二次函数线段最大值(课件)

合集下载

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件
















时,S有最大值,最大值为 ,此时点P的坐标为(3; =- m2+9m=- (m2-6m)=- (m-3)2+ .


∵- <0,∴ 当m=3
类型二面积问题
典例2 (2023·
湘潭)如图,二次函数y=x2+bx+c 的图象与x轴交于点
∴ 设M(t,-t2+2t+3)(0<t<3),则Q(t,-t+3).∴ MQ
=-t2+3t.过点Q作QD⊥OC,垂足为D,则易得△CDQ是等腰直
角三角形.∴ CQ= t.
∴ MQ+ CQ=-t2+3t+2t=-t2+5t=-




+ .∴


时,MQ+ CQ 有最大值,此时点M的坐标为
式,当x=1时求出y的值,从而求出点P的坐标,此时PA+PC的最
小值就是BC的长,利用勾股定理求解即可;(3) 由抛物线与直线
BC对应的函数解析式,分别设出点M,Q的坐标,过点Q作
QD⊥OC,垂足为D,将MQ+ 2CQ用含参数的代数式表示出来,
再结合二次函数的性质求解问题.
解:(1) ∵ 抛物线y=ax2+bx+3(a≠0)的对称轴是直线x=1,点A的坐标为(-
1,0),∴ 由抛物线的对称性,可知点B的坐标为(3,0).
(2) 由题意,可知抛物线对应的函数解析式为y=a(x+1)(x-
3)=a(x2-2x-3).∵ 抛物线y=ax2+bx+3(a≠0)与y轴交于点
C,
∴ 易得C(0,3).将C(0,3)代入y=a(x2-2x-3),得-3a=
3,解得a=-1.∴ 抛物线对应的函数解析式为y=-x2+2x+3.如图

九年级下册数学二次函数课件精编版

九年级下册数学二次函数课件精编版

2、正方体的六个面是全等的正方形,高正 方体的棱长为x,表面积为y,显然对于x的每一 个值,y都有一个对应值,即y是x的函数,它们的 具体关系可以表示为
y=6x2
3、多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有条边,那么它有
_n___个顶点,从一个顶点出发,连接与这点不相邻的 各顶点,可以作_n__-_3____条对角线.
例3、函数y (k 1 ) x 是 2k2 k1 2
二次函数,则k __-1_____ .
练习:函数y (m 1)xm2m mx 1是 二次函数,则m 2_____ .
1、下列函数中,(x是自变量),是二次函数
的为( C
)
A y=ax2+bx+c
B y2=x2-4x+1
设长方形的长为x 米,则宽 为(8-x)米,如果将面积记 为y平方米,那么变量y与x之 间的函数关系式为:
y x2 8x
问题:
问题2 某工厂一种产品现在的年产量是20件, 计划今后两年增加产量.如果每年都比上一年的产 量增加x倍,那么两年后这种产品的产量y将随计划 所定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+x)件2 ,即两
年后的产量为 y 20 1 x2
即 y 20 x2 40x 20③
③式表示了两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值, y都有一个对应值,即y是x的 函数.
(5)y= _x1_²-x
(6) v=10π r²
解: (1)y=3(x-1)²+1

第03讲-二次函数解析式与线段最值(教案)

第03讲-二次函数解析式与线段最值(教案)
最后,通过这次教学,我深感教学反思的重要性。在今后的教学中,我将更加关注学生的学习情况,及时发现和解决问题,调整教学策略,以提高教学效果。同时,我也会注重与学生的互动,鼓励他们提出疑问,充分调动学生的学习积极性,使他们能够在轻松愉快的氛围中掌握二次函数解析式与线段最值的知识。
三、教学难点与重点
1.教学重点
(1)二次函数解析式的理解和应用:重点在于让学生掌握二次函数一般形式及其图像性质,能够根据已知条件求解二次函数的系数a、b、c。
举例:讲解如何根据抛物线的顶点坐标、对称轴和开口方向来确定二次函数解析式。
(2)线段最值问题的求解:重点在于培养学生利用二次函数求解线段最值问题的能力,掌握解题步骤。
-通过具体例子,让学生掌握如何根据已知条件求解二次函数的系数a、b、c
2.线段最值问题的探讨:
-利用二次函数求解线段的最值问题,如最大值、最小值
-线段最值在实际问题中的应用,例如求解平面几何中的最大或最小面积问题
-结合实际例题,让学生掌握如何建立二次函数模型解决线段最值问题,并掌握解题技巧。
二、核心素养目标
五、教学反思
在本次教学过程中,我发现学生在学习二次函数解析式与线段最值这一章节时,存在一些问题和亮点。在这里,我想结合教学实际,对这次教学进行一些反思。
首先,我发现大部分学生在理解二次函数解析式的过程中,对系数a、b、c的含义和求解方法掌握得不够扎实。在以后的教学中,我需要更加注重基础知识的教学,通过丰富的实例和详细的讲解,帮助学生深入理解二次函数解析式的内涵。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数解析式的基本概念。二次函数解析式是描述抛物线运动规律的一种数学表达形式。它是解决线段最值问题的关键工具,广泛应用于物理、工程等领域。

