⋅++⋅.20.(本题满分16分.第(1)小题4分,第(2)小题5分,第(3)小题7分.)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆22:12x C y +=,点(,)M m n 是椭圆C 上的任意一点,直线l 过点M 且是椭圆C 的“切线”. (1)证明:过椭圆C 上的点(,)M m n 的“切线”方程是12mxny +=; (2)设A ,B 是椭圆C 长轴上的两个端点,点(,)M m n 不在坐标轴上,直线MA ,M B 分别交y 轴于x点P ,Q ,过M 的椭圆C 的“切线”l 交y 轴于点D ,证明:点D 是线段PQ 的中点;(3)点(,)M m n 不在x 轴上,记椭圆C 的两个焦点分别为1F 和2F ,判断过M 的椭圆C 的“切线”l 与直线1MF ,2MF 所成夹角是否相等?并说明理由.21.(本题满分18分.第(1)小题3分,第(2)小题7分,第(3)小题8分.) 已知函数3()f x ax x a =+-(a R ∈,x R ∈),3()1xg x x =-(x R ∈). (1)如果x =2是关于x 的不等式()0f x ≤的解,求实数a 的取值范围;(2)判断()g x 在-(1,]2和[1)2的单调性,并说明理由;(3)证明:函数()f x 存在零点q ,使得4732n a q q q q-=+++++成立的充要条件是a ≥虹口区2017学年度第二学期高三年级数学学科期中教学质量监控测试题答案一、填空题(1~6题每小题4分,7~12题每小题5分,本大题满分54分)1、1a ≥;2、2;3、17-; 4、2; 5、2-; 6、12; 7、1或12-; 8、20; 9、3π; 10、12mn ; 11、1x =-或12x =; 12、16;二、选择题(每小题5分,满分20分)13、B ; 14、C ; 15、D ; 16、A ; 三、解答题(本大题满分76分) 17、(14分)解:(1) 12ABCS ∆= ,∴ 11132ABC A B C V -= ……2分 1132AM A S ∆=,1C 到平面11ABB A 的距离等于1,即2N 到平面P 2P 1C 1A N 2N 111ABB A 的距离等于1,∴ 112211131322A AM N N AM A V V --==⨯=∴ 三棱柱111ABC A B C - 的体积等于32(立方单位),三棱锥112A AM N -的体积等于12(立方单位)……………7分(2)取线段1AA 的三等分点1P ,2P ,连12PM ,1PC .12A N ∥1PC ,1AM ∥12PM ,∴ 21M PC ∠的大小等于异面直线12A N ,1AM 所成的角或其补角的大小.…………9分121PM AM ==1PC,2M C = . ∴211cos 2M PC ∠==-.∴ 异面直线12A N ,1AM 所成的角的大小等于3π.………………14分 18、(14分)解:(1)210z z -+=的两个根为12z =±.…………2分 1cos 2A ∴=,sin A = ,3A π= .…………4分 ∴5sin sin12C π== ,sin sin c a C A =,得c =7分 (2)2222cos a b c bc A =+-.∴2292b c bc bc bc bc =+-≥-=,从而9bc ≤,等号当b c =时成立,此时m a x 13s i n 2S bc A ==.∴ABC ∆.……………14分19、(14分)解:(1)设(,)n n n a x y =,12(,)d d d =.由1n n a a d +-=,得1112n n n n x x d y y d ++-=⎧⎨-=⎩,所以数列{}n x 是以1x 为首项,公差为1d 的等差数列;数列{}n y 是以1y 首项,公差为2d 的等差数列.……………………3分∴121212,)(n n n a a a x x x y y y +++=++++++11121112111((1),(1))(,)(1)(,)222nx n n d ny n n d n x y n n d d =+-+-=+-11(1)2na n n d =+-.………………6分(2)设(,)n n n a x y = ,(,)n n n b m k =.由11111(,)(,)(,)(3,0)n n n n n n n n n n a a x y x y x x y y +++++-=-=--=,从而13n n x x +-=,10n n y y +-=.数列{}n x 是以1为首项,公差为3的等差数列,从而32n x n =-.数列{}n y 是常数列,1n y =. 由12n n b b +=得12n n m m +=,12n n k k +=,又11m =,13k =,∴数列{}n m 是以1为首项,公比为2的等比数列;数列{}n k 是以3为首项,公比为2的等比数列,从而有12n n m -=,132n n k -=⋅.……10分112211221122n n n n n n a b a b a b x m x m x m y k y k y k ⋅+⋅++⋅=+++++++令211122114272(32)2n n n n S x m x m x m n -=+++=⨯+⨯+⨯++-⨯………①232124272(32)2n n S n =⨯+⨯+⨯++-⨯…………②.①-②得,23113(2222)(32)2n n n S n --=+++++--⋅,得5(35)2n n S n =+-⨯令11223(12)3(21)12n n n n n T y k y k y k ⋅-=+++==⋅--从而1122(32)22n n n n n a b a b a b S T n ⋅+⋅++⋅=+=-⋅+………………14分20、(16分解:(1)由点(,)M m n 在椭圆C 上,有2212m n +=,∴(,)M m n 在直线12mx ny +=上 当0n =时,由2212m n +=,得22m =,直线方程为2x m =,代入椭圆方程得22220m y m-==,得一个交点2,0)(m,直线l 是椭圆C 切线. 当0n ≠时,有2212m n +=,直线为12m y x n n =-+代入椭圆方程得221102x mx n -+-=,有222214(1)2202m n m n ∆=-⨯-=+-=,直线是椭圆C 切线.…………………4分 另解:不讨论将椭圆方程化为222222n x n y n +=,将直线方程12mx ny =-代入消y ,得到x 的一元二次方程,然后证明0∆= (2)点(,)M m n 不在坐标轴上,:AM y x =+,得(0,)P. :BM y x =-,得(0,Q ……………………6分过点(,)M m n 的切线为:12mx l ny +=,得1(0,)D n .由2212m n +=,得2222m n -=-,从而有24222P Q D n y y y m n-+====-,∴点D 是线段PQ 的中点.…9分(3)(,)M m n ,:12mx l ny +=,l 的方向向量(2,)d n m =-,2212m n +=.1(1,0)F -,2(1,0)F ,1(1,)MF m n =---,2(1,)MF m n =--,记d 与1MF 的夹角α,d 与2MF 的夹角β.………12分11cos 4d MF d MFα⋅====22cos 4d MF d MFβ⋅====,所以cos cos αβ=,有αβ=,从而有l 与直线1MF ,2MF 所成的夹角相等.……16分21、(18分)解:(1) 由3((0a a +-≤,得a ≥ ………………3分 (2)设21x x > ,212112212133332121()[1()]()()11(1)(1)x x x x x x x x g x g x x x x x -++-=-=---- 当x x-<<≤1212时,210x x -> ,3210x -> ,3110x ->,1212x x <, 122x x -<+有12122()1x x x x -<+<-,121211()0x x x x -<++<,∴ 21()()0g xg x -<.………………6分当1202x x -≤<≤ 时,210x x -> ,3210x -> ,3110x ->,1202x x ≤<120x x +<,有12121()0x x x x -<+≤,121201()1x x x x <++≤,∴ 21()()0g x g x ->.当1201x x ≤<<时,210x x -> ,3210x -> ,3110x ->,x x x x ++>12121()0,∴ 21()()0g x g x ->.∴ ()g x 在(1,-递减,在[0]和[0,1)上递增,从而在[1)上递增.………10分(3) 充分性:当a ≥时,有3(022a f a a =-=-,又(1)10f =>,函数3()f x ax x a =+-在[内的图像连续不断,故在[内一定存在零点q 且1q < ,∴有30aq q a +-=,得31q a q=-,从而4732n a q q q q -=+++++.……14分必要性:当0q =时,0a =. 当0q ≠时,由4732n a q q q q -=+++++成立,可得311q -<<从而得11q -<<,31qa q=-,由(2)中的结论可知3()1x g x x =-在(1,]2--递减,在[1)2-递增,从而,1()32g x -<-或()g x ≥.从而31q a q =-,11q -<<时,有3a ≥-.………………18分。
