高中数学曲线轨迹方程的求法

高中数学曲线轨迹方程的求法
高中数学曲线轨迹方程的求法

题目高中数学复习专题讲座曲线的轨迹方程的求法 高考要求

求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 重难点归纳

求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程

(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求

(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程

(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程

求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解

例1如图所示,已知P (4,0)是圆x 2+y 2

=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形

APBQ 的顶点Q 的轨迹方程

命题意图 本题主要考查利用“相关点代入法”求

曲线的轨迹方程

知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程

错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方

程,若学生思考不深刻,发现不了问题的实质,很难解决此题

技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程

解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2

-|OR |2=36-(x 2+y 2)

又|AR |=|PR |=22)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2

),即x 2+y 2-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2

,241+=

+y y x , 代入方程x 2+y 2-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程

例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线

命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论

技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系

解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a

由OM ⊥AB ,得m =-y

x

由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0

所以y 1y 2=-4pa , x 1x 2=22

122

()(4)

y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以2

44a pa a p =?= 故x =my +4p ,用m =-

y

x

代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

解法二 设OA 的方程为y kx =,代入y 2=4px 得222(

,)p p A k k

则OB 的方程为1

y x k =-

,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2

(2)1k

y x p k

=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)

故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,

代入y 2=4px 得222(,)p p A k k

则OB 的方程为1

y x k

=-,代入y 2=4px 得2(2,2)B pk pk -

由OM ⊥AB ,得

M 既在以OA 为直径的圆 22

2220p p x y x y k k

+-

-=……①上, 又在以OB 为直径的圆 22

2

220x y pk x pky +-+=……②上(O 点

除外),

①2

k ?+②得 x 2+y 2-4px =0(x ≠0)

故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力

知识依托 圆锥曲线的定义,求两曲线的交点

错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键

技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程

解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切

建立如图所示的坐标系,并设⊙P 的半径为r ,则

|P A |+|PO |=(1+r)+(1 5-r)=2 5

∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,

其方程为 3

225)41(162

2y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为

(x -21)2+3

4y 2

=1 ② 由①、②可解得)14

12

,149(),1412,149(-Q P ,

∴r =

7

3

)1412()149(2322=+- 故所求圆柱的直径为

7

6

cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线

解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点

则由题设,得|||

|MB MA =λ,坐标代入,得

2

2

22)()(y

a x y a x +-++=λ,化简得

(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0

(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)

(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+

2

21)

1(2λ

-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|

1|22λ-λ

a 为半径的圆

学生巩固练习

1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )

A 圆

B 椭圆

C 双曲线的一支

D 抛物线

2 设A 1、A 2是椭圆4

92

2y x +

=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )

A 14

92

2=+y x

B 14

92

2=+x y

C 14

92

2=-y x

D 14

92

2=-x y

3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2

a

,0),且满足条

件sin C -sin B =2

1

sin A ,则动点A 的轨迹方程为_________

4 高为

5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________ 5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,

设这两切线交于点P ,求点P 的轨迹方程

6 双曲线22

22b

y a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,

引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程

7 已知双曲线22

22n

y m x -=1(m >0,n >0)的顶点

为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q

(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率

8 已知椭圆22

22b

y a x +=1(a >b >0),点P 为其上

一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R

(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;

(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲

线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案

1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,

即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A

2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)

∵A 1、P 1、P 共线,∴

300+=

--x y

x x y y ∵A 2、P 2、P 共线,∴

3

00-=

-+x y

x x y y 解得x 0=14

9,149,3,92

22

02

00=-=-=y x y x x y y x 即代入得

答案 C

3 解析 由sin C -sin B =21sin A ,得c -b =2

1

a ,

∴应为双曲线一支,且实轴长为2a

,故方程为)4(1316162

222a x a y a x >=-

答案 )4(1316162

222a

x a y a x >=-

4 解析 设P (x ,y ),依题意有

2

2

2

2)5(3)5(5y

x y

x +-=

++,化简得P

点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=0

5 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |

=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立

坐标系,可求得动点P 的轨迹方程为72

812

2y x +

=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)