九年级数学北师大版初三下册--第二单元2.4《二次函数的应用(第三课时)》课件

九年级数学北师大版初三下册--第二单元2.4《二次函数的应用(第三课时)》课件

知2-讲
导引: 由题意知今年这种玩具每件的成本是去年的(1+0.7x) 倍,每件的出厂价是去年每件的出厂价的 (1+0.5x) 倍,今年的年销售量是去年年销售量的 (1+x)倍.
解:(1)(10+7x);(12+6x) (2)y=(12+6x)-(10+7x)=2-x, 即y与x的函数关系式为y=2-x. (3)W=2(1+x)(2-x)=-2x2+2x+4=-2(x-5)2+4.5, ∵0<x≤1,∴当x=0.5时,W有最大值. W最大值=4.5. 答:当x=0.5时,今年的年销售利润最大,最大年销 售利润为4.5万元.
知1-练
3 心理学家发现:学生对概念的接受能力y与提出概念 的时间x(min)之间是二次函数关系,当提出概念13 min时,学生对概念的接受能力最大,为59.9;当提 出概念30 min时,学生对概念的接受能力就剩下31, 则y与x满足的二次函数表达式为( D ) A.y=-(x-13)2+59.9 B.y=-0.1x2+2.6x+31 C.y=0.1x2-2.6x+76.8 D.y=-0.1x2+2.6x+43
(来自《教材》)
知2-练
2 某旅行社在五一期间接团去外地旅游,经计算,收益
y(元)与旅行团人数x(人)满足表达式y=-x2+100x+
28 400,要使收益最大,则此旅行团应有( C )
A.30人
B.40人
C.50人
D.55人
知2-练
3 (2016·咸宁)某网店销售某款童装,每件售价60元,每星 期可卖300件,为了促销,该网店决定降价销售.市场 调查反映:每降价1元,每星期可多卖30件.已知该款 童装每件成本价40元,设该款童装每件售价x元,每星 期的销售量为y件. (1)求y与x之间的函数表达式. (2)当每件售价定为多少元时,每星期的销售利润最大, 最大利润是多少元? (3)若该网店每星期想要获得不低于6 480元的利润,每 星期至少要销售该款童装多少件?

专题1.5 二次函数与线段最值面积最值综合应用(四大题型)(解析版)

专题1.5  二次函数与线段最值面积最值综合应用(四大题型)(解析版)