上海市2018年中考数学试卷word版含解析

2018年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1. 下列计算﹣的结果是()A. 4B. 3C. 2D.【答案】 C【解析】【分析】先对二次根式进行化简,然后再合并同类二次根式即可得.【详解】﹣=3-=2,故选C.2. 下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A. 有两个不相等实数根B. 有两个相等实数根C. 有且只有一个实数根D. 没有实数根【答案】 A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.3. 下列对二次函数y=x2﹣x的图象的描述,正确的是()A. 开口向下B. 对称轴是y轴C. 经过原点D. 在对称轴右侧部分是下降的【答案】 C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确,故选C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0),对称轴直线x=-,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.4. 据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A. 25和30B. 25和29C. 28和30D. 28和29【答案】 D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5. 已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A. ∠A=∠BB. ∠A=∠CC. AC=BDD. AB⊥BC【答案】 B。
(真题)2018年上海市中考数学试卷有答案(word版)AUPPMK

2018年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根3.下列对二次函数2y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A e 与直线OP 相切,半径长为3的B e 与A e 相交,那么OB 的取值范围是( )A. 59OB <<B. 49OB <<C. 37OB <<D. 2<二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是.10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示).11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 .13.从2,,7π选出的这个数是无理数的概率为 . 14.如果一次函数3y kx =+(k 是常数,0k ≠x 的增大而(填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF u u u r用向量a b r r 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .y 金额(元)图218.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 .三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.20.先化简,再求值:2221211a a a a a a+⎛⎫-÷ ⎪-+-⎝⎭,其中a =.21.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,C B A图7 图4 图3 图5 图6其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域);(2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F. (1)求证:EF =AE -BE ; (2)联结BF ,若AF DFBF AD=,求证:EF =EP .24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图10O y x 图9PFEDCBA 图825. 已知O e 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F. (1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值; (3)联结BC 、CD 、DA ,如果BC 是O e 的内接正n 边形的一边,CD 是O e 的内接正(n+4)边形的一边,求ACD ∆的面积.图12 图11 备用图 O F E D C B A OF ED C B A2018年上海中考数学试卷参考答案2018中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2018年上海市初中毕业统一学业考试数学科目顺利开考。
{3套试卷汇总}2018-2019上海市虹口区中考二轮复习仿真数学冲刺卷
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2【答案】A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.39153)A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D 【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.4.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B 【解析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.5.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解【答案】C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+, ∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .6.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒【答案】C 【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC ,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC ,因此∠B+∠D=∠AOC+12∠AOC=180°, 解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】 该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.8.