2016版优化方案高一数学人教版必修三习题第三章概率3.3.1训练案
高中数学人教A版必修三课时习题:第3章 概率 3.3 习题课含答案

习题课 几何概型的应用课时目标巩固几何概型的有关知识.能解决随机数与几何概型的问题.课时作业一、选择题1.关于几何概型和古典概型的区别,正确的说法是( )A .几何概型中基本事件有有限个,而古典概型中基本事件有无限个B .几何概型中基本事件有无限个,而古典概型中基本事件有有限个C .几何概型中每个基本事件出现的可能性不相等,而古典概型中每个基本事件出现的可能性相等D .几何概型中每个基本事件出现的可能性相等,而古典概型中每个基本事件出现的可能性不相等答案:B解析:几何概型和古典概型的相同点是每个基本事件出现的可能性相等,区别是几何概型中基本事件有无限个,而古典概型中基本事件有有限个,故选B. 2.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23 D .无法计算 答案:B解析:由几何概率公式知,S 阴S 矩=23,所以S 阴=23S 矩=83.3.如图所示,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率是( )A.13B.14C.15D.16 答案:D解析:射线OA 落在直角坐标系的每个位置可能性是一样的,这是与角度有关的几何概型问题.因为周角是360°,∠xOT =60°,故令“射线OA 落在∠xOT 内”为事件A ,其概率为P (A )=60°360°=16.故选D.4.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案:C 解析:如图所示在边AB 上任取一点P ,事件“△PBC 的面积大于S 4”等价于事件“|BP ||BA |>14”.因为△ABC 与△PBC 是等高的,即P (△PBC 的面积大于S 4)=|BP ||BA |=34.5.一个路口的红绿灯,红灯亮的时间为30 s ,黄灯亮的时间为5 s ,绿灯亮的时间为40 s ,当你到达路口时,事件A 为“看见绿灯”,事件B 为“看见黄灯”,事件C 为“看见的不是绿灯”的概率大小关系为( )A .P (A )>P (B )>P (C ) B .P (A )>P (C )>P (B ) C .P (C )>P (B )>P (A )D .P (C )>P (A )>P (B ) 答案:B解析:在75 s 内的每一时刻到达路口的机会是相同的,属于几何概型.则P (A )=绿灯亮的时间全部时间=4075=815,P (B )=黄灯亮的时间全部时间=575=115.P (C )=不是绿灯亮的时间全部时间=1-绿灯亮的时间全部时间=1-815=715.6.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a2的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是( )A .1-π8 B.π4C .1-π4 D .与a 的值有关联答案:C解析:图中阴影部分的面积为:a 2-π×(a 2)2,则它击中阴影部分的概率是:P =a 2-π(a 2)2a 2=1-π4. 二、填空题7.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案:13解析:因为在∠DAB 内任作射线AP ,则等可能基本事件为“∠DAB 内作射线AP ”,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,区域h 为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB∠DAB=30°90°=13. 8.一个路口的信号灯,红灯的时间间隔为30秒,绿灯的时间间隔为40秒,如果你到达路口时,遇到红灯的概率为25,那么黄灯亮的时间间隔为________秒.答案:5解析:设黄灯亮的时间间隔为t 秒.P {遇见红灯}=25=3030+40+t 解得t =5.9.