中考数学专题复习:开放型问题

合集下载

2012年中考数学二轮复习考点解密 开放探索性问题(含解析)

2012年中考数学二轮复习考点解密 开放探索性问题(含解析)

2012年中考数学二轮复习考点解密开放探索性问题第一部分讲解部分一、专题诠释开放探究型问题,可分为开放型问题和探究型问题两类.开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、考点精讲(一)开放型问题考点一:条件开放型:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1:(2011江苏淮安)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)分析:已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.评注:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是是要得到四个内角相等即直角.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2:(2011天津)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为.分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b的值,再根据y随x的增大而增大确定出k的符号即可.解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).评注:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0,y随x的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3:(2010•玉溪)如图,在平行四边形ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并说明理由.分析:先连接BE,再过D作DF∥BE交BC于F,可构造全等三角形△ABE和△CDF.利用ABCD是平行四边形,可得出两个条件,再结合DE∥BF,BE∥DF,又可得一个平行四边形,那么利用其性质,可得DE=BF,结合AD=BC,等量减等量差相等,可证AE=CF,利用SAS可证三角形全等.解:添加的条件是连接BE,过D作DF∥BE交BC于点F,构造的全等三角形是△ABE与△CDF.理由:∵平行四边形ABCD,AE=ED,∴在△ABE与△CDF中,AB=CD,∠EAB=∠FCD,又∵DE∥BF,DF∥BE,∴四边形BFDE是平行四边形,∴DE=BF,又AD=BC,∴AD﹣DE=BC﹣BF,即AE=CF,∴△ABE≌△CDF.(答案不唯一,也可增加其它条件)评注:本题利用了平行四边形的性质和判定、全等三角形的判定、以及等量减等量差相等等知识.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4:(2010年江苏盐城中考题)某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.分析:本题的等量关系是:两班捐款数之和为1800元;2班捐款数-1班捐款数=4元;1班人数=2班人数×90%,从而提问解答即可.解:解法一:求两个班人均捐款各多少元?设1班人均捐款x元,则2班人均捐款(x+4)元,根据题意得1800 x ·90%=1800x+4解得x=36 经检验x=36是原方程的根∴x+4=40答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人?设1班有x人,则根据题意得1800 x +4=180090x%解得x=50 ,经检验x=50是原方程的根∴90x % =45答:1班有50人,2班有45人.评注:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范.(二)探究型问题考点五:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件的题目.例5:(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求E FE G的值.分析:(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI ≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证得EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.解:(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,又∵ED=BE,∴Rt△FED≌Rt△GEB,∴EF=EG;(2)成立.证明:如图,过点E分别作BC、CD的垂线,垂足分别为H、I,则EH=EI,∠HEI=90°,∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,∴∠IEF=∠GEH,∴Rt△FEI≌Rt△GEH,∴EF=EG;(3)解:如图,过点E分别作BC、CD的垂线,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴,N E C E E M C E A D C A A BC A==,∴N E E M A DA B=,即N E A D b E MA Ba==,∵∠IEF+∠FEM=∠GEM+∠FEM=90°, ∴∠GEM=∠FEN , ∵∠GME=∠FNE=90°, ∴△GME ∽△FNE , ∴E F E N E G E M =,∴E F b E Ga=.评注:此题考查了正方形,矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.考点六:结论探究型:此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目. 例6:(2011福建省三明市)在矩形ABCD 中,点P 在AD 上,AB =2,AP =1.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图①). (1)当点E 与点B 重合时,点F 恰好与点C 重合(如图②),求PC 的长;(2)探究:将直尺从图②中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中,请你观察、猜想,并解答: ①tan ∠PEF 的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF 的中点经过的路线长.