专题1.5 二次函数与线段最值/面积最值综合应用(四大题型)【题型1 线段差最大问题】【题型2 线段和最小】【题型3 周长最值问题】【题型4 求面积最值】【题型1 线段差最大问题】【典例1】(2023•汝南县一模)如图,已知抛物线过点O(0,0),A(5,5),其对称轴为x=2.(1)求该抛物线的解析式;(2)若点B是抛物线对称轴上的一点,且点B在第一象限.①当△OAB的面积为15时,求点B的坐标;②在①的条件下,P是抛物线上的动点,当PA﹣PB取得最大值时,求点P的坐标.【答案】(1)y=x2﹣4x;(2)①点B的坐标为(2,8);②P(﹣2,12).【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x =2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,解得:a=1,∴y=x(x﹣4)=x2﹣4x,故此抛物线的解析式为y=x2﹣4x;(2)①∵点B是抛物线对称轴上的一点,且点B在第一象限,∴设B(2,m)(m>0),设直线OA的解析式为y=kx,则5k=5,解得:k=1,∴直线OA的解析式为y=x,设直线OA与抛物线对称轴交于点H,则H(2,2),∴BH=m﹣2,∵S=15,△OAB∴×(m﹣2)×5=15,解得:m=8,∴点B的坐标为(2,8);②设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,解得:,∴直线AB的解析式为y=﹣x+10,如图2,当PA﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:,(舍去),∴P(﹣2,12).【变式1-1】(秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,解得a=1,故抛物线的表达式为y=x2﹣4x+3①;(2)点B关于函数对称轴的对称点为点A,连接CA交函数对称轴于点T,则点T为所求点,则TC﹣TB=TC﹣TA=AC为最大,故TC﹣TB的最大值为AC==,故答案为;【变式1-2】(连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)【题型2 线段和最小】【典例2】(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;【变式2-1】(2023•新疆三模)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出PA+PC的最小值及点P的坐标,若不存在,说明理由;【答案】(1)y=﹣x2+4x;(2)(2,2);【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴于点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);【变式2-2】(2023•红花岗区校级模拟)如图,抛物线y=ax2+bx﹣2与x轴交于点A(﹣2,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)M是抛物线对称轴上的一个动点,求MB+MC的最小值;【答案】(1)y=x2+x﹣2;(2)2;(3)存在;P(﹣1,﹣2).【解答】解:(1)将点A(﹣2,0)、B(1,0)代入y=ax2+bx﹣2,得:,解得,∴y=x2+x﹣2;(2)如图,∵A、B关于抛物线的对称轴对称,∴AM=BM,∴MB+MC=AM+MC,当A、C、M三点共线时,MB+MC的值最小,最小值为AC,令x=0,则y=﹣2,∴C(0,﹣2),∴AC==2,∴MB+MC的最小值为2;【变式2-3】(2023•琼山区校级三模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,P是第一象限内抛物线上的动点,连接PB,PC,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t为何值时,△PBC的面积最大?并求出最大面积;(3)M为直线BC上一点,求MO+MA的最小值;【答案】(1)抛物线的解析式为:y=﹣x2+3x+8;(2)当t=4时,△PBC的面积最大,最大面积为32;(3)2;【解答】解:(1)将点A(﹣2,0),C(0,8)代入y=ax2+3x+c中,得,解得:,∴抛物线的解析式为:y=﹣x2+3x+8;(2)令y=0,解得x=﹣2或x=8,∴B(8,0),∵C(0,8),∴直线BC的解析式为y=﹣x+8.如图,过点P作PG⊥x轴,交BC于点G.设点P(t,﹣t2+3t+8),G(t,﹣t+8).∴PG=﹣t2+3t+8﹣(﹣t+8)=﹣t2+4t.=×PG×(x B﹣x O)=×(﹣t2+4t)×8=﹣2(t﹣4)2+32,∴S△PBC∵﹣2<0,∴当t=4时,△PBC的面积最大,最大面积为32;(3)如图,作点M关于直线BC的对称点N,连接AN,交BC于点M,点M 即为所求,此时AN的长即可为所求;连接ON交BC于点J,分别过点J,N作x轴的垂线,垂足为K,H,则ON⊥BC,JK∥y轴,OJ=JN,∵B(8,0),C(0,8),∴OB=OC=8,∴△OBC是等腰直角三角形,且点J是BC的中点,∴∠OBC=∠OCB=45°,∴△BJK是等腰直角三角形,即∠JOB=45°,∴JK=BK=OK=4,△ONH是等腰直角三角形,∴NH=OH=8,∴AH=10,在Rt△ANH中,AH==2;【变式2-4】(2023•宁夏)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B 两点,与y轴交于点C.已知点A的坐标是(﹣1,0),抛物线的对称轴是直线x=1.(1)直接写出点B的坐标;(2)在对称轴上找一点P,使PA+PC的值最小.