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°【答案】C 【解析】首先求得AB 与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°,故选:C .【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.10.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =, ∴54DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.二、填空题(本题包括8个小题)11.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.【答案】3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 12364-______________.【答案】-1364--1.故答案为:-1.13.如图所示,在长为10m 、宽为8m 的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.【答案】12【解析】由图形可看出:小矩形的2个长+一个宽=10m ,小矩形的2个宽+一个长=8m ,设出长和宽,列出方程组解之即可求得答案.【详解】解:设小长方形花圃的长为xm ,宽为ym ,由题意得28210x y x y +=⎧⎨+=⎩,解得42x y =⎧⎨=⎩,所以其中一个小长方形花圃的周长是2()2(42)12(m)x y +=⨯+=.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y )=18,于是x+y=6,所以周长即为2(x+y )=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.14.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm【答案】503【解析】试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质.15.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.【答案】1【解析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC的长.【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.17.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.【答案】1【解析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:1,∴KO=OF=12CF=12BF , 在Rt △PBF 中,tan ∠BOF=BF OF =1, ∵∠AOD=∠BOF ,∴tan ∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.18.已知整数k <5,若△ABC 的边长均满足关于x 的方程2x 3x 80k -+=,则△ABC 的周长是 .【答案】6或12或1.【解析】根据题意得k≥0且(k )2﹣4×8≥0,解得k≥329. ∵整数k <5,∴k=4.∴方程变形为x 2﹣6x+8=0,解得x 1=2,x 2=4.∵△ABC 的边长均满足关于x 的方程x 2﹣6x+8=0,∴△ABC 的边长为2、2、2或4、4、4或4、4、2.∴△ABC 的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!三、解答题(本题包括8个小题)19.计算:(()2122sin 303tan 45--+--+°°【答案】1【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可. 试题解析:()()2122sin 303tan 45--+︒--+︒ =2+2×32-3+1 =2+3-3+1=3考点:三角函数,实数的运算.20.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (-3,m +8),B (n ,-6)两点.求一次函数与反比例函数的解析式;求△AOB 的面积.【答案】(1)y=-6x,y=-2x-1(2)1 【解析】试题分析:(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.试题解析:(1)将A (﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.21.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】3+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i=1333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×32=23,∴BF=BC+CF=23+23=43,过点E作EG⊥AB于点G,则GE=BF=43,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=43•tan37°,则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.23.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.【答案】(1)①见解析;②见解析;(1)1π.【解析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C 1在旋转过程中所经过的路径长=9042180ππ⨯= 【点睛】 本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.24.如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A(3,0)、B(0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【答案】 (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-.(2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+=19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得1321p +=,2321p -=(舍去),所以P 点的横坐标是3212+. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得13212p +=(舍去), ①2321p -=,所以P 点的横坐标是3212. 所以P 321+321-25.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【答案】(1)41(2)15%(3)1 6【解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.26.在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】(1)32;(2)1. 【解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC , ∴EF AK BC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK =12﹣x ,EF =32(12﹣x ), ∴S =32x (12﹣x )=﹣32(x ﹣6)2+1. 当x =6时,S 有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--【答案】B 【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B 符合.故选:B .