分析:(1)由勾股定理求PB ,利用互余关系证明△APB ∽△DCP ,利用相似比求PC ;(2)tan ∠PEF 的值不变.过F 作FG ⊥AD ,垂足为G ,同(1)的方法证明△APB ∽△DCP ,得相似比P F G F P EA P==21=2,再利用锐角三角函数的定义求值;(3)如图3,画出起始位置和终点位置时,线段EF 的中点O 1,O 2,连接O 1O 2,线段O 1O 2即为线段EF 的中点经过的路线长,也就是△BPC 的中位线. 解:(1)在矩形ABCD 中,∠A =∠D =90°,AP =1,CD =AB =2,则PB ∴∠ABP +∠APB =90°, 又∵∠BPC =90°, ∴∠APB +∠DPC =90°, ∴∠ABP =∠DPC , ∴△APB ∽△DCP ,∴A P PBC DP C=即12PC=∴PC(2)tan ∠PEF 的值不变.理由:过F 作FG ⊥AD ,垂足为G , 则四边形ABFG 是矩形, ∴∠A =∠PFG =90°,GF =AB =2, ∴∠AEP +∠APE =90°, 又∵∠EPF =90°, ∴∠APE +∠GPF =90°, ∴∠AEP =∠GPF , ∴△APE ∽△GPF , ∴P F G F P EA P==21=2,∴Rt △EPF 中,tan ∠PEF =P F P E=2,∴tan ∠PEF 的值不变;(3)线段EF .评注:本题考查了相似三角形的判定与性质,矩形的性质,解直角三角形.关键是利用互余关系证明相似三角形.考点七:规律探究型:规律探索问题是指由几个具体结论通过类比、猜想、推理等一系列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用.例7:(2011四川成都)设12211=112S ++,22211=123S ++,32211=134S ++,…,2211=1(1)n S nn +++设...S =+S =_________ (用含n 的代数式表示,其中n 为正整数).分析:由222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n nn n n nS n ,求n S ,得出一般规律.解:∵222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n nn n n nS n ,∴1111)1(1)1(+-+=+++=n nn n n n S n ,∴1111312112111+-+++-++-+=n nS111+-+=n n 1211)1(22++=+-+=n n n n n故答案为:122++n n n评注:本题考查了二次根式的化简求值.关键是由S n 变形,得出一般规律,寻找抵消规律.考点八:存在探索型:此类问题在一定的条件下,需探究发现某种数学关系是否存在的题目.例8:(2011辽宁大连)如图15,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.分析:(1)利用待定系数法求解;(2)若想求Q 点坐标,Q 到MB 的距离应该等于P 到MB 的距离,所以Q 点应该在经过P 点且平行于BM 的直线上,或者在这条直线关于BM 对称的直线上,因此,求出这两条直线的解析式,其与抛物线的交点即为所求Q 点;(3)设出R 点坐标,分别用其横坐标表示出△RPM 与△RMB 的面积,利用相等列出方程即可求出R 点坐标.解:(1)322++-=x x y(2)∵4)1(2+--=x y ∴P (1,4)BC :3+-=x y ,M (1,2)P (1,4);PB :62+-=x y , 当PQ ∥BC 时: 设PQ 1:b x y +-=∵P (1,4)在直线PQ 上b +-=14;5=b ∴PQ 1:5+-=x y⎩⎨⎧++-=+-=3252x x y x y 解得⎩⎨⎧==4111y x ,⎩⎨⎧==3222y x∴1Q :(2,3);将PQ 向下平移4个单位得到1+-=x y⎩⎨⎧++-=+-=3212x x y x y解得⎪⎪⎩⎪⎪⎨⎧+-=-=2171217311y x ,⎪⎪⎩⎪⎪⎨⎧--=+=2171217311y x∴2Q :(2173-,2171+-);3Q :(2173+,2171--)xx ,322++-x x ) ∵P (1,4),M (1,2)∴ 224=-=PM()11221-=-⨯⨯=∆x x S P Q Rx x x x x RN 3)3()32(22+-=+--++-=()11221-=-⨯⨯=∆x x S PQR∵x x x 312+-=- 解得121+=x ,122+-=x (舍) ∴当12+=x 时,24)121(2=+-+-=y∴R (12+,2)x评注:求面积相等问题通常是利用过顶点的平行线完成;在表示面积问题时,对于边不在特殊线上的通常要分割.四、真题演练1.(2011山东潍坊)一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当0x 时.y 随x 的增大而减小,这个函数解析式为_______________ (写出一个即可) 2.(2011山西)如图,四边形ABCD 是平行四边形,添加一.个.条件:___________ _______________________,可使它成为矩形.3.(2011•泰州)“一根弹簧原长10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y (cm )与所挂物体质量x (kg )之间的函数关系式为y=10+0.5x (0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是: (只需写出1个).3.(4.(2011广西百色)已知矩形ABCD 的对角线相交于点O ,M 、N 分别是OD 、OC 上异于O 、C 、D 的点.(1)请你在下列条件①DM =CN ,②OM =ON ,③MN 是△OCD 的中位线,④MN ∥AB 中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM 为等腰梯形,你添加的条件是 .(2)添加条件后,请证明四边形ABNM 是等腰梯形.(第14题)D第二部分练习部分1.(2011•贺州)写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:2.(2011•湖南张家界)在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,要使△ABC 与△DEF相似,则需添加的一个条件是(写出一种情况即可).分析:解答:解:则需添加的一个条件是:BC:EF=2:1.