求点P的坐标和PA+PC的最小值;【答案】(1)点B的坐标为(3,0);(2)P(1,2),3;【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)的对称轴是直线x=1,∴﹣=1,∴b=﹣2a①,∵抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点,点A的坐标是(﹣1,0),∴a﹣b+3=0②,联立①②得,解得,∴二次函数的解析式为y=﹣x2+2x+3,令y=0得﹣x2+2x+3=0,解得x=3或x=﹣1,∴点B的坐标为(3,0);(2)如图,连接BC,线段BC与直线x=1的交点就是所求作的点P,设直线CB的表达式为y=kx+b′,把C(0,3)和B(3,0)代入得:解得,∴直线CB的表达式为y=﹣x+3,∴当x=1时,y=2,∴P(1,2),∵OB=OC=3,在Rt△BOC中,BC=,∵点A,B关于直线x=1对称,∴PA=PB,∴PA+PC=PB+PC=BC=3;【题型3 周长最值问题】【典例3】(2023•张家界)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c 的图象与x轴交于点A(﹣2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;【答案】(1)抛物线的表达式为y=﹣x2+2x+6;(2)△AOD周长的最小值为12;【解答】解:(1)由题意可知,设抛物线的表达式为y=a(x+2)(x﹣6),将(0,6)代入上式得:6=a(0+2)(0﹣6),解得,∴抛物线的表达式为y=﹣(x+2)(x﹣6)=﹣x2+2x+6;(2)作点O关于直线BC的对称点E,连接EC、EB,∵B(6,0),C(0,6),∠BOC=90°,∴OB=OC=6,∵O、E关于直线BC对称,∴四边形OBEC为正方形,∴E(6,6),连接AE,交BC于点D,由对称性|DE|=|DO|,此时|DO|+|DA|有最小值为AE的长,∴AE===10,∵△AOD的周长为DA+DO+AO,AO=2,DA+DO的最小值为10,∴△AOD的周长的最小值为10+2=12,【变式3-1】(2023•盘锦三模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;【答案】(1)y=x2﹣4x+3;(2)3+;【解答】解:(1)∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.由(1)知抛物线的函数表达式为y=x2﹣4x+3,A(1,0),B(3,0),∴C(0,3),∴BC==3,AC==.∵点A、B关于对称轴x=2对称,∴PA=PB,∴PA+PC=PB+PC.此时,PB+PC=BC.∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+;【变式3-2】(富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)∵△ACM周长的值最小,∴MC+AM的值最小,即点M即为直线BC与抛物线对称轴的交点,∴△ACM周长的最小值为BC+AC,∵点B(﹣3,0),C(0,3),∴BC==3,AC==,∴△ACM周长的最小值为,故答案为:;【变式3-3】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B (3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM周长的最小值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴抛物线的对称轴为直线x=2,C(0,3).∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC=BC的值最小.设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.∵抛物线的对称轴为直线x=2.∴当x=2时,y=1.∴抛物线对称轴上存在点M(2,1)符合题意,∵A(1,0)、B(3,0),C(0,3).∴AC==,BC==3,∴AC+BC=+3,∴在抛物线的对称轴上存在点M,使△ACM的周长最小,△ACM周长的最小值为+3;【题型4 求面积最值】【典例4】(2023•阜新)如图,在平面直角坐标系中,二次函数y=﹣x2+bx﹣c 的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC:y=x+3交于点D,若点M 是直线AC上方抛物线上的一个动点,求△MCD面积的最大值.【答案】(1)y=﹣x2﹣2x+3;(2);(3)Q(3﹣,﹣)或(3+,).【解答】解:(1)由题意得,y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)如图1,作MQ⊥AC于Q,作ME⊥AB于F,交AC于E,∵OA=OC=3,∠AOC=90°,∴∠CAO=∠ACO=45°,∴∠MEQ=∠AEF=90°﹣∠CAO=45°,抛物线的对称轴是直线:x=,∴y=x+3=﹣1+3=2,∴D(1,2),∵C(0,3),∴CD=,故只需△MCD的边CD上的高最大时,△MCD的面积最大,设过点M与AC平行的直线的解析式为:y=x+m,当直线y=x+m与抛物线相切时,△MCD的面积最大,由x+m=﹣x2﹣2x+3得,x2+3x+(m﹣3)=0,由Δ=0得,32﹣4(m﹣3)=0得,m﹣3=,∴x2+3x+=0,∴x1=x2=﹣,∴y=﹣(﹣)2﹣2×+3=,y=x+3=﹣+3=,∴ME=,∴MQ=ME•sin∠MEQ=ME•sin45°=,==;∴S△MCD最大【变式4-1】(2022秋•曲周县期末)如图1,抛物线y=﹣x2+bx+c与x轴交于A (2,0),B(﹣4,0)两点.