【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x(k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣36【答案】B【解析】解: ∵O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,∴OA=5,AB ∥OC ,∴点B 的坐标为(8,﹣4),∵函数y=k x (k <0)的图象经过点B , ∴﹣4=k 8,得k=﹣32. 故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A 点坐标求得OA 的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.3.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=5,AB=10.∵(5)1+(5)1=(10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.4.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确; 小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误; 小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确.故选C .考点:函数的图象、行程问题.5.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( ) A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣3【答案】A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.6.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 2【答案】B 【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE ,则矩形ABDC ∽矩形FDCE ,则 AB BD DF DC =设DF=xcm ,得到:68=x 6 解得:x=4.5, 则剩下的矩形面积是:4.5×6=17cm 1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2【答案】A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.8.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1【答案】D【解析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.9.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.二、填空题(本题包括8个小题)11.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.【答案】1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.12.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E ,则∠DAE =______.【答案】10°【解析】根据线段的垂直平分线得出AD=BD ,AE=CE ,推出∠B=∠BAD ,∠C=∠CAE ,求出∠BAD+∠CAE 的度数即可得到答案.【详解】∵点D 、E 分别是AB 、AC 边的垂直平分线与BC 的交点,∴AD=BD ,AE=CE ,∴∠B=∠BAD ,∠C=∠CAE ,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE )=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.13.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.【答案】1【解析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值. 【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭,∴点B的坐标为k0,2a⎛⎫ ⎪⎝⎭,1ka122a∴⋅⋅=,解得,k4=,故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.【答案】5或1.【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C 与点E 重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x ,则CD=8-x .在Rt △′BDE 中,DB′5=DE 5+B′E 5,即x 5=(8-x )5+55.解得:x=1.∴BD=1.综上所述,BD 的长为5或1.15.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.【答案】25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.16.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.【答案】2x =或x=-1【解析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴.【详解】∵点A 的坐标为(-2,0),线段AB 的长为8,∴点B 的坐标为(1,0)或(-10,0).∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于A 、B 两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1.故答案为x=2或x=-1.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.17.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】2【解析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.18.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.【答案】2000 3【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,。
2018年上海市虹口区高三二模数学卷含答案
虹口区2017学年度第二学期期中教学质吊监控测试高三数学试卷(时间120分伸,満分150分)罚(4 7 12 r * 5 I,、:K稱分54 : i1. U知A »(-«c t a] • B =[1.2J . 11 AcB农©・曲实数a的范也是_______________________2. Att ax *<a -1)y >1 ・0 与去线4x *ay-2.0 OTW, IM实ST a- ________________4.长方体的对侑找与过同一个頂点的三个农面所成并角分别为a . B. 丫 .対co® + c6i ♦知_____________________25匚知函ftt f(Q=八•则f」["(〜)]= ____________________________________ ・2 -1 x <06从累合(-1, 1, 2, 3施片山? -个为m・从兔合(-2, -1, 1. 3随HUI?个为n.朝方程X=1表用双曲找的概半为_______________m n7. Cffltt列UiU公比为q的寺比牧刊,且a2, a«.為成寻荒数X, M q-小轨f (x) = J g I:;. f (x) p炖(x-1)令q(x-M ♦务(x-1)?♦川♦比“-卄則觅的值尊于____________ ・9.勿国•长方休 ABCD - A B C 0K边长AB= AA=1AD =逅.EfFJ讣佞球毘琢 O・噂A . A席冋点旳球庶比円寻于__________ ・10. ■(!