∵在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,∴AB:DE=2:1,AC:DF=2:1,∵BC:EF=2:1.∴△ABC∽△DEF.故答案为:.3.(2010江苏连云港中考题)若关于x的方程x2-mx+3=0有实数根,则m的值可以为___________.(任意给出一个符合条件的值即可)4.(2011广东湛江)如图,点B,C,F,E在同直线上,∠1=∠2,BC=EF,∠1 _______(填“是”或“不是”)∠2的对顶角,要使△ABC ≌△DEF ,还需添加一个条件,可以是 _______(只需写出一个)5.(2011福建省漳州市,19,8分)如图,∠B =∠D ,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC ≌△ADE ,并证明. (1)添加的条件是 ; (2)证明:6.(2010浙江杭州中考题)给出下列命题:命题1. 点(1,1)是直线y = x 与双曲线y = x1的一个交点;命题2. 点(2,4)是直线y = 2x 与双曲线y = x 8的一个交点; 命题3. 点(3,9)是直线y = 3x 与双曲线y = x27的一个交点;… … .(1)请观察上面命题,猜想出命题n (n 是正整数); (2)证明你猜想的命题n 是正确的.7.(2011•德州)●观察计算当a=5,b=3时,2a b +.当a=4,b=4时,2a b +2a b +.●探究证明如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD=a ,BD=b . (1)分别用a ,b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出2a b +2a b +.●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.8.(2011浙江绍兴)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况•探索结论当点E 为AB 的中点时,如图1,确定线段AE 与的DB 大小关系.请你直接写出结论:AE = DB (填“>”,“<”或“=”).(2)特例启发,解答題目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).★“真题演练”参考答案★1.【分析】本题的函数没有指定是什么具体的函数,可以从一次函数,反比例函数,二次函数三方面考虑,只要符合条件①②即可.【答案】符合题意的函数解析式可以是y= 2x,y=-x+3,y=-x2+5等,(本题答案不唯一)故答案为:y=2x,y=-x+3,y=-x2+5等.2.【分析】:由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.【答案】∠ABC=90°(或AC=BD等)3.解:根据弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x (0≤x≤5)可以得到:当x=1时,弹簧总长为10.5cm,当x=2时,弹簧总长为11cm,…∴每增加1千克重物弹簧伸长0.5cm , 故答案为:每增加1千克重物弹簧伸长0.5cm .4.解:(1)选择①DM =CN ;(2)证明:∵AD =BC ,∠ADM =∠BCN ,DM =CN ∴△AND ≌△BCN ,∴AM =BN ,由OD =OC 知OM =ON , ∴OCON ODOM =∴MN ∥CD ∥AB ,且MN ≠AB ∴四边形ABNM 是等腰梯形.★“练习部分”参考答案★1.【分析】设此正比例函数的解析式为y=kx (k≠0), ∵此正比例函数的图象经过二、四象限, ∴k <0,∴符合条件的正比例函数解析式可以为:y=﹣x (答案不唯一). 【答案】故答案为:y=﹣x (答案不唯一).2.【分析】因为两三角形三边对应成比例,那么这两个三角形就相似,从题目知道有两组个对应边的比为2:1,所以第三组也满足这个比例即可.【答案】BC :EF=2:13.【分析】由于这个方程有实数根,因此⊿=()22241212b a m m -=--=-≥0,即m 2≥12.【答案】答案不唯一,所填写的数值只要满足m 2≥12即可,如4等4.【分析】根据对顶角的意义可判断∠1不是∠2的对顶角.要使△ABC ≌△DEF ,已知∠1=∠2,BC=EF ,则只需补充AC=FD 或∠BAC=∠FED 都可,答案不唯一. 【答案】解:根据对顶角的意义可判断∠1不是∠2的对顶角故填:不是.添加AC=FD 或∠BAC=∠FED 后可分别根据SAS 、AAS 判定△ABC ≌△DEF , 故答案为:AC=FD ,答案不唯一.5.解:(1)添加的条件是:AB =AD ,答案不唯一; (2)证明:在△ABC 和△ADE 中, ∠B =∠D , AB =AD , ∠A =∠A ,∴△ABC ≌△ADE .6.(1)命题n ;点(n , n 2) 是直线y = nx 与双曲线y =xn3的一个交点(n 是正整数).(2)把 ⎩⎨⎧==2ny nx 代入y = nx ,左边= n 2,右边= n ·n = n 2,∵左边=右边,∴点(n ,n 2)在直线上. 同理可证:点(n ,n 2)在双曲线上, ∴点(n ,n 2)是直线y = nx 与双曲线y = xn3的一个交点,命题正确.7.解:●观察计算:2a b +,2a b +.●探究证明:(1)∵AB=AD+BD=2OC , ∴OC=2a b +.∵AB 为⊙O 直径, ∴∠ACB=90°.∵∠A+∠ACD=90°,∠ACD+∠BCD=90°, ∴∠A=∠BCD .∴△ACD ∽△CBD .(4分) ∴A D C D C DB D=.即CD 2=AD•BD=ab ,∴(5分)(2)当a=b 时,OC=CD ,2a b +a≠b 时,OC >CD ,2a b +>.●结论归纳:2a b +≥.●实践应用设长方形一边长为x 米,则另一边长为1x米,设镜框周长为l 米,则12()l x x=+≥=4.当x=1x,即x=1(米)时,镜框周长最小.此时四边形为正方形时,周长最小为4米.8.解:(1)故答案为:=. (2)故答案为:=.证明:在等边△ABC 中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC , ∵EF ∥BC ,∴∠AEF=∠AFE=60°=∠BAC , ∴AE=AF=EF , ∴AB ﹣AE=AC ﹣AF , 即BE=CF ,∵∠ABC=∠EDB+∠BED=60°, ∠ACB=∠ECB+∠FCE=60°, ∵ED=EC ,∴∠EDB=∠ECB,∴∠BED=∠FCE,∴△DBE≌△EFC,∴DB=EF,∴AE=BD.(3)答:CD的长是1或3.。