(1)求该抛物线的解析式;(2)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)将A (2,0),B (﹣4,0)代入得:,解得:,则该抛物线的解析式为:y =﹣x 2﹣2x +8;(3)如图2,过点P 作PE ⊥x 轴于点E ,P 点(x ,﹣x 2﹣2x +8)(﹣4<x <0)∵S △BPC =S 四边形BPCO ﹣S △BOC =S 四边形BPCO ﹣16若S 四边形BPCO 有最大值,则S △BPC 就最大∴S 四边形BPCO =S △BPE +S 直角梯形PEOC=BE •PE +OE (PE +OC )=(x +4)(﹣x 2﹣2x +8)+(﹣x )(﹣x 2﹣2x +8+8)=﹣2(x +2)2+24,当x =﹣2时,S 四边形BPCO 最大值=24,∴S △BPC 最大=24﹣16=8,当x =﹣2时,﹣x 2﹣2x +8=8,∴点P 的坐标为(﹣2,8).【变式4-2】(2023•乐东县二模)如图1,抛物线y =ax 2+bx +3与x 轴交于点A (﹣3,0),B (1,0),与y 轴交于点C ,对称轴直线x =m 交抛物线于点D ,交x 轴于点E ,连接AD ,CD .(1)求该抛物线的表达式以及m 的值;(2)求四边形OADC 的面积;【答案】(1)y =﹣x 2﹣2x +3;(2);【解答】解:(1)将点A (﹣3,0),B (1,0)代入y =ax 2+bx +3,∴,解得,∴抛物线的解析式为y =﹣x 2﹣2x +3,∵y =﹣x 2﹣2x +3=﹣(x +1)2+4,∴对称轴为直线x =﹣1,∴m =﹣1;(2)令x =0,则y =3,∴点C 的坐标为(0,3),当 x =﹣1 时,y =﹣(﹣1)2+2+3=4,∴点D 的坐标为(﹣1,4),∴OC =3,OE =1,DE =4,AE =3﹣1=2,∴S 四边形OADC =S △ADE +S 梯形OCDE =2×4+×(3+4)×=;【变式4-3】(2023•东坡区模拟)已知抛物线y =ax 2+bx +c (a ≠0)过A (﹣1,0),B (﹣3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求点P 的坐标;【答案】(1)D(﹣2,﹣1);(2)P(﹣,﹣);【解答】(1)根据题意,将A(﹣1,0),B(﹣3,0)代入函数表达式,则y=a(x+1)(x+3)=a(x2+4x+3),∵OC=3,解得:a=1,故抛物线的表达式为:y=x2+4x+3,则顶点D(﹣2,﹣1);(2)将点B(﹣3,0)、C(0,3)代入:y=mx+n,则一次函数y=x+3,过点P作y轴的平行线交BC于点N,设点P(x,x2+4x+3),则点N(x,x+3),则•|OB|=(x+3﹣x2﹣4x﹣3)=﹣(x2+3x)﹣<0,∵﹣<0,故S有最大值,此时x=﹣.△PBC故点P(﹣,﹣);【变式4-4】(2023•肇东市三模)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B点,与y轴交于点C(0,3),点A在原点的左侧,点B的坐标为(3,0),点P是抛物线上一个动点,且在直线BC 的上方.(1)求这个二次函数的解析式;(2)当点P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值.【答案】(1)二次函数的解析式为y=﹣x2+2x+3.(2)点P的坐标为(),△CPB的面积的最大值为.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,∴二次函数的解析式为y=﹣x2+2x+3.答:二次函数的解析式为y=﹣x2+2x+3.(2)如图,过点P作y轴的平行线与BC交于点Q,设P(x,﹣x2+2x+3),直线BC的解析式为y=mx+n,则,解得,∴直线BC的解析式为y=﹣x+3,则Q(x,﹣x+3),当x=时,△CPB的面积最大,此时,点P的坐标为(),△CPB的面积的最大值为.【变式4-5】(2022秋•朝阳期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;【答案】见试题解答内容【解答】解:(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),即﹣5a=5,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x+5;(2)将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BC的表达式为:y=﹣x+5,过点P作PH∥y轴交BC于点H,设点P(x,﹣x2+4x+5),则点H(x,﹣x+5),S=×PH×OB=(﹣x2+4x+5+x﹣5)=(x﹣)2+,△BPC的最大值为;故:当x=时,S△BPC【变式4-6】(2023•四平模拟)如图,抛物线y=ax2+2x+c与x轴交于点A(3,0),与y轴交于点B(0,3).点P和点Q都在抛物线上,其横坐标分别为m,m+1,过点P作PM∥y轴交直线AB于点M,过点Q作QN∥y轴交直线AB于点N,连接PQ.(1)求抛物线的解析式;(2)当P,Q两点都在第一象限时,求四边形PQNM的面积的最大值;【答案】(1)y =﹣x 2+2x +3;(2)当m =1时,四边形PQNM 的面积的最大值为2;【解答】解:(1)分别将点A (3,0)、B (0,3)代入y =ax 2+2x +c 中,得:,解得:,∴抛物线解析式为y =﹣x 2+2x +3;(2)设直线AB 的解析式为y =kx +b ,分别将点A (3,0)、B (0,3)代入y =kx +b 中,得:,解得:,∴直线AB 的解析式为y =﹣x +3,连接MQ ,过点Q 作△PQM 的高,过点M 作△MNQ 的高,则这两个高都等于1,∴S 四边形PQNM =S △PQM +S △MNQ =•PM •1+•NQ •1=(PM +NQ ),当x =m 时,PM =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,当x =m +1时,NQ =﹣(m +1)2+3(m +1)=﹣m 2+m +2,∴S 四边形PQNM =[(﹣m 2+3m )+(﹣m 2+m +2)]=﹣m 2+2m +1=﹣(m ﹣1)2+2,∴当m =1时,四边形PQNM 的面积的最大,最大值为2;。