由条件?????-=±≠-=???????-=-?--=+?+y a x y a x x x a

x y a x y a x y a x y 2

2000000

0)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2

即b 2

(-x 2

)-a 2

(y

a x 22-)2=a 2

b 2

化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )

7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-

m ,0),A 2(m ,0),则A 1P 的方程为 y =

)(11

m x m

x y ++ ①

A 2Q 的方程为 y =-

)(11

m x m

x y --

①×②得 y 2=-

)(222

2

12

1

m x m

x y --

又因点P 在双曲线上,故).(,122

1222122

1221m x m n y n y m x -==-即

代入③并整理得22

22n

y m x +=1 此即为M 的轨迹方程

(2)当m ≠n 时,M 的轨迹方程是椭圆

(ⅰ)当m >n 时,焦点坐标为(±2

2n m -,0),准线方程为x =±

2

2

2n

m m -,

离心率e =m

n m 2

2-;

(ⅱ)当m <n 时,焦点坐标为(0,±2

2

n m -),准线方程为y =±

2

2

2m

n n -,

离心率e

8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|

又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)

|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2

又???

???

?=+=221

010y y c x x 得x 1=2x 0-c ,y 1=2y 0

∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)

(2)如右图,∵S △AOB =2

1|OA |·|OB |·sin AOB =22

a sin AOB

当∠AOB =90°时,S △AOB 最大值为2

1

a 2

此时弦心距|OC

在Rt △AOC 中,∠AOC =45°,

.3

3

,2245cos 1|2|||||2±=∴=?=+=∴

k k a ak OA OC 课前后备注

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

【高中数学选择性必修】求曲线的方程

求曲线的方程 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.动点P到点(-1,2)的距离是3,则动点P的轨迹方程为( ) A.(x+1)2+(y-2)2=9 B.(x-1)2+(y+2)2=9 C.(x+1)2+(y-2)2=3 D.(x-1)2+(y+2)2=3 2.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( ) A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 3.等腰三角形ABC底边两端点是A(-错误!未找到引用源。,0),B(错误!未找到引用源。,0),顶点C的轨迹是( ) A.一条直线 B.一条直线去掉一点 C.一个点 D.两个点 4.已知两定点A(-2,0),B(1,0),如果动点P满足条件|PA|=2|PB|,则动点P的轨迹所围成的图形的面积等于( ) A.9π B.8π C.4π D.π 5.在平面直角坐标系中,已知A(3,1),B(-1,3),若点C满足错误!未找到引用源。=α错误!未找到引用源。+β错误!未找到引用源。,其中α,β∈R,且α+β=1,O 为坐标原点,则点C的轨迹为( ) A.射线 B.直线 C.圆 D.线段 二、填空题(每小题8分,共24分) 6.直角坐标平面xOy中,若定点A(1,2)与动点P(x,y)满足错误!未找到引用

源。·错误!未找到引用源。=4,则点P的轨迹方程是. 7.(2013·珠海高二检测)动点P与平面上两定点A(-错误!未找到引用源。,0),B(错误!未找到引用源。,0)连线的斜率的积为定值-错误!未找到引用源。,则动点P的轨迹方程为. 8.(2013·揭阳高二检测)已知直线l:错误!未找到引用源。+错误!未找到引用源。=1,M是直线l上的一个动点,过点M作x轴和y轴的垂线,垂足分别为A,B,点P 是线段AB的靠近点A的一个三等分点,点P的轨迹方程为. 三、解答题(9题,10题14分,11题18分) 9.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个顶点C的轨迹方程,试说明它的轨迹是什么? 10.已知A,B分别是直线y=错误!未找到引用源。x和y=-错误!未找到引用源。x 上的两个动点,线段AB的长为2错误!未找到引用源。,P是AB的中点.求动点P 的轨迹C的方程. 11.(能力挑战题)在边长为1的正方形ABCD中,边AB,BC上分别有一个动点Q,R,且|BQ|=|CR|.求直线AR与DQ的交点P的轨迹方程. 答案解析 1.【解析】选A.由条件可知,点P的轨迹是以(-1,2)为圆心,以3为半径的圆,

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

求曲线的方程教案

2.1.2求曲线的方程 一、教学目标: 1.知识技能目标: (1)理解坐标法的作用和意义. (2)掌握求曲线方程的常用方法和步骤,能根据条件,选择适当的坐标系和方法求 (1 (2 (3. (1 (2 难点:(1)如何根据条件建立恰当坐标系; (2)如何从形成曲线的几何条件中寻找等量关系. (3)如何选择恰当的方法将几何等量关系转化为曲线的方程. 三、教学方法:探究发现教学法和多媒体辅助教学 四、课型:新授课.