备战中考--第38讲开放性问题--(附解析答案)

备战中考--第38讲开放性问题--(附解析答案)

备战2019中考初中数学导练学案50讲第38讲开放性问题【疑难点拨】1.开放性问题的基本方法:(1)条件开放型问题:从结论出发,执果索因,逆向推理,逐步探求结论成立的条件或把可能产生结论的条件一一列出,逐个分析;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.2. 解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

3.肯定型存在性问题:解决“肯定型存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.4. 讨论型存在性问题将问题看成求解题,进而从有解或无解的条件,来判明数学对象是否存在,这是解决讨论型存在性问题的主要方法.另外,先猜出对象可能存在或不存在,从而将讨论型存在性问题转化为肯定型或否定型处理,是解决讨论型存在性问题的又一重要方法.【基础篇】一、选择题:1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )(A)CB=CD (B)∠BAC=∠DAC(C)∠BCA=∠DCA (D)∠B=∠D=90°2.(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=3.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有( )A.3种B.6种C.8种D.12种5.(2017呼和浩特)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO= C.AF= D.四边形AFCE的面积为二、填空题:6.(2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.7.(2015•广东梅州,第12题,3分)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是.(写出一个即可)8.(2018·广东广州·3分)如图9,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE③AF:BE=2:3 ④其中正确的结论有________。