中考二次函数中的几何最值问题(二)

中考二次函数中的几何最值问题(二)

A''二次函数中的几何最值问题(二)模型一.如图,在平面上有两个定点A 、B ,MN 为定直线上移动的长度一定的线段,若要使四边形AMNB 的周长最小,试确定MN 的位置。

作法:作A 点关于直线的对称点A‘,再将A’向平行于定直线的方向(B 侧)平移一个MN 的长度到A’’,连接A’’B 和直线的交点即为N 点,M 点亦随之确定。

例1. 已知:如图1,直线1y x =--分别交x 轴、y 轴于A 、E 两点,抛物线249y x bx c=-++经过点A ,且过点()5,0B ,与y 轴交于点C ,点D 为抛物线的顶点,连接BC 。

(1)求抛物线的解析式及顶点D 的坐标;(2)如图2,若在直线BC 上方的抛物线上有一点F ,当BCF ∆的面积最大时,有一线段MN=2(点M 在点N 的左侧)在直线AE 上移动,首尾顺次连接点F 、M 、N 、B 构成四边形FMNB ,请求出四边形FMNB 的周长最小时点M 的横坐标;NM A迁移练习1.如图1,已知抛物线343832--=x x y 与轴交于和两点(点在点的左侧)与轴相交于点,顶点为. (1)求出点的坐标;(2)如图1,若线段在x 轴上移动,且点移动后的对应点为.首尾顺次连接点、、、构成四边形,请求出四边形的周长最小值.x A B A B y C D ,,A B D OB ,O B ','O B 'O 'B D C ''OBDC ''OBDC模型二. 如图,平面上有2条定直线l ,m,A 、B 为直线两侧的2个定点,点M 为直线l 上的动点,点N 为直线m 上的动点,要使得AN+BM+MN 的长度最小,试确定M 、N 的位置.作法:作A 点关于直线l 的对称点A’,B 点关于直线m 的对称点B’,连接A’B’与直线l,m 的交点即为M 、N.需要注意的是:模型中的两条定直线不一定是平行的。