在半径为1的圆上随机取一条弦,则弦长超过圆内接等边三角形的边长的概率是________.答案:13解析:在圆上随机取两点,可以看成先取定一点后,再随机地取另一点.如图所示.B 为定点,△BCD 是圆内接等边三角形,则当BE 的弦端点E 取在劣弧»CD上时,有|BE |>|BC |.设事件A ={弦长超过圆内接等边三角形的边长},全部试验结果构成的区域长度是圆周长,事件A 构成的区域长度是劣弧»CD ,又劣弧»CD 的长是圆周长的13,则P (A )=13.三、解答题10.射箭比赛的箭靶涂有五个彩色的发环,从外向内为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:把射中靶面看成一次试验,其结果可以是靶面直径为122cm 的大圆内的任意一点,有无限个,属于几何概型.设射中黄心为事件A ,全部结果构成的区域面积是14×π×1222cm 2,事件A 的结果构成的区域面积是14×π×12.22cm 2,则P (A )=14×π×12.2214×π×1222=0.01,即射中黄心的概率为0.01.11.如图在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解:可先找到AM =AC 时∠ACM 的度数,再找出相应的区域角,利用几何概型的概率公式求解.这是几何概型问题且射线CM 在∠ACB 内部 在AB 上取AC ′=AC , 则∠ACC ′=180°-45°2=67.5°. 设A ={在∠ACB 内部作一条射线CM , 与线段AB 交于点M ,AM ∠AC }. 则所有可能结果的区域角度为90°, 事件A 的区域角度为67.5°,∴P (A )=67.590=34.能力提升12.利用计算机随机模拟方法计算y =x 2与y =4所围成的区域Ω的面积时,可以先运行以下算法步骤:第一步:利用计算机产生两个在0~1区间内的均匀随机数a ,b ;第二步:对随机数a ,b 实施变换:⎩⎪⎨⎪⎧a 1=4a -2,b 1=4b ,得到点A (a 1,b 1);第三步:判断点A (a 1,b 1)的坐标是否满足b 1<a 21;第四步:累计所产生的点A 的个数m 及满足b 1<a 21的点A 的个数n ;第五步:判断m 是否小于M (一个设定的数).若是,则回到第一步,否则,输出n 并终止算法.若设定的M =100,且输出的n =34,则据此用随机模拟方法可以估计出区域Ω的面积为________(保留小数点后两位数字).答案:10.56。
2015-2016年最新审定人教A版高中数学必修三:3.3.1《几何概型及其概率计算》ppt(优秀课件)

跟 踪 训 练
1.公共汽车站每隔5 min有一辆汽车通过,乘
客到达汽车站的任一时刻是等可能的,求乘客候车 不超过3 min的概率.
解析:设 A=“候车时间不超过 3 min”.x 表示乘客来 到车站的时刻,那么每一个试验结果可表示为 x,假定乘客 到达车站后开来一辆公共汽车的时刻为 t,据题意,乘客必 然在(t-5,t]内来到车站,故 Ω ={x|t-5<x≤t},欲乘 客候车时间不超过 3 min,必有 t-3≤x≤t,所以 A={x|t -3≤x≤t}, A的度量 3 所以 P(A)= = =0.6. Ω 的度量 5 所以乘客候车时间不超过 3 min 的概率为 0.6.
(2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少? 解析:投中正方形木板上每一点(投中线上或没 投中不算)都是一个基本事件,这一点可以是正方形 木板上任意一点,因而基本事件有无限多个,且每个 基本事件发生的可能性都相等.所以,投中某一部分 的概率只与这部分的几何度量(面积)有关,这符合几 何概型的条件.
栏 目 链 接
题型一 与长度、角度有关的几何概型
例1 (1)右图有两个转盘,转盘上每个扇形的 面积都相等,甲、乙两人玩转盘游戏,规定当指针
栏 目 链 接
指向A区域(阴影部分)时,甲获胜,否则乙获胜,在
两种情形下甲获胜的概率分别是多少? (2)取一根长度为3米的绳子,拉直后在任意位 置剪断,求剪得两段的长都不小于1米的概率.