专题讲座:开放性问题(1)(1)(1)

专题讲座:开放性问题(1)(1)(1)
A E
图2-1-12
F B
C
D
例2 如图所示,在平行四边形 ABCD中,BE平分∠ABC交 AD于点E,DF平分∠ADC交 BC于点F,
1、求证: △ ABE ≌△ CDF
. 2、若BD ⊥EF则判断四边形 主要考查发散 EBFD是什么特殊四边形请证 性思维和所学 明你的结论
基本知识的应 用能力
【解答】 (1) 证明 : ∵ 四边形 ABCD 是平行四边形 , ∴∠ A = ∠ C , AB = CD , ∠ ABC = ∠ ADC. ∵ BE 平分 ∠ ABC , DF 平分 ∠ ADC ,
说明:只需要K的值大于0 (2)已知一次函数y=kx+b(k≠0)的图象过点(0, 1),且y随x的增大而增大,请你写出一个符合上述 条件的函数关系式 。
如:y=2x+1,
y=6x+1,
y=0.8x+1………….
说明:只需要K的值大于0和b=1
专题训练
(三)条件、结论开放型(组合型)
组合开放型试题的条件和结论都不确定,需要考 生认定条件和结论,然后组成一个新命题,并加以 证明或判断. 这种新颖的组合型开放题,已使几何的 论证转向发现、猜想与探究,成为中考命题的热点。
1.(2011· 金华)请你写出一个图像过二、四象限的反 比例函数的解析式_________。
2.(2010· 达州)写出两个乘积为整数的无理数______。
初中数学总复习专题训练
-----开放性问题研究
喜德中学
蒲蔚
开门见山,导入课题
*数学开放性问题 是指那些条件不完整,结论不确 定,解法不受限制的数学问题.
∴∠ ABE = ∠ CDF. ∴△ ABE ≌ CDF (ASA ) .

中考数学真题分类汇编(第三期)专题39 开放性问题试题(含解析)

中考数学真题分类汇编(第三期)专题39 开放性问题试题(含解析)

开放性问题解答题1. (xx·湖北十堰·12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x 轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△ABE 有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE 的解析式,与抛物线列方程组可得交点D的坐标;②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.【解答】解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△AB C.△AB E.△AC E.△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x1=0(舍),x2=,∴D(,);②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为(,)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.2. (xx·湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t 的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).3.(xx·辽宁省盘锦市)如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEF G绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E.G恰好分别落在线段AD.CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.【解答】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM.在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH.∵CD=BC,∴CE=CH\1∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B.E.D在同一条直线上.∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME.∵∠EFD=45°,∴∠EFC=135°.∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD.∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC.∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°.∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.4. (xx•乐山•12分)已知Rt△ABC中,∠ACB=90°,点D.E分别在BC.AC边上,连结BE.AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=,且D.E分别在CB.CA的延长线上,(2)中的结论是否成立,请说明理由.解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.故答案为:45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴.∵BD=AF,∴.∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴=,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD.∵AD∥BF,∴∠EFB=90°.在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD.∵AC=BD,CD=AE,∴.∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE.∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°.在Rt△DAH中,tan∠ADH==,∴∠ADH=30°,∴∠APE=30°.5. (xx•莱芜•12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.【解答】解:(1)由题意,得,解得,抛物线的函数表达式为y=﹣x2+x+3;(2)设直线BC的解析是为y=kx+b,,解得∴y=﹣x+3,设D(a,﹣a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,M(a,﹣a+3),DM=(﹣a2+a+3)﹣(﹣a+3)=﹣a2+3a,∵∠DME=∠OCB,∠DEM=∠BOC,∴△DEM∽△BOC,∴=,∵OB=4,OC=3,∴BC=5,∴DE=DM∴DE=﹣a2+a=﹣((a﹣2)2+,当a=2时,DE取最大值,最大值是,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE=∠CFO,∴tan∠DCE==2,∴BG=10,∵△GBH∽BCO,∴==,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b,∴,解得∴直线CG的解析式为y=x+3,∴,解得x=,或x=0(舍).②若∠CDE=∠CFO,同理可得BG=,GH=2,BH=,∴G(,2),同理可得,直线CG的解析是为y=﹣x+3,∴,解得x=或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,由;利用了待定系数法求函数解析式,解方程组的横坐标.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。