初三数学专题1二次函数中的铅垂线段的最值

专题1 二次函数中的铅垂线段的最值1.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P 点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;2.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,3)(1)求这个二次函数的表达式并直接写出顶点坐标;(2)若P 是第一象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,求线段PM的最大值;3.如图,二次函数y=ax2+bx-3的图象与x轴相交于A(-1,0),B(3,0)两点.与y轴相交于点C(1)求这个二次函数的解析式.(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.4.如图,二次函数()20y ax bx c a=++≠的图象交x轴于A、B两点,交y轴于点D,点B的坐标为()3,0,顶点C的坐标为()1,4.()1求二次函数的解析式和直线BD的解析式;()2点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;5.如图,顶点为(2,-1)的抛物线2y ax bx c =++(a ≠0)交y 轴于点C (0,3),交x 轴于A ,B 两点,直线l 过AC 两点,点P 是位于直线l 下方抛物线上的动点,过点P 作PQ ∥y 轴,交直线l 于点Q .(1)求抛物线的解析式;(2)求线段PQ 的最大值及此时点P 的坐标;6.如图,在直角坐标系中,抛物线y=ax 2+bx+c (a≠0)与x 轴交于A (﹣1,0),B (3,0),交y 轴与C (0,3),D 为抛物线上的顶点,直线y=x ﹣1与抛物线交于M 、N 两点,过线段MN 上一点P 作y 轴的平行线交抛物线与点Q . (1)求抛物线的解析式及顶点坐标; (2)求线段PQ 的最大值;7.如图,二次函数2y x bx c =++的图象与x 轴交于()3,0A ,()1,0B -,与y 轴交于点C . (1)求该二次函数的解析式及点C 的坐标;(2)如图,点P 为抛物线AC 段一动点,PQ AC ⊥于点Q ,PG x ⊥轴交AC 于点G ,当PQ 的长度最大时,求点P 的坐标.8.如图,在平面直角坐标系中,已知点B 的坐标为(﹣1,0),且OA =OC =4OB ,抛物线y =ax 2+bx+c (a≠0)图象经过A ,B ,C 三点. (1)求抛物线的解析式;(2)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.。

2.3 二次函数表达式的三种形式 课件(共21张PPT)

3.已知抛物线与x轴有两个交点(或已知抛物线与x
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。

二次函数中线段周长最值及定值问题(八大题型)学生版

二次函数中线段周长最值及定值问题(八大题型)通用的解题思路:一、二次函数中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解,求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确。

2.两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点,其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

【常见模型二】(两点在河的同侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。

3. 两条线段差的最值问题:解决这类问题最基本的定理就是“三角形任何两边之差小于第三边”,解决这类问题的方法是:求解时,先根据原理确定线段差取最值时的图形,再根据已知条件求解。

【常见模型一】(两点在同侧):在直线L上求一点P,求|PA-PB|的最大值方法:如右图,延长射线AB,与直线L交于点P,|PA-PB|最大值为AB【常见模型二】(两点在异侧):在直线L上求一点P,求|PA-PB|的最大值。

方法:如右图,作点B关于直线L的对称点B',延长射线AB',与直线L交于点P,|PA-PB|最大值为AB'二、二次函数中的定值问题一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:1.参数计算法:即在图形运动中,选取其中的变量(如线段长,点坐标)作为参数,将要求的定值用参数表示出,然后消去参数即得定值。

九下数学课件 二次函数y=ax^2+k的图像与性质 (课件)


(2) BF=BC 理由:在y=kx+2中,令x=0,得y=2.∴ 点F的坐标为(0,2).
∴ OF=2.过点F作FH⊥BC,垂足为H.设点B的坐标为 t, 1 t2 + 1 ,
4
∵ 易知四边形OFHC为矩形,∴ OF=CH,FH=OC=t,BC=14t2+1.

BH

BC

CH

BC

OF

1 4
当x<0时,y随x增大而减小.
抛物线关于y轴对称.
图像有最低点,过(0,0) y有最小值.
当x>0时,y随x增大而增大.
抛物线开口向上.
那么y=x2+1的图像与y=x2的图像有什么关系?
在同一坐标系中画出函数y=x2和y=x2+1的图像. (1)列表.
x
… -3 -2 -1 0 1 2 3 …
y=x2 … 9
位置上下平移规律,即:抛物线y=ax2+k 是由抛物线 y=ax2 上下平移| k |个单位长度得到的,“上加”表 示当k 为正数时,向上平移;“下减”表示当k为负数时, 向下平移;
“纵变横不变”表示坐标的平移规律,即:抛物线平 移时其对应点的纵坐标改变而横坐标不变.
l 归纳:
2. 二次函数y=ax2+k 的图像
l 归纳:
3. 二次函数y=ax2+k 的性质 (1)当a>0时,函数有最小值k,当a<0时,函数有 最大值k; (2)如果a>0,当x<0时,y随x的增大而减小,当 x>0时,y随x的增大而增大;如果a<0,当x<0 时,y随x的增大而增大,当x>0时,y随x的增 大而减小.
l 归纳:
4. 二次函数y=ax2+k 的图象的画法 (1)描点法:类比作二次函数y=ax2 图象的描点法,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档