栏 目 链 接
A.0 B.0.002 C.0.004 D.1 3.在区间(1,3)内的所有实数中,随机取一个实数 x,则 这个实数是不等式 2x-5<0 的解的概率为( A ) 3 1 1 2 A. B. C. D. 4 2 3 3
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
2016年秋高中数学(人教A版必修三)课件:第三章 概率 3.3.1

第九页,编辑于星期五:二十三点 十五分。
第十页,编辑于星期五:二十三点 十五分。
第十一页,编辑于星期五:二十三点 十五分。
第十二页,编辑于星期五:二十三点 十五分。
第十三页,编辑于星期五:二十三点 十五分。
第十四页,编辑于星期五:二十三点 十五分。
第十五页,编辑于星期五:二十三点 十五分。
第三十七页,编辑于星期五:二十三点 十五分。
第三十八页,编辑于星期五:二十三点 十五分。
第三十九页,编辑于星期五:二十三点 十五分。
第四十页,编辑于星期五:二十三点 十五分。
第四十一页,编辑于星期五:二十三点 十五分。
第四十二页,编辑于星期五:二十三点 十五分。
第四十三页,编辑于星期五:二十三点 十五分。
第一页,编辑于星期五:二十三点 十五分。
第二页,编辑于星期五:二十三点 十五分。
第三页,编辑于星期五:二十三点 十五分。
第四页,编辑于星期五:二十三点 十五分。
ห้องสมุดไป่ตู้
第五页,编辑于星期五:二十三点 十五分。
第六页,编辑于星期五:二十三点 十五分。
第七页,编辑于星期五:二十三点 十五分。
第八页,编辑于星期五:二十三点 十五分。
第十六页,编辑于星期五:二十三点 十五分。
第十七页,编辑于星期五:二十三点 十五分。
第十八页,编辑于星期五:二十三点 十五分。
第十九页,编辑于星期五:二十三点 十五分。
第二十页,编辑于星期五:二十三点 十五分。
第二十一页,编辑于星期五:二十三点 十五分。
第二十二页,编辑于星期五:二十三点 十五分。
第三十页,编辑于星期五:二十三点 十五分。
第三十一页,编辑于星期五:二十三点 十五分。
2016-2017学年高中数学人教A版必修三 第三章 概率 3.1.3

上一页
返回首页
下一页
第八页,编辑于星期五:十六点 十一分。
1.判断(正确的打“√”,错误的打“×”) (1)互斥事件一定对立.( ) (2)对立事件一定互斥.( ) (3)互斥事件不一定对立.( ) (4)事件 A 与 B 的和事件的概率一定大于事件 A 的概率.( ) (5)事件 A 与 B 互斥,则有 P(A)=1-P(B).( ) (6)若 P(A)+P(B)=1,则事件 A 与事件 B 一定是对立事件.( ) 【答案】 (1)× (2)√ (3)√ (4)× (5)× (6)×
上一页
返回首页
下一页
第二十七页,编辑于星期五:十六点 十一分。
某射手在一次射击训练中, 射中 10 环,9 环,8 环,7 环的概率分别为 0.21,0.23,0.25,0.28, 计算这个射手在一次射击中: (1)射中 10 环或 7 环的概率; (2)不够 7 环的概率.
【精彩点拨】 先设出事件,判断是否互斥或对立,然后再使用概率 公式求解.
[再练一题] 1.某小组有 3 名男生和 2 名女生,从中任选 2 名同学参加演讲比赛, 判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件: (1)“恰有 1 名男生”与“恰有 2 名男生”; (2)“至少有 1 名男生”与“全是男生”; (3)“至少有 1 名男生”与“全是女生”; (4)“至少有一名男生”与“至少有一名女生”.
同时抛掷两枚硬币,向上面都是正面为事件 M,向上面至少有一枚
是正面为事件 N,则有( )
A.M⊆N
B.M⊇N
C.M=N
D.M<N
【解析】 事件 N 包含两种结果:向上面都是正面或向上面是一正一
反.则当 M 发生时,事件 N 一定发生,则有 M⊆N.故选 A.
高中数学人教A版必修三 第三章《概率》 3.1.3 随机事件的概率 概率的基本性质

解析答案
一题多解
求复杂事件的概率
玻璃盒里装有红球、黑球、白球、绿球共 12 个,从中任取 1 球,
例4
设事件 A 为“取出 1 个红球”,事件 B 为“取出 1 个黑球”,事件 C 为 5 “取出 1 个白球”,事件 D 为“取出 1 个绿球”.已知 P(A)=12,P(B) 1 1 1 =3,P(C)=6,P(D)=12.
若A∩B为不可能事件,A∪B为必然事件,那么称事 件A与事件B互为对立事件 A∩B=∅,A∪B=Ω
A的对立事件一般记作
思考
(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出
现的点数为奇数},事件A与事件B应有怎样的关系?
答 因为1为奇数,所以A⊆B.