的整林尊于m ■翩(帐尊于n ■则JRM曲内接魁形的■枫的■大值为笛・(X】是不世过x的处大则方岂(2¥・2・[2T」M ONA1 X<1的所右实教能12・两数f (x) =$in x .对T Xg<冷卅I qxfl斷,&・川.忌色(0. &】(n^10),兄M 咐(为)T(创H『g)T(冷)|r(4)-“xj4l)l牛(Xnj)T()q|・ MM 0»大偵第干-----------------------ai)K«-tt? Wt 4f( » ix 2018.43.巳知a •(()“).cos a =-- Nf tan(a +・rjtei 旳小已5分.满分20分)13A. f (x) > x B f ( x)B si nc ex C ・ f (x) ■ arccosx D ・ f (x) ■ 14 V RtMBC ip. AB = AC , > M - N 是线段 AC 卜 / P・ M BC 总动Fl 満定 Ftf =k BC*. PFf« k 的值为().1 o 1小 1. 1 A. - B -C. —D.-234815 Sm :kx-y *k *1=0«jfi X 2*/=8^ 于 A. B 两点.KIAB =4^/5 .过虑 A. B 分别作 I的乖钱厅y<*交尸点M . N . ijf MN 寻尸<A. 2>l2 B 4 C ・ 4湮 D ・ 8X ・4 3n > 416.巳知a 珂 g 冶汁绷a, =a , n.0<aS4・比參■ J 「S 汽此敬刊的曲n 网他S-3n 去 <4m KMitiEW 的圧()A.何,aWntt^ S n -2015B. a «1 n =2016C,;存在 aMn 便谢 5=2017D.f 仔花 afunfttt & -2018vna (本大at 肯分 m17.(厶也淸分14分.5? (1)小地7分•第(2)小越7分・) 81 IS .止三枝仏的底面余铮啜出付三命賂.AB - AC -1.ZBAC ■;.跡于 3,点 M ・,M 2, N, , N,为 浚段的三夸分点.<1)求此 餐林的体积和Wtt A -AM.Ni 的体机;(2)求异|&儿戈AN 2t AM 】所城的耶大小.18 (本览满分14分•第(1)小Ift 7分.第< 2)小H11 7分・) Z 2 -2*1 -omm. a »3.SIL]K«-tt7 Wt 4^ 第 2员若.求边长c 的低4(2)次AABC 曲机的鼓火偵・x x>0 -xx<0巳知 MBC 中.« A,B,C 所対更的边分别为a.b,c , z =cosA*i -sin A ( I .trlftt 单位)址力丹B2C19. 分14分•第(1)小運6分■第<2)小锂8分・) _丫町內的•ifijtt列・Qr如宋时干仟意的I「幣收n,均竹a^-a? -d . IM林此・口慣列-为审忑向Sdh ,:称为•公玉向定・・平向内的.咖列・Q}■如采6#6n对f任意的正肢n,铀一 -♦^4.«q bK ( q HO), mmt -|Mjfi^"为•输比l&Jttfl* ••KUq柠力-公比.・⑴椒•耐常 g}是•务郵川用•用:和•公齣站才衣示♦二;(2)巳知Q}足•写龙向泾列・••公差向畀d =(3, 0). ?=(!.眾2=(人・*);―斗呎TH斗■■♦T•等比向鼠列• ••公比・q・2, =(1f 3). b. =(nx. kJ•求a,t»♦坷鸟片)严比0・20 (本IM满分16分•第(1)小IB 4分•第<2)小M 5».第(3)小越7 5?.)处果£(如倆13只有一T衣点,^isatii^eilffi・《!线・・caw貝c:—*y2=1.点M(m.n)是2HI3 C上的任恵一点.宜线I过虑M且址情13 C的•切线・・⑴证明:过勵3 C上的直M(gn)的•切线•力程足—*ny =1; 2(2> fl A. B足純网C长IB上的曲个酬4,点M(m.n )不布4标驚匕Mi MA, MB分聘交y Ifi于木m 4贞» 3X3=- , C t点P . Q .过M 旳櫃网C 的•切th I 殳y 紬F 点D .迁明:贞D itm PO 的中点;(3i AM(m,n) x 】,id«H C 的胪MLi RfnF a ■判Itfht M D C 的 11,白线MF 1w M&所说淡角址否相等?并说明J?rti ・21. M 越满分18分•第(1)小連3分.第< 2"也7分.第(3)小!? 8分・) CfiUfitt f(x)・ax'・x-a (a€R t x€R h( xeR)U A(1)观集x=二扌一圧关Ff(x)sO 的岸・求艾数a 射取Cl 范也;<2» *!« x)(f ( -1.乎]和[护,1)的m 网化 n-Kur^iii ;⑶硕酿3的*师”qTWH 叶ill 皿的如件是 峠虹口区2017学年度第二学期崗三年级玻学学科期中教学质虽监控测试题答案、填空旳(—6何第小30 4分.7 12Mit 小何5分.本大通腾分54分)16・A一.朋答範4.木大牠満分 76分)2・2;队万;..10. - mn ; 32・ana 宙小包5分・满分20分)6・7.--; 213. B 17, (14 分} M : (1) •••1 3 1ABBA 的R 离?H' 1 ,・•• V AJWZ =\/町护人=x M3 Z Z・・.三梭住ABC-ARC,的体帜等丁 -(立方E 位)•丨馬显A _ AM N,的体枳每丁・-(立方单 2 2 位) ......... 7分・・・AN 「’PQ. AM 「RMi ・・・ /MfC 的父小爹于片创立怕 AN- AM (所成的角或其补角的人小•• ... 9分••・ RM 2 -AM, ^y/2. RC =>/2 ■ M 2C=V6 ・ “ 2*2-6 1.・・ cosZM ?RC = ---- 一—— =一一・2K 渥x 渥 2:.界Bifittft AN- AM 曲it 的角的-. .............................. "分318、( M 分)昭:(1) z -z*1 =0 的阿卜權为 z»-± —I. .............................. 2 分2 2 A cos A =— , sin A = — . A =—・ .................. 4 分2 2 3,.卯CM 的竺■应,亠■亠•側C ■返匝 ............................................ 7分12 4 sin C sin A 2<2i v a 2 =b 2 -2kx:cosA•・• 9 -b *c -bciax: -be ・bc •从而be 59 •爭弓M b-c 时皈立.此时2・门4分)M :⑴设1=(— yj t d =(d, dj ・•斯以朝列GJ 址以片为件项.公盖为a 的寻靈钦列;铁列{%}&以为甘険,公劲 dz 的需笊数列•・X “2 ♦ll(+a n =(x, ♦xj*||rx ni yi*y 2*IIPyJ= (nx, *2n(n -1)d b ny f *2n(n -1)d 2) =%斗.y,)+ ^0(0-1)(d 1t d 2)(2)取戻段AA A 零分广R ・R ・3 PM a ・PC—? "BC 細耐*大值奇于—14分iba^-a, =d.得=n? -*-ln(n -1)d.2J.鬲* ■(心4 ■ (Xn. % ) ■(心彳一Xn ・ y(i 4 * %) ■ (3・ 0)・从mjXn4・Xn・3, y n^-yn UJttil 1 ww,公龙为3的雪穴數判,从血j Xn・3n-2.敢外{%}足#效外,y n«1.山订! =2?得g.=加人.=2心•只m, =1・k, =3.・・・啟列{叽}是口1为白坪,公比为2的帑比数刘;效嵋(kjis以3勺冇项•公比为2的耳比数列,从而有rn, - 2nJ. kn・3 2 J.……K)分T T V T M —Ia, b,・a? * lira. d・x,m 叫♦心g ・y2b-III"> S =x.m l "x?叫♦ Ill^Xnnv =1X14-4K2*7X2: *|||*(3n -2)X 2 j................... 』25 =1x2 ^4x22+7x23 + |||*(3n-2)x2n............................... 