2020年中考数学:创新、开放与探究型问题专题复习

2020年中考数学:创新、开放与探究型问题专题复习

2020年中考数学:创新、开放与探究型问题专题复习(名师精选试卷,建议下载练习)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:,,,,…想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得到规律:(n 为正整数) 【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三: 222211⨯=+333322⨯=+444433⨯=+555544⨯=⨯11(1)(1)n n n n n n+++=++【变式】一根绳子,弯曲成如图(a)所示的形状,当用剪刀像图(b)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(c)那样沿虚线b(b∥a)把绳子再剪一次时,绳子被剪为9段,当用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时,绳子的段数是________ (用含n的代数式表示).【答案】首先,在剪0次时,有1段绳子;其次,每剪一次,绳子上多出4个断口,即绳子的段数增加4段,剪n次之后绳子的段数多出4n段.故剪n次时,绳子的段数是4n+1(n为正整数).类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DCE=∠BAF.又∵AE=CF.∴AC-AE=AC-CF.∴AF=CE,∴△DEG≌△BAF.【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【创新、开放与探究型问题例1】【变式】如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A 处对山顶的俯角为,测出飞机在B 处对山顶的俯角为,测出AB 的距离为d ,连接AM ,BM .⑵第一步,在中, ∴; 第二步,在中, ∴; 其中,解得.类型三、结论开放型 3.已知:如图(a),Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.αβAMN Rt ∆AN MN =αtan αtan MN AN =BMN Rt ∆BN MN =βtan βtan MN BN =BN d AN +=αββαtan tan tan tan -⋅⋅=dMN【思路点拨】此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【答案与解析】解:可以写出的结论有:CD=BE,DB∥CE,AF⊥BD,AF⊥CE等.(1)如图(b),连接CD,BE,得CD=BE.证明:∵△ABC≌△ADE,∴AB=AD,AC=AE.又∠CAB=∠EAD,∴∠CAD=∠EAB.1∴△ADC≌△ABE.∴CD=BE.(2)如图(c),连接DB,CE,得DB∥CE.证明:∵△ABC≌△ADE,∴AD=AB.∴∠ADB=∠ABD.∵∠ABC=∠ADE,∴∠BDF=∠FBD.由AC=AE可得∠ACE=∠AEC.∵∠ACB=∠AED,∴∠FCE=∠FEC.∵∠BDF+∠FBD=∠FCE+∠FEC,∴∠FCE=∠DBF.∴DB∥CE.(3)如图(d),连接DB,AF,得AF⊥BD.∵△ABC≌△ADE,∴AD=AB,∠ABC=∠ADE=90°.又∵AF=AF,∴△ADF≌△ABF.∴∠DAF=∠BAF.∴AF⊥BD.(4)如图(e),连接CE、AF,得AF⊥CE.同(3)得∠DAF=∠BAF.可得∠CAF=∠EAF.∴AF⊥BD.【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【创新、开放与探究型问题 例2】【变式】数学课上,李老师出示了这样一道题目:如图,正方形的边长为,P 为边延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N.当CP=6时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,分别于F ,G ,如图,则可得:,因为,所以.可求出和的值,进而可求得EM 与EN 的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【答案】 (1)解:过作直线平行于交,分别于点,,则,,. ∵,∴.∴,. ∴. (2)证明:作∥交于点,则,.1ABCD 12BC AB 2DF DE FC EP=DE EP =DF FC =EF EG DP MN=E BC DC AB F G DF DE FC EP =EM EF EN EG=12GF BC ==DE EP =DF FC =116322EF CP ==⨯=12315EG GF EF =+=+=31155EM EF EN EG ===MH BC AB H MH CB CD ==90MHN ∠=︒∵,∴.∵,,∴.∴.∴.类型四、动态探究型 4.如图所示,AB ,AC 分别是⊙O 的直径和弦,D 为劣弧上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为.ED 的延长线一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧的什么位置时,才能使AD 2=DE·DF ?为什么?【思路点拨】(1)连接OC .要使PC 与⊙O 相切,则只需∠PCO =90°即可.由∠OCA =∠OAC ,∠PFC =∠AFH ,即可寻找出△PCF 所要满足的条件;1809090DCP ∠=︒-︒=︒DCP MHN ∠=∠90MNH CMN DME CDP ∠=∠=∠=︒-∠90DPC CDP ∠=︒-∠DPC MNH ∠=∠DPC MNH ∆≅∆DP MN=AC AC(2)要使AD 2=DE·DF ,即,也就是要使△DAF ∽△DEA ,这样问题就较容易解决了. 【答案与解析】 解: (1)当PC =PF(或∠PCF =∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切.证明:连接OC .∵PC =PF ,∴∠PCF =∠PFC .∴∠PCO =∠PCF+∠OCA =∠PFC+∠OAC =∠AFH+∠AHF =90°.∴PC 与⊙O 相切.(2)当点D 是的中点时,AD 2=DE·DF .连接AE ,∵,∴∠DAF =∠DEA .又∴∠ADF =∠EDA .∴△DAF ∽△DEA .∴,∴AD 2=DE·DF . 【总结升华】本题是探索条件半开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件;第(2)小题也是如此.类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题: AD DF DE AD=AC AD CD =AD DF DE AD =(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力.【答案与解析】(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积等.(2)满足条件的图形有很多,只要画正确一个,就可以得满分.图5【总结升华】 本题为开放型试题,答案并不唯一,只要考生能够写出一种符合要求的情景即可,该题为考生提供了一个广阔的发挥空间,但是学生必须通过前四个图形发现其中蕴涵的规律,依照此规律来画出自己想象中的美妙图形.图4 图3中考冲刺:创新、开放与探究型问题—巩固练习(基础)【巩固练习】一、选择题1.若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是()A.0.88 B.0.89 C.0.90 D.0.912.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有( )A.1个B.2个C.3个D.4个3.