(2)判断两个事件是对立事件的条件是什么?
事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;
⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为( C )
A.0
解析
B.1
C.2
D.3
对立必互斥,互斥不一定对立,∴②③正确,①错;
又当A∪B=A时,P(A∪B)=P(A),∴④错; 只有事件A与B为对立事件时,才有P(A)=1-P(B),∴⑤错.
理由.
反思与感悟
解析答案
跟踪训练1
从装有5个红球和3个白球的口袋内任取3个球,那么下列
各对事件中,互斥而不对立的是(
A.至少有一个红球与都是红球
)
B.至少有一个红球与都是白球
C.至少有一个红球与至少有一个白球
D.恰有一个红球与恰有两个红球
解析答案
题型二 事件的运算 例2 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1 点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点}, 事件 C5 = { 出现5 点 } ,事件C6 = { 出现6 点 } ,事件D1 = { 出现的点数不 大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5}, 事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G= {出现的点数为奇数},请根据上述定义的事件,回答下列问题:
高中数学 第三章 概率 31 随机事件的概率练习 新人教A版必修3 试题
3.1随机事件的概率3.1.1随机事件的概率一、选择题1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3;其中是随机事件的是( )A.①②B.①③C.②③D.③④2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.64.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是0.3;③随机事件发生的频率就是这个随机事件发生的概率.A.0B.1C.2D.35.一个家庭有两个小孩,则这两个小孩所有情况有( )A.2种B.3种C.4种D.5种6.先从一副扑克牌中抽取5张红桃,4张梅花,3张黑桃,再从抽取的12张牌中随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这种事情( )A.可能发生B.不可能发生C.必然发生D.无法判断7.下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为( )A.①②B.③④ C.①④D.②③8.下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是12,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4二、填空题9.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.10.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.11.在200件产品中,有192件一级品,8件二级品,则事件(1)“在这200件产品中任意选出9件,全部是一级品”;(2)“在这200件产品中任意选出9件,全部是二级品”(3)“在这200件产品中任意选出9件,不全是一级品”;(4)“在这200件产品中任意选出9件,其中不是一级品的件数小于10”.是必然事件; 是不可能事件; 是随机事件.12.根据某社区医院的调查,该地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为该病人输血的概率是.三、解答题13.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?14.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.15.某批乒乓球产品质量检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)附加题16.(1)从甲、乙、丙、丁四人中选出两人,分别在星期六和星期天两天值班,写出该试验的所有可能的结果;(2)从甲、乙、丙、丁四人中选出3人去旅游,写出所有可能的结果.3.1.2概率的意义一、选择题1.“某彩票的中奖概率为11000”意味着( )A.买1000张彩票就一定能中奖B.买1000张彩票中一次奖C.买1000张彩票一次奖也不中D.购买彩票中奖的可能性是2.某学校有教职工400名,从中选出40名教职工组成教工代表大会,每位教职工当选的概率是110,其中正确的是( )A.10个教职工中,必有1人当选B.每位教职工当选的可能性是110C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确3.向上抛掷100枚质地均匀的硬币,下列哪种情况最有可能发生( )A.50枚正面朝上, 50枚正面朝下B.全都是正面朝上C.有10枚左右的硬币正面朝上D.大约有20枚硬币正面朝上4.同时向上抛100个质地均匀的铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况最有可能正确的是( )A.这100个铜板的两面是一样的B.这100个铜板的两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的5.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( )A.一定出现“6点朝上”B.出现“6点朝上”的概率大于16C.出现“6点朝上”的概率等于16D.无法预测“6点朝上”的概率6.甲、乙两人做游戏,下列游戏中不公平的是( )A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D.甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜7.根据某医疗所的调查,某地区居民血型的分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( ) A.50% B.15%C.45% D.65%8.下列命题中的真命题有( )①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是59;②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.A.0个B.1个C.2个D.3个二、填空题9.设某厂产品的次品率为2%,估算该厂8000件产品中合格品的件数可能为件.10.如果掷一枚质地均匀的硬币,连续5次正面向上,则下次出现反面向上的概率为.11.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就是我去;如果落地后两面一样,就是你去!”你认为这个游戏公平吗? .12.在一次考试中,某班有80%的同学及格,80%是________.(选“概率”或“频率”填空)13.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为________.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%三、解答题14.试解释下列情况下概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.15.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概需备多少个鱼卵?