区.3>-m t 5 十3(21 令2s+川令2^)-(3n・2) 0. ft S, =5*(3n-5)x 2n> T R = *y^2 *lll*y r k n,丿=3〈2” -1)1 -2-> -4 ―— V从血a bP b+IIHanb=S+h=(3n・2)・2 +2 ............................................. M分20. i 16分解:(1)由点M(m,n)生HR1 C 上,y *n2=1. • M(m,n)^Ktt y *ny = 1 上=Oaj. ill 弓一m2 - 2. AiUfjWfj x--■代入稀网方稈得『.丄屮得2 m m个交点(2 0)・2f饯I址懂関C切如m勺n# 0时.右竺♦(“,适綴为y S_J!L X4-1代入悟网方樫側丄J-mxr-『=0,有2 2n n 2A -m1 M g(1 *2 ) m2诃-2 铀爼MO C 切皱........................ ............. 4 分2 2丹轉:不讨— ^n2y2»n\ ny=1-—代入fl) y. x的•兀2 2(2 )・••点M(m,n)不在坐怎越上.AM :y = ---------------------------- (覧十厲 • ft P( 0 ,m *722过点M(m.n)的5塩为|:竺个吋』■静D (o,丄).由性J ■鮒 亦-2 =-2〃 •从而肖2 n 2Y 宀Q ■-+二・—^M ・ --2y D ・・••点D 是线段PO 的中点・・・・9分m+血 m -血 m -2 n(3)M (m.n).| >ny -1.1 的力|R|h|fit 3 ・(2n. un}, — >n a -1. ^(-1, 0) , F ?(1. 0),2 2Mh-f-l-m, «n)■詞-n)■记S 勺胡的史角a , 3勺晶的夬角B. ............................ 12 ;>所以cosa «cosP , f] a ・P ,从njft IMF, . MF 訂听成的文如4舟.…恂分21. ( 1«;» W: (1) ill a( )3⑵仏…4…哉说®品严当-1<片<片0乎 臥 Xf-x, >0 , 1-彳>0 ,¥<的<1. -2<為♦冷<-齿,冇《2<斗4斗怙)<-1・-1<1*)^x 2(x l *x 2)<0 ・・・・ aO-aivO-•…当-耳“ <冷 s0 时.冷-片>0 . 1 -X ; >0 . 1-x?>0. 0《冰2<乎.-V5<x, *$<0. H|n(m + 2)(1 *m)z2n *mncosa =£当0^x, <Xj <1W ・ Xj-X >0 ・ 1-)^ >0 . 1 -£>0. 1 *x l x i (x,4x 2)>0.g(卷)一g(x,)>0・\、0]卸P 1)上運增.从而a 【号■ 1)上逶堆. io 分⑶充分性;当a —晋叭有f (弓—[¥,= ■》・曽SO, 乂 f ⑴=1> aaq' +q-a = 0 . f? a,从向 a=q*q 4 卅| 2 *|||.……14 分1-A好性:半 q -ODj, a «0.当 q 社0 时.ilia -q +q“ -q? + IH+q""2 卄“成之.nj 科-1 <q'<1 从向特-l<q<l. a -y^3 .■■' 2中的结论可E 】g (x ) = •'I*-1. — f ]遥械,在【一^, 1)倉8 .川饥 ~^sg (x )v-寸战l-・・.a x)^( -1,在[ l(x) -ax'-tx-a ft不斯・故仏£,1)内 疋仔在茅心qfl|q<l ・.•.右从仙a-1 <q <U1,冇 ai- —3。
2018届中考数学上海市各区二模试卷专题汇编七【二次函数题】含答案解析
2018届中考数学上海市各区二模试卷 专题汇编七【二次函数题】宝山区、嘉定区24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知平面直角坐标系(如图7),直线的经过点和点.(1)求、的值;(2)如果抛物线经过点、,该抛物线的顶点为点,求的值; (3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.24.解:(1) ∵直线的经过点∴……………………1分∴………………………………1分∵直线的经过点∴……………………1分xOy mx y +=)0,4(-A )3,(n B m n c bx x y ++=2A B P ABP ∠sin Q mx y +=mx y +=y D DOB AQO ∠=∠Q mx y +=)0,4(-A 04=+-m 4=m mx y +=)3,(n B 34=+n 图7∴…………………………………………1分 (2)由可知点的坐标为∵抛物线经过点、 ∴∴,∴抛物线的表达式为…………………1分 ∴抛物线的顶点坐标为……………1分∴,,∴∴……………………………………1分∴∴…………………………………………1分(3)过点作轴,垂足为点,则∥轴∵, ∴△∽△1-=n B )3,1(-c bx x y ++=2A B ⎩⎨⎧=+-=+-310416c b c b 6=b 8=c c bx x y ++=2862++=x x y 862++=x x y )1,3(--P 23=AB 2=AP 52=PB 222PB BP AB =+︒=∠90PAB PB AP ABP =∠sin 1010sin =∠ABP Q x QH ⊥H QH y DOB AQO ∠=∠QBO OBD ∠=∠OBD QBO∴……………1分 ∵直线与轴的交点为点∴点的坐标为, 又,∴,……………1分 ∵∴, ∵∥轴∴∴∴ ……………………………………1分 即点的纵坐标是 又点在直线上 点的坐标为……………1分 长宁区24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)OB DBQB OB =4+=x y y D D )4,0(4=OD 10=OB 2=DB 25=QB 24=DQ 23=AB 28=AQ 24=DQ QH y AQ ADQH OD =28244=QH 8=QH Q 8Q 4+=x y Q )8,4(如图在直角坐标平面内,抛物线与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线上 ∴,解得 ( 2分)32-+=bx ax y ACD ∆32-+=bx ax y ⎩⎨⎧=-+=--033903b a b a ⎩⎨⎧-==21ba 备用图第24题图∴抛物线的表达式为,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴,,∴ ∴ ( 2分)∴(1分)(3)∵,, ∴△CAD ∽△AOB ,∴∵OA=OC , ∴∴,即 ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是,设() 过P 作PH ⊥OC ,垂足为点H ,则,①当时,由得,∴,解得, ∴(2分) ②当时,由得,322--=x x y 23=AC 52=CD 2=AD 222AD AC CD +=︒=∠90CAD .32232121=⨯⨯=⋅⋅=∆AD AC S ACD ︒=∠=∠90AOB CAD 2==AO ACBO AD OAB ACD ∠=∠︒=∠90AOC ︒=∠=∠45OCA OAC ACD OCA OAB OAC ∠+∠=∠+∠BCD BAC ∠=∠POC ∆62-=x y )62,(-t t P 30<<t t OH =t PH 26-=ABC POC ∠=∠ABC POC ∠=∠tan tan BO AOOH PH =326=-t t 56=t )518,56(1-P ACB POC ∠=∠145tan tan tan =︒=∠=∠ACB POC 1=OH PH∴,解得,∴ ( 2分) 综上得或 崇明区24.(本题满分12分,第(1)、(2)、(3)小题满分各4分) 已知抛物线经过点、、.(1)求抛物线的解析式; (2)联结AC 、BC 、AB ,求的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作交轴于点,当点在点的上方,且与相似时,求点P 的坐标.126=-t t2=t )2,2(2-P )518,56(1-P )2,2(2-P24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为,………………………1分将(,)、(,)、(,)代入,得解得………2分所以,这个二次函数的解析式为……………………………1分(2)∵(,)、(,)、(,)∴,,∴∴………………………………………………………2分∴……………………………………………2分(3)过点P作,垂足为H设,则∵(,)∴,∵∴当△APG与△ABC相似时,存在以下两种可能:1°则即∴解得………………………1分∴点的坐标为……………………………………………………1分2°则即∴解得…………………………1分∴点的坐标为……………………………………………………1分奉贤区24.