五、教学过程: Ⅰ.复习回顾: 师:上一节,我们已经建立了曲线的方程.方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)所满足的方程f(x,y)=0表示曲线,通过研究方 例1设

x+2y-7=0① 我们证明方程①是线段AB的垂直平分线的方程. (1)由求方程的过程可知,垂直平分线上每一点的坐标都是方程①解; (2)设点M1的坐标(x1,y1)是方程①的解,即x+2y1-7=0x1=7-2y1 点M1到A、B的距离分别是 (1 方程. 练习:已知点M与x轴的距离和点M与点F(0,4)的距离相等,求点M的轨迹方程. 师:下面我们通过例子来进一步熟悉求曲线轨迹的一般步骤. 例2已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x 轴的距离的差都是2,求这条曲线的方程.

解:如图所示,设点M (x,y )是曲线上任意一点,MB ⊥x 轴,垂足是B ,那么点 M 属于集合}.2|||| {=-=MB MA M P 由距离公式,点M 适合的条件可表示为: 2)2(22=--+y y x ① 将①式移项后再两边平方,得 22221AM 与 4例 3.略. 练习: 思考题:课本第37页:练习第3题. 本题有多种思路,可让学生先分组讨论,然后每组派代表发言,可以学生点评,教 师补充. Y (). ,0,3122的轨迹方程求连线的中点为和定点上移动,在曲线动点M M A M y x B =+

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知 识推出等量关系,求方程时可用直接法。 例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB 中点P的轨迹方程。 /解:设点P的坐标为(x, y),\ 则A(2x,0),B(0,2y),由|AB|=2a 得\、(2x 0)2(0 2y)2=2a 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之 差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M (2,0)的距离等于这点到直 线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则/ |x+4|- (x 2)2 y2=2

当x > -4 时,x+4- (x 2)2 y2=2 化简得

当时,y2=8x 当x V -4 时,-X-4- .. (x 2)2 y2=2 无解 所以P点轨迹是抛物线y2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、代入法 如果轨迹点P(x,y)依赖于另一动点Q(a, b),而Q(a, b)又在某已知曲线上,则可先列出关于x、y、a、b的方程组,利用x、y表示出a、b,把a、b代入已知曲线方程便得动点P的轨迹方程,此法称为代入法。 2 2 例3 P 在以F1、F2为焦点的双曲线16七1上运动,则厶F1F2P 、k2 (x2 y2) ? . x2 y2=12 ??? k (x2+y2) =12,又点M在已知圆上, ??? 13k2x2+13k2y2-15kx-36ky=0 由上述两式消去x2+y2得 5x+12y-52=0 点评:用参数法求轨迹,设参尽量要少,消参较易。 五、交轨法 若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

2.1.2求曲线的方程(2)(教学设计)