(精确到百位)3.1.3 概率的性质一、选择题1.已知P(A)=0.1,P(B)=0.2,则P(A∪B)等于( D )A.0.3B.0.2C.0.1D.不确定2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为(B )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品3.给出事件A与B的关系图,如图所示,则( )A.A⊆B B.A⊇BC.A与B互斥D.A与B互为对立事件4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( ) A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D5.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是( )A.①B.②④C.③D.①③6.下列四种说法:①对立事件一定是互斥事件;②若A,B为两个事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.其中错误的个数是( )A.0 B.1 C.2 D.37.从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85]g范围内的概率是( )A.0.62B.0.38C.0.02 D.0.688.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.15B.25C.35D.45二、填空题9.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.10.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.11.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________.12.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为三、解答题13.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.(1)射中10环或9环的概率;(2)至少射中7环的概率.1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______ 10_____ 11_____14.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?15.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?附加题16.在某一时期内,一条河流某处的年最高水位计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.3.1.1随机事件的概率1-8 ACBA CCDB9. P==0.0310.50011. (4) (2) (1)(3)12. 65%13. 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab =4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1); “a =b ”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4). (3)直线ax +by =0的斜率k =-ab>-1,∴a<b ,∴包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).14.(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b ,a1),(b ,a2)}. (2)A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b ,a1),(b ,a2),(b ,b)}.②A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.15. 解:(1)依据公式可算出表中乒乓球优等品的频率依次为0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.16. 解:(1)由题意知选出两人,分别在星期六和星期天值班,故可能的结果为:甲乙;乙甲;甲丙;丙甲;甲丁;丁甲;乙丙;丙乙;乙丁;丁乙;丙丁;丁丙. 共12种可能的结果.(2)有四种结果{甲,乙,丙}{甲,乙,丁}{甲,丙,丁}{乙,丙,丁}. 3.1.2概率的意义 1-8 DBAA CBAA 9. 7840 10. 0.5 11.公平 12.频率 13. ②14. 解:(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%. 15. 解:(1)这种鱼卵的孵化概率P==0. 8513.(2)30000个鱼卵大约能孵化30000×=25539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知, ∴x=≈5900(个). ∴大概需备5900个鱼卵.3.1.3 概率的性质1-8 DBCD CDCC 9. 0.3010. 512 11. 5912. 4/513.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A 、B 、C 、D ,则A 、B 、C 、D 是互斥事件,(1)P(A∪B)=P(A)+P(B)=0.24+0.28 =0.52;(2)P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87. 答 射中10环或9环的概率是0.52,至少射中7环的概率为0.87.14.解 记“响第1声时被接”为事件A ,“响第2声时被接”为事件B ,“响第3声时被接”为事件C ,“响第4声时被接”为事件D.“响前4声内被接”为事件E ,则易知A 、 B 、C 、D 互斥,且E =A∪B∪C∪D,所以由互斥事件的概率的加法公式得P(E)=P(A∪B∪C∪D) =P(A)+P(B)+P(C)+P(D) =0.1+0.3+0.4+0.1=0.9.15.解 (1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥.故P(A 1∪A 4)=P(A 1)+P(A 4)=0.3+0.4=0.7. 所以他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为P , 则P =1-P(A 2)=1-0.2=0.8, 所以他不乘轮船去的概率为0.8. (3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.16.解设水位在[a,b)范围的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))=0.28+0.38+0.16=0.82.(2)P([8,12))=P([8,10))+P([10,12))=0.1+0.28=0.38.(3)记“水位不低于12 m”为事件A,P(A)=1-P([8,12))=1-0.38=0.62.。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
2016版优化方案高一数学人教版必修三课件 第三章 概率3.2.1
第三章 概率
1.(1)做试验“从0,1,2这3个数字中,不放回地取两次,每次 取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次 取到的数字”.