(本题满分12分,每小题满分各4分)已知平面直角坐标系(如图8),抛物线为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,①求这条抛物线的表达式和顶点坐标;②求证:∠DCE=∠BCE;(2)当CB平分∠DCO时,求的值.黄浦区24.(本题满分12分)已知抛物线经过点A (1,0)和B (0,3),其顶点为D.(1)求此抛物线的表达式; (2)求△ABD 的面积;(3)设P 为该抛物线上一点,且位于抛物线对称轴 右侧,作PH ⊥对称轴,垂足为H ,若△DPH 与△AOB 相 似,求点P 的坐标.24. 解:(1)由题意得:,———————————————————(2分) 解得:,—————————————————————————(1分)所以抛物线的表达式为. ——————————————(1分) (2)由(1)得D (2,﹣1),———————————————————(1分) 作DT ⊥y 轴于点T,则△ABD 的面积=.————————(3分)2y x bx c =++013b cc =++⎧⎨=⎩43b c =-⎧⎨=⎩243y x x =-+()11124131211222⨯⨯-⨯⨯-⨯+⨯=(3)令P.————————————————(1分)由△DPH 与△AOB 相似,易知∠AOB=∠PHD=90°,所以或,————————————(2分) 解得:或,所以点P 的坐标为(5,8),.————————————————(1分)金山区24.(本题满分12分,每小题4分)平面直角坐标系xOy 中(如图8),已知抛物线经过点A (1,0)和B (3,0),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标; (2)点E 在抛物线的对称轴上,且EA=EC , 求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为 直线MN ,点Q 在直线MN 右侧的抛物线 上,∠MEQ=∠NEB ,求点Q 的坐标.()()2,432p pp p -+>243132p p p -++=-2431123p p p -++=-5p =73p =78,39⎛⎫- ⎪⎝⎭2y x bx c =++24.解:(1)∵二次函数的图像经过点A (1,0)和B (3,0),∴,解得:,.……………………………(2分)∴这条抛物线的表达式是…………………………………(1分) 顶点P 的坐标是(2,-1).………………………………………………(1分)(2)抛物线的对称轴是直线,设点E 的坐标是(2,m ).…(1分)根据题意得:m=2,…(2分)∴点E 的坐标为(2,2).…………………………………………………(1分)(3)解法一:设点Q 的坐标为,记MN 与x 轴相交于点F . 作QD ⊥MN ,垂足为D ,则,………………………(1分) ∵∠QDE=∠BFE=90°,∠QED=∠BEF ,∴△QDE ∽△BFE ,…………………(1分)∴,∴,解得(不合题意,舍去),.……………………………(1分) ∴,点E 的坐标为(5,8).…………………………………………(1分) 解法二:记MN 与x 轴相交于点F .联结AE ,延长AE 交抛物线于点Q ,2y x bx c =++10930b c b c ++=⎧⎨++=⎩4b =-3c =243y x x =-+243y x x =-+2x ==2(,43)t t t -+2DQ t =-2243241DE t t t t =-+-=-+DQ DEBF EF =224112t t t --+=11t =25t =5t =∵AE=BE , EF ⊥AB ,∴∠AEF=∠NEB ,又∵∠AEF=∠MEQ ,∴∠QEM=∠NEB ,………………………………(1分)点Q 是所求的点,设点Q 的坐标为, 作QH ⊥x 轴,垂足为H ,则QH=,OH=t ,AH=t-1,∵EF ⊥x 轴,∴EF ∥QH ,∴,∴,………(1分)解得(不合题意,舍去),.……………………………………(1分) ∴,点E 的坐标为(5,8).…………………………………………(1分) 静安区24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy 中,已知点B (8,0)和点C (9,).抛物线(a ,c 是常数,a ≠0)经过点B 、C ,且与x 轴的另一交点为A .对称轴上有一点M ,满足MA=MC . (1) 求这条抛物线的表达式; (2) 求四边形ABCM 的面积;(3) 如果坐标系内有一点D ,满足四边形ABCD且AD//BC ,求点D 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题4解:(1)由题意得:抛物线对称轴,即. …………(1分)点B (8,0)关于对称轴的对称点为点A (0,0)∴, …………(1分)2(,43)t t t -+243t t -+EF AF QH AH =221431t t t =-+-11t =25t =5t =3-c ax ax y +-=82a ax 28-=4=x 0=c将C (9,-3)代入,得…………………………(1分)∴抛物线的表达式:…………………………(1分) (2)∵点M 在对称轴上,∴可设M (4,y )又∵MA=MC ,即∴, 解得y=-3, ∴M (4,-3) …………………(2分)∵MC//AB 且MC ≠AB, ∴四边形ABCM 为梯形,, AB=8,MC=5,AB 边上的高h = yM = 3∴(3) 将点B (8,0)和点C (9,﹣3)代入可得,解得 由题意得,∵AD//BC,∴,…(1分)又∵AD 过(0,0),DC=AB=8, 设D(x,-3x), …………………………(1分)解得(不合题意,舍去),…………………………(1分)∴∴点D 的坐标.……………………(1分)axax y 82-=31-=a xx y 38312+-=22MC MA =2222)3(54++=+y y 2393)58(21)(21=⨯+⨯=⨯+=MH MC AB S bkx y BC +=⎩⎨⎧-=+=+3908b k b k ⎩⎨⎧=-=243b k 3-=BC k 3-=AD k x y AD 3-=2228)33()9(=+-+-x x 11=x 5132=x 5393-=-=x y )539,513(-闵行区24.(本题满分12分,其中每小题各4分) 如图,已知在平面直角坐标系xOy 中,抛物线点A 和点B (1,0),与y 轴相交于点C (0,3(1)求抛物线的解析式和顶点D 的坐标; (2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为 底的等腰三角形,求Q 点的坐标.24.解:(1)把B (1,0)和C (0,3)代入中,得,解得.……………………………………(2分)∴抛物线的解析式是:.……………………………(1分)∴顶点坐标D (-1,4).……………………………………………(1分)(2)令,则,,,∴A (-3,0)∴,∴∠CAO=∠OCA .…………………………………(1分)22y ax x c=-+22y ax x c=-+9603a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x =--+0y =2230x x --+=13x =-21x =3OA OC ==(第24题图)在中,.………………………………(1分)∵,,,∴,;∴,是直角三角形且,∴,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC=∠OCB .…………………(1分) ∴,即.……………………………………………………(1分)(3)令,且满足,,0),,4)∵是以AD 为底的等腰三角形,∴,即,化简得:.