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,类似地,称图(2)中的1,4,9,16,…,这样的数为正方形数,下列数中既是三角形数又是正方形数的是( )A.15 B.25 C.55 D.1225二、填空题4.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=6.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2009与点P2010之间的距离为__________.5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.三、解答题7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC 边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线,,直线的解析式为.如果将坐标纸折叠,使直线与重合,此时点(-2,0)与点(0,2)也重合.(1)求直线的解析式;(2)设直线与相交于点M .问:是否存在这样的直线,使得如果将坐标纸沿直线折叠,点M 恰好落在x 轴上?若存在,求出直线的解析式;若不存在,请说明理由.9.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1)设,,求A 与B 的积; (2)提出(1)的一个“逆向”问题,并解答这个问题.10. 已知:在Rt △ABC 中,∠ABC =90°,D 是AC 的中点,⊙O 经过A ,D ,B 三点,CB 的延长线交⊙O 于点E(如图(a)).在满足上述条件的情况下,当∠CAB 的大小变化时,图形也随着改变(如图(b)),在这个变化过1l 2l 1l 213y x =-+1l 2l 2l 1l 2l :l y x t =+l l 322x x A x x =--+24x B x-=程中,有些线段总保持着相等的关系.(1)观察上述图形,连接图(b)中已标明字母的某两点,得到一条新线段,证明它与线段CE 相等;(2)在图(b)中,过点E 作⊙O 的切线,交AC 的延长线于点F .①若CF =CD ,求sin ∠CAB 的值;②若,试用含n 的代数式表示sin ∠CAB(直接写出结果).【答案与解析】一、选择题1.【答案】A ;【解析】不是“连加进位数”的有“0,1,2,10,11,12,20,21,22,30,31,32”共有12个.∴P(取到“连加进位数”)=. 2.【答案】D ;【解析】如图,①过圆点O 作AB 的垂线交和于M 1,M 2.(0)CF n n CD =>100120.88100-=AB APB②以B 为圆心AB 为半径作弧交圆O 于M 3.③以A 为圆心,AB 为半径弧作弧交圆O 于M 4.则M 1,M 2,M 3,M 4都满足要求.3.【答案】D ;二、填空题4.【答案】2.【解析】如图,按要求作出P 4,P 5,P 6….可发现如下规律:P 0,P 6,P 12,P 18…重合;P 1,P 7,P 13,P 19…重合;P 2,P 8、P 14,P 20…重合;P 3,P 9、P 15,P 21…重合;P 4,P 10,P 16,P 22…重合;P 5,P 11,P 17,P 23…重合.(以6为周期循环)∵2009=334×6+5,2010=335×6,∴P2009与P5重合;P2010与P0重合;求P2009与P2010之间距离也就是求P5与P0之间距离,△BP0P5是等边三角形.∴P0P5=2,即P2009与P2010之间距离为2.5.【答案】B;603;6n+3.【解析】由题意知A→B→C→D→C→B→A→B→C→D→C→B→A→B…,每隔6个数重复一次“A→B→C→D→C→B→”,所以,当数到12时对应的字母是B;当字母C第201次出现时,恰好数到的数是201×3=603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(2n+1)×3=6n+3.6.【答案】答案不唯一.(1)如图(a)中∠A=∠D,或AB=DC;(2)图(b)中∠D=∠B,或等.三、解答题7.【答案与解析】(1)证明:∵四边形ABCD是梯形,AD∥BC,AB=CD,∴∠ABC=∠DCB.又∵BC=CB,AB=DC,∴△ABC≌△DCB.∴∠1=∠2.AB AC AD AE又∵ GE ∥AC ,∴∠2=∠3.∴∠1=∠3.∴EG =BG .∵EG ∥OC ,EF ∥OB ,∴四边形EGOF 是平行四边形.∴EG =OF ,EF =OG .∴四边形EGOF 的周长=2(OG+GE)=2(OG+GB)=2OB .(2)方法1:如图乙,已知矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为BC 上一个动点(点E 不与B ,C 两点重合),EF ∥BD ,交AC 于点F ,EG ∥AC 交BD 于点G .求证:四边形EFOG 的周长等于2OB .图略.方法2:如图丙,已知正方形ABCD 中,……其余略.8. 【答案与解析】解:(1)直线与y 轴交点的坐标为(0,1).由题意,直线与关于直线对称,直线与x 轴交点的坐标为(-1,0).又∵直线与直线的交点为(-3,3),∴直线过点(-1,0)和(3,3).设直线的解析式为y =kx+b .则有1l 1l 2l y x =-2l 1l y x =-2l 2l解得 所求直线的解析式为. (2)∵直线与直线互相垂直,且点M(-3,3)在直线上,∴如果将坐标纸沿直线折叠,要使点M 落在x 轴上,那么点M 必须与坐标原点O 重合,此时直线过线段OM 的中点. 将,代入y =x+t ,解得t =3. ∴直线l 的解析式为y =x+3.9.【答案与解析】解:(1) . (2)“逆向”问题一: 已知,,求A . 解答:. “逆向”问题二:已知,,求B . 0,3 3.k b k b -+=⎧⎨-+=⎩3,23.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩2l 3322y x =--l y x =-y x =-l l 33,22⎛⎫-- ⎪⎝⎭32x =-32y =23422x x x A B x x x -⎛⎫=- ⎪-+⎝⎭22(4)428(2)(2)x x x x x x x+-==+-+28A B x =+24x B x-=22228()(28)44x x x A AB B x x x +=÷=+=--28A B x =+322x x A x x =--+解答: . “逆向”问题三: 已知A·B =2x+8,A+B =x+10,求(A -B)2.解答:(A -B)2=(A+B)2-4A·B=(x+10)2-4(2x+8)=x 2+12x+68.10.【答案与解析】解:(1)连接AE .求证:AE =CE .证法一:如图(a),连接OD .∵∠ABC =90°,CB 的延长线交⊙O 于点E ,∴∠ABE =90°.∴AE 是⊙O 的直径.∵D 是AC 的中点,O 是AE 的中点,3()(28)22x x B A B A x x x ⎛⎫=÷=+÷- ⎪-+⎝⎭2(4)(28)(2)(2)x x x x x +=+÷-+2(2)(2)42(4)2(4)x x x x x x x-+-=+=+∴. ∵, ∴AE =CE .证法二:如图(b),连接DE .同证法一,得AE 是⊙O 的直径. ∴∠ADE =90°.∵D 是AC 的中点,∴DE 是线段AC 的垂直平分线.∴AE =CE .(2)①根据题意画出图形.如图(c),连接DE .∵AE 是⊙O 的直径,EF 是⊙O 的切线,∴∠ADE =∠AEF =90°.∴Rt △A 1DE ∽Rt △EDF .∴. 设AD =k 是(k >0),则DF =2k .∴. ∴.在Rt △CDE 中,∵ CE 2=CD 2+DE 2=3k 2,∴.∵∠CAB =∠DEC .∴sin ∠CAB =sin ∠DEC =. 12OD CE =12OD AE =AD DE DE DF =2k DE DE k=DE=CE=3CD CE =②.sin (0)2CAB n n ∠=>+。