①写出这个试验的基本事件;
②求出这个试验的基本事件的总数; ③写出“第1次取出的数字是2”这一事件包含的基本事件. 解:①这个试验的基本事件为(0,1),(0,2),(1,0), (1,2),(2,0),(2,1).
第三章 概率
方法归纳 (1)本题关键是通过分析得出公式中的分子、分母,即某事件 所含基本事件数和基本事件的总数,然后代入公式求解. (2)使用古典概型概率公式应注意: ①首先确定是否为古典概型; ②A事件是什么,包含的基本事件有哪些.
栏目 导引 第十九页,编辑于星期五:二十三点 三十七分。
第三章 概率
栏目 导引 第十二页,编辑于星期五:二十三点 三十七分。
第三章 概率
方法归纳 基本事件的两个探求方法: (1)列表法:将基本事件用表格的形式表示出来,通过表格可 以清楚地弄清基本事件的总数,以及要求的事件所包含的基 本事件数,列表法适合于较简单的试验的题目,基本事件较 多的试验不适合用列表法(关键词:基本事件的总数). (2)树状图法:树状图法是用树状的图形把基本事件列举出来 的一种方法,树状图法便于分析基本事件间的结构关系,对 于较复杂的问题,可以作为一种分析问题的主要手段.树状 图法适合于较复杂的试验的题目(关键词:结构关系).
第三章 概率
即A={a,b},B={a,c},C={a,d},D={b,c},E={b, d},F={c,d}.
栏目 导引 第十一页,编辑于星期五:二十三点 三十七分。
第三章 概率
高中数学必修三第三章概率综合训练(含答案)
高中数学必修三概率综合训练一、单选题1.下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A. ②③④B. ①③⑤C. ①②③⑤D. ②③⑤2.下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.气象台预报“本市明天降雨概率是70%”,下列说法正确的是()A. 本市明天将有70%的地区降雨B. 本市明天将有70%的时间降雨C. 明天出行带雨具的可能性很大D. 明天出行不带雨具肯定要淋雨4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. “至少有一个红球”与“都是黑球”B. “至少有一个黑球”与“都是黑球”C. “至少有一个黑球”与“至少有1个红球”D. “恰有1个黑球”与“恰有2个黑球”5.已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A. 0B. 1C. 2D. 36.设函数,若从区间内随机选取一个实数,则所选取的实数满足的概率为()A. 0.5B. 0.4C. 0.3D. 0.27.如图,在矩形中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是()A. B. C. D.8.掷一个骰子,出现“点数是质数”的概率是()A. B. C. D.9.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A. 至多有2件次品B. 至多有1件次品C. 至多有2件正品D. 至多有1件正品10.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为()A. B. C. D.11.在边长为4的正方形内随机取一点,该点到正方形的四条边的距离都大于1的概率是()A. B. C. D.12.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A. P(M)=,P(N)=B. P(M)=,P(N)=C. P(M)=,P(N)=D. P(M)=,P(N)=13.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A. 3个都是正品B. 至少有1个是次品C. 3个都是次品D. 至少有1个是正品14.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为()A. 0.6B. 0.5C. 0.4D. 0.315.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤”的概率,则P=()A. B. C. D.16.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A. B. C. D.17.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A. 0.9B. 0.2C. 0.7D. 0.518.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C. D.19.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足的概率为()A. B. C. D.20.袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A. B. C. D.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[A.基础达标]1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性解析:选A.几何概型和古典概型是两种不同的概率模型,故选A.2.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为( )A.13B.23C.14D.34解析:选A.记M =“射线OC 使得∠AOC 和∠BOC 都不小于30°”.如图所示,作射线OD ,OE 使∠AOD =30°,∠AOE =60°.当OC 在∠DOE 内时,使得∠AOC 和∠BOC 都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P (M )=3090=13.3.在2015年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.910解析:选A.记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110.4.已知在一个边长为2的正方形中有一个圆,随机向正方形内丢一粒豆子,若落入圆内的概率为0.3,则该圆的面积为( )A .0.6B .0.8C .1.2D .1.6解析:选C.记“豆子落入圆内”为事件A ,豆子落入正方形内任一点的机会都是等可能的,这是一个几何概型,P (A )=S 圆S 正,所以S 圆=P (A )×S 正=0.3×22=1.2.因此,圆的面积为1.2.5.