………………………………………………(1分)由,……………………………………………………(1分)解得,.Rt BOC ∆1tan 3OB OCB OC ∠==AC=DC=AD =2220AC DC +=220AD =222AC DC AD +=ACD ∆90ACD ∠=1tan 3DC DAC AC ∠==DAC CAO BCO OCA ∠+∠=∠+∠DAB ACB ∠=∠(Q x )y 223y x x =--+(3A -(1D -ADQ ∆22QD QA =2222(3)(1)(4)x y x y ++=++-220x y -+=222023x y y x x -+=⎧⎨=--+⎩11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点Q 的坐标是,.…(2分) 普陀区24.(本题满分12分) 如图10,在平面直角坐标系中,直线与轴、轴分别相交于点、,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求和的值;(2)点是轴上一点,且以点、、为顶点的三角形与△相似,求点的坐标;(3)在抛物线上是否存在点:它关于直线的对称点恰好在轴上.如果存在,直接写出点的坐标,如果不存在,试说明理由. 24.解:(1) 由直线经过点,可得. (1分)由抛物线的对称轴是直线,可得. (1分)⎝⎭⎝⎭图10 xy1 1O∵直线与轴、轴分别相交于点、,∴点的坐标是,点的坐标是. (2分)∵抛物线的顶点是点,∴点的坐标是. (1分)∵点是轴上一点,∴设点的坐标是.∵△BCG 与△BCD 相似,又由题意知,,∴△BCG 与△相似有两种可能情况: (1分)①如果,那么,解得,∴点的坐标是. (1分)②如果,那么,解得,∴点的坐标是. (1分)综上所述,符合要求的点有两个,其坐标分别是和 .(3)点的坐标是或. (2分+2分)青浦区24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处.23y ax bx =++2x =(1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .24.解:(1)∵顶点C 在直线上,∴,∴. (1分)将A (3,0)代入,得, (1分)解得,. (1分)∴抛物线的解析式为. (1分)(2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵=,∴C (2,). (1分)∵,∴∠MAC=45°,∴∠ODA=45°, ∴.(1分)∵抛物线与y 轴交于点B ,∴B (0,),∴.(1分)2x =22=-=bx a 4=-b a 23y ax bx =++933=0++a b 1=a 4=-b 243=-+y x x 243=-+y x x ()221=--x 1-1==CM MA 3==OD OA 243=-+y x x 36=BD∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,∴. (1分)(3)联结CE.∵四边形是平行四边形,∴点是对角线与的交点, 即 .(i )当CE 为矩形的一边时,过点C 作,交轴于点,设点,在中,,即,解得 ,∴点 (1分)同理,得点(1分)(ii )当CE 为矩形的对角线时,以点为圆心,长为半径画弧分别交轴于点、,可得、(2分)综上所述:满足条件的点有,,),.松江区24.(本题满分12分,每小题各4分)如图,已知抛物线y=ax2+bx 的顶点为C (1,),P 是抛物线上位于第一象限内的一点,直线OP 交该抛物线对称轴于点B ,直线CP 交x 轴于点A . (1)求该抛物线的表达式;(2)如果点P 的横坐标为m ,试用m 的代数式表示线段BC 的长; (3)如果△ABP 的面积等于△ABC 的面积,求点P 坐标.12262122==⨯⨯⋅=⨯=BCDEBCDSSBD CN BCDE O CE BD OE OC ==1CF CE⊥x 1F 1F a (,0)1Rt OCF 22211=OF OC CF +22(2)5a a =-+52a =152F (,0)252F (-,0)O OC x 3F 4F 34=OF OF OC ==3F )4F ()152F (,0)252F (-,0)3F )4F ()1-24.(本题满分12分,每小题各4分) 解:(1)∵抛物线y=ax2+bx 的顶点为C (1,) ∴ .......................................2分 解得: .......................................1分 ∴抛物线的表达式为:y=x2-2x ; (1)(2)∵点P 的横坐标为m ,∴P 的纵坐标为:m2-2m……………………………1分令BC 与x 轴交点为M ,过点P 作PN ⊥x 轴,垂足为点N∵P 是抛物线上位于第一象限内的一点,∴PN= m2-2m ,ON=m ,O M=1由得………………………1分∴ BM=m-2…………………………………………………1分∵ 点C 的坐标为(1,),∴ BC= m-2+1=m-1………………………………………1分(3)令P(t ,t2-2t) ………………………………………………1分△ABP 的面积等于△ABC 的面积∴AC=AP1-112a b b a +=-⎧⎪⎨-=⎪⎩12a b =⎧⎨=-⎩PN BM ON OM =221m m BMm -=1-(第24题图)过点P 作PQ ⊥BC 交BC 于点Q∴CM=MQ=1∴t2-2t=1 …………………………………………………1分∴(舍去)………………………………1分∴ P 的坐标为()……………………………………1分徐汇区24. 如图,已知直线与轴、轴分别交于点、,抛物线过点、,且与轴交于另一个点.(1)求该抛物线的表达式;(2)点是线段上一点,过点作直线∥轴交该抛物线于点,当四边形是平行四边形时,求它的面积;(3)联结,设点是该抛物线上的一点,且满足,求点的坐标.1t =1t =1122y x =-+x y B C 212y x bx c=-++B C x A M BC M l y N OMNC AC D DBA CAO ∠=∠D杨浦区24、(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图8,在平面直角坐标系中,抛物线于X轴交于点A、B,于y轴交于点C,直线经过点A、C,点P为抛物线上位于直线AC上方的一个动点。
2018年上海市中考数学试题及答案解析(含答案解析)-精校.doc
2018年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2= .9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB 水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M 在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市虹口区中考数学二模试卷
一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]
1.(4分)下列实数中,有理数是()
A.B.C.πD.0
2.(4分)如果关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k的取值范围是()
A.k<1B.k<1且k≠0C.k>1D.k>1且k≠0.
3.(4分)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2.
4.(4分)如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为()
A.0.4B.0.36C.0.3D.0.24
5.(4分)数学课上,小明进行了如下的尺规作图(如图所示):
(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;
(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;
(3)作射线OC交AB边于点P.
那么小明所求作的线段OP是△AOB的()
A.一条中线B.一条高C.一条角平分线D.不确定
6.(4分)如图,在矩形ABCD中,点E是CD的中点,联结B E,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是()。