2.1.2求曲线的方程(2)(教学设计) 教学目标: 知识目标:1.根据条件,求较复杂的曲线方程. 2.求曲线的交点. 3.曲线的交点与方程组解的关系. 能力目标: 1.进一步提高应用“五步”法求曲线方程的能力. 2.会求曲线交点坐标,通过曲线方程讨论曲线性质. 情感目标: 1.渗透数形结合思想. 2.培养学生的辨证思维. 教学重点 1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0. 2.求曲线交点问题转化为方程组的解的问题. 教学难点 1. 寻找“几何关系”. 2. 转化为“动点坐标”关系. 教学方法 启发诱导式教学法. 启发诱导学生联想新旧知识点的联系,从而发现解决问题的途径. 教学过程 一、复习回顾: 求曲线的方程(轨迹方程),一般有下面几个步骤: 1.建立适当的坐标系,设曲线上任一点M 的坐标(,)x y ; 2.写出适合条件P 的几何点集:{} ()P M P M =; 3.用坐标表示条件()P M ,列出方程(,)0f x y =; 4.化简方程(,)0f x y =为最简形式; 5.证明(查漏除杂). 说明:回顾求简单曲线方程的一般步骤,阐明步骤(2)、(3)为关键步骤,说明(5)步不要求书面表达,但思维一定要到位,注意等价性即可. 二、师生互动,新课讲解: (一)、直接法: 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1:(1)求和定圆x 2+y 2=R 2的圆周的距离等于R 的动点P 的轨迹方程; (2)过点A(a ,o)作圆O ∶x 2+y 2=R 2(a >R >o)的割线,求割线被圆O 截得弦的中点的轨迹. 对(1)分析: 动点P 的轨迹是不知道的,不能考查其几何特征,但是给出了动点P 的运动规律:|OP|=2R 或|OP|=0.

最全地圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (3) 一.直接法 (5) 二. 相关点法 (10) 三. 几何法 (16) 四. 参数法 (19) 五. 交轨法 (22)

六. 定义法 (25)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ , 求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0, 设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=4 1 (x ≠0),即 点P 的轨迹方程是(x -21)2+y 2=4 1 (0<x ≤1)。 二.定义法 ∵∠OPC =90°,∴动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原 点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=4 1 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0, ∴x ≠0,即(x - 21)2+y 2=4 1 (0<x ≤1)

四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12 2 21k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1(0<x ≤1)

高中数学轨迹求法

一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时 1.三角形ABC 中, ,且,则三角形ABC 面积最大值为__________. 2、 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程? 3、一动点到y 轴距离比到点()2,0的距离小2,则此动点的轨迹方程为 .1. 4.已知()1,0A -, ()2,0B ,动点(),M x y 满足 1 2 MA MB = .设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值; 5、已知曲线C 是动点M 到两个定点()0,0O 、()3,0A 距离之比为1 2 的点的轨迹. (1)求曲线C 的方程; (2)求过点()1,3N 且与曲线C 相切的直线方程. 6.一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上且 4AM MB =u u u u r u u u r ,则点M 的轨迹方程是( ) A .221664x y += B .22 1664x y += C .22168x y += D .22 168x y += B 7.已知坐标平面上一点M (x ,y )与两个定点M 1(26,1),M 2(2,1),且 =5. (Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形; (Ⅱ)记(Ⅰ)中的轨迹为C ,过点M (﹣2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程. 1、【解析】建立如图所示的平面直角坐标系,则: ,设点A 的坐标为 ,由题意有: , 整理可得: ,结合三角形 的性质可得点C 的轨迹方程为以 为圆 心, 为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为

高中数学《圆锥曲线方程》重要公式

高中数学《圆锥曲线方程》重要公式 1.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -= 2.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=? . 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00 221x y a b ? +<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200 22 1x y a b ? +>. 4. 椭圆的切线方程 (1)椭圆22 221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=. (3)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是 00221x x y y a b +=. 5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00 221x y a b ? ->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200 2 21x y a b ? -<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.

求曲线轨迹方程专题(2)

轨 迹 方 程 问 题 常见的有六种求轨迹方程的方法: ①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程; ③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程; ⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程; 1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围. 例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点 (,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状; 解:因为a b ⊥,(,1)a mx y =+,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=. 当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程

P M N 例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点) ,使得PM =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心 分 别 为 12(2,0),(2,0) O O -.设 (,) P x y , 则,同理 222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++- ∵PM =, ∴2222(2)12[(2)1]x y x y ++-=-+-, 即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题 ①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程: 例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程; (2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ?的重心G 的轨迹方程。 解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y. 2222 A , 1 4440,+=4,(+)2, 1, 2 1 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=?=?+=+?=+? 1122212122 (2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种 方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- 2(y + -=2a 2 0( )0 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2

当x ≥-4时,x+4-22)2(y x +-=2化简得 当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0

相关文档
最新文档