(2013·高考湖南卷)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14 C.32D.74解析:选D.由于满足条件的点P 发生的概率为12,且点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB =AB (当点P 超过点E 向点D 运动时,PB >AB ).设AB =x ,过点E 作EF ⊥AB 交AB 于点F ,则BF =34x .在Rt △FBE 中,EF 2=BE 2-FB 2=AB 2-FB 2=716x 2,即EF =74x ,∴AD AB =74.6.(2015·西安质检)在正方体ABCD -A 1B 1C 1D 1内随机取点,则该点落在三棱锥A 1ABC 内的概率是______.解析:设正方体的棱长为a ,则所求概率P =VA 1-ABC VABCD A 1B 1C 1D 1=13×12a 2·a a 3=16.答案:167.如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16.答案:168.(2014·高考福建卷)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.解析:由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18,∵S 正=1,∴S 阴=0.18. 答案:0.189.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率;(2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,取线段MP 的中点D ,则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP=12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π. 10.射箭比赛的箭靶涂有五个彩色得分环.从外向内分为白色、黑色、蓝色、红色、靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中“黄心”的概率为多少?解:因为射中靶面内任一点都是等可能的, 所以基本事件总数为无限个.此问题属于几何概型,事件对应的测度为面积, 总的基本事件为整个箭靶的面积,它的面积为π⎝⎛⎭⎫12222cm 2; 记事件A ={射中“黄心”},它的测度为“黄心”的面积,它的面积为π⎝⎛⎭⎫12.222cm 2, P (A )=“黄心”的面积箭靶的面积=π⎝⎛⎭⎫12.222π⎝⎛⎭⎫12222=1100,所以射中“黄心”的概率为1100.[B.能力提升]1.有四个游戏盘,如果撒一粒黄豆落在阴影部分,即可中奖,小明希望中奖,则他应当选择的游戏盘为( )解析:选A.根据几何概型的面积比,A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.2.(2015·郑州六校联考)如图,扇形AOB 的半径为1,圆心角为90°,点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有扇形中随机取出一个,面积恰为π8的概率是( )A.310B.15C.25D.12解析:选A.题图中共有10个不同的扇形,分别为扇形AOB 、AOC 、AOD 、AOE 、EOB 、EOC 、EOD 、DOC 、DOB 、COB ,其中面积恰为π8的扇形(即相应圆心角恰为π4的扇形)共有3个(即扇形AOD 、EOC 、BOD ),因此所求的概率等于310. 3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,则两人能会面的概率为________.解析:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的条件是|x -y |≤15.如图,平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图中的阴影部分表示,由几何概型的概率公式得P (A )=S A S =602-452602=716. 答案:7164.如图,正方形OABC 的边长为2.(1)在其四边或内部取点P (x ,y ),且x ,y ∈Z ,则事件“|OP |>1”的概率为________.(2)在其内部取点P (x ,y ),且x ,y ∈R ,则事件“△POA ,△P AB ,△PBC ,△PCO 的面积均大于23”的概率是________.解析:(1)在正方形的四边和内部取点P (x ,y ),且x ,y ∈Z ,则所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共有n =9个,其中满足|OP |>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共有m =6个,所以满足|OP |>1的概率为P =69=23.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA ,△P AB ,△PBC ,△PCO 的面积均大于23,应该三角形的高大于23,所以这个区域为每个边长从两端各去掉23后剩余的正方形,其面积为23×23=49,所以满足条件的概率为494=19.答案:(1)23 (2)195.2013年度世界新闻人物——斯诺登,他揭露了美国的监听丑闻.国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上在开始录音的1 min 内从第30 s 后的某一时刻开始,有10 s 长的一段内容包含间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?解:记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到23 min时间段内按错键.P (A )=2330=145.6.(选做题)一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF -BCE 内自由飞行,求它飞入几何体F -AMCD 内的概率.解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC . 因为V F AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3,V ADF BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F -AMCD 内的概率为14a 312a 3=12.。