2020中考数学复习测试:热点专题突破 专题六%E3%80%80开放型

2020中考数学复习测试:热点专题突破 专题六%E3%80%80开放型

专题六开放型条件开放类[类型解读]条件开放类问题的三种类型(1)补充条件型:题目给出部分条件,然后再添加一个(或几个)条件,使结论成立.(2)探索条件型:题目只给出结论,通过分析给出的结论特征,发现使结论成立的条件.(3)条件变化型:在原有条件与结论的基础上,题目的结论发生变化,需要补充条件.[例1](2019绍兴)在屏幕上有如下内容:如图,△ABC内接于☉O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的是∠A=30°,连接OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.解决条件开放型问题的一般思路:从结论出发,执果索因,逆向思维,逐步探求结论成立的条件.强化运用1:(2019齐齐哈尔)如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).结论开放类[类型解读]结论开放型问题的两种类型(1)结论是否成立型:这类探索问题的设问,常以适合某种条件的结论“成立”“不成立”等语句加以表述.从给出的已知条件出发,经过推理证明能够推出结论是否成立.(2)判断猜想型:这类问题设问通常有两条线段有何关系(探索相等、平行或垂直),两个角是否相等,这个三角形是什么特殊的三角形,这个四边形是什么特殊的四边形等.它与传统题的区别在于:探索问题的结论过程往往也是解题过程.[例2]小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明;(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.解决结论开放型问题,要充分利用题目中给出的条件合理地猜想,正确地推理,就会获得所求的结论.强化运用2:(2019贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,NB的数量关系.存在性开放类[类型解读]存在性开放问题常见的四种类型(1)特殊点存在性开放问题:图形中存在特殊的点,该点满足题目中的某些条件,通过探索,推理证明或运算说明该点存在.(2)特殊三角形存在性开放问题:图形中存在着特殊的三角形(等腰三角形或直角三角形),通过探索,推理证明或运算说明该特殊三角形存在.(3)相似三角形存在性开放问题:图形中存在着与原三角形相似的三角形,通过探索,推理证明说明该三角形存在.(4)特殊四边形存在性开放问题:图形中存在着特殊的四边形,通过探索,推理证明或运算说明该特殊四边形存在.[例3](2019辽阳)如图,在平面直角坐标系中,Rt△ABC 的边BC在x轴上,∠ABC=90°,以A 为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D作平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请求出符合条件的M点坐标;若不存在,请说明理由.解决存在性问题,需先假设存在,再进行推演,若得出推演结果,则说明结论存在;若推出矛盾,则推翻假设,说明结论不存在.2+bx+c(a≠0)经过点A(3,0),B(-1,0),C(0,-3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.1.(2019咸宁)若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是(写一个即可).2.如图,在平面直角坐标系中,点A,B的坐标分别为(1,3),(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)3.如图,在△ABC中,AB≠AC,D,E分别为边AB,AC上的点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: ,可以使得△FDB与△ADE相似.(只需写出一个)第2题图第3题图4.(2019舟山)如图,在矩形ABCD中,点E,F在对角线BD上.请添加一个条件,使得结论“AE=CF”成立,并加以证明.5.(2019温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.6.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于点N,当△ANM面积最大时,求点M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴,与抛物线交于点Q.过A作AC⊥x轴于点C,当以点O,P,Q 为顶点的三角形与以点O,A,C为顶点的三角形相似时,求P点的坐标.专题六开放型专题突破[例1]解:(1)如图,连接OC,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3.(2)(答案不唯一)添加∠DCB=30°,求AC的长.解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.强化运用1:AB=DE(答案不唯一)[例2]证明:(1)∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴∠AEB=90°,∴∠AFC=∠AFD=90°,在△AEB和△AFD中,∴△AEB≌△AFD,∴AE=AF.(2)由(1)得∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,∴△AEP≌△AFQ(ASA),∴AP=AQ.强化运用2:解:(1)AB=(AF+BE).理由如下:∵△ABC是等腰直角三角形,∴AC=BC,∠A=∠B=45°,AB=AC,∵四边形DECF是正方形,∴DE=DF=CE=CF,∠DFC=∠DEC=90°,∴∠A=∠ADF=45°,∴AF=DF=CE,∴AF+BE=BC=AC,∴AB=(AF+BE).(2)如图,延长AC到点M,使FM=BE,连接DM,∵四边形DECF是正方形,∴DF=DE,∠DFC=∠DEC=90°,∵BE=FM,∠DFC=∠DEB=90°,DF=ED,∴△DFM≌△DEB(SAS),∴DM=DB,∵AB=AF+BE,AM=AF+FM,FM=BE,∴AM=AB,又DM=DB,AD=AD,∴△ADM≌△ADB(SSS).∴∠DAC=∠DAB=∠CAB,同理,得∠ABD=∠CBD=∠ABC,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∴∠DAB+∠ABD=(∠CAB+∠CBA)=45°,∴∠ADB=180°-(∠DAB+∠ABD)=135°. (3)∵四边形DECF是正方形,∴DE∥AC,DF∥BC,∴∠CAD=∠ADM,∠CBD=∠NDB,∠MDN=∠AFD=90°,∵∠DAC=∠DAB,∠ABD=∠CBD,∴∠DAB=∠ADM,∠NDB=∠ABD,∴AM=MD,DN=NB,在Rt△DMN中,MN2=MD2+DN2,∴MN2=AM2+NB2.[例3]解:(1)将点C(3,0),E(0,3)的坐标分别代入二次函数解析式,得解得故抛物线的解析式为y=-x2+2x+3.(2)由(1)知y=-x2+2x+3=-(x-1)2+4,∴点A的坐标为(1,4),设直线AC的解析式为y=kx+b,把A(1,4),C(3,0)代入,得解得∴直线AC的解析式为y=-2x+6,由题意,知AP=t,∴BP=4-t(0≤t≤4).把y=4-t代入y=-2x+6得4-t=-2x+6,解得x=1+.∴点D的坐标为1+,4-t.把x=1+代入y=-x2+2x+3,得y=-1+2+2×1++3=-+4,∴点Q的坐标为1+,-+4.∴QD=y Q-y D=-+4-(4-t)=-+t,∴S△ACQ=S△ADQ+S△CDQ=QD·(x Q-x A)+QD·(x C-x Q)=QD·(x C-x A)=×-+t×(3-1)=-+t=-(t-2)2+1(0≤t≤4).∴当t=2时,△ACQ的面积最大,最大面积为1.(3)设点P的坐标为(1,m),点M的坐标为(x,y),①当EC是菱形一条边时,且点M在直线AB右侧时,点E向右平移3个单位、向下平移3个单位得到C,则点P向右平移3个单位、向下平移3个单位得到M,则1+3=x,m-3=y,而MP=EP,得1+(m-3)2=(x-1)2+(y-m)2,解得y=m-3=,故点M的坐标为(4,);当点M在直线AB左侧时,同理,得点M的坐标为(-2,3+);②当EC是菱形一对角线时,则EC的中点即为PM的中点,则x+1=3,y+m=3,而PE=PC,即1+(m-3)2=4+m2,解得m=1,故x=2,y=3-m=3-1=2,故点M的坐标为(2,2).综上,点M的坐标为(4,)或(-2,3+)或(2,2).强化运用3:解:(1)把A(3,0),B(-1,0),C(0,-3)代入抛物线解析式,得解得则该抛物线的解析式为y=x2-2x-3.(2)设直线BC的解析式为y=kx-3,把B(-1,0)代入得-k-3=0,即k=-3,∴直线BC的解析式为y=-3x-3,∵A(3,0),B(-1,0),C(0,-3),∴AB=4,BC=,BO=1,如图,∵以点A为圆心的圆与直线BC相切于点M,∴AM⊥BC,∴∠AMB=∠COB=90°.∵∠ABM=∠CBO,∴△ABM∽△CBO,∴=,∴=,∴BM=,设M点的坐标为(m,-3m-3).则BM2=(-1-m)2+(3m+3)2=,解得m1=-,m2=-(不合题意,舍去)∴M点的坐标为-,-.(3)存在以点B,C,Q,P为顶点的四边形是平行四边形.设Q(x,0),P(n,n2-2n-3),当四边形BCQP为平行四边形时,由B(-1,0),C(0,-3),则-1+x=0+n,0+0=-3+n2-2n-3,解得n1=1+,n2=1-,当n=1+时,n2-2n-3=3,即P1(1+,3);当n=1-时,n2-2n-3=3,即P2(1-,3).当四边形BCPQ为平行四边形时,则-1+n=0+x,0+n2-2n-3=-3+0,解得n3=0,n4=2,当n=0时,不合题意,舍去;当n=2时,n2-2n-3=-3,即P3(2,-3).当四边形BQCP为平行四边形时,x+n=-1+0,0+n2-2n-3=-3+0,解得n5=0,n6=2,则P4(2,-3).综上可得,存在以点B,C,Q,P为顶点的四边形是平行四边形,点P的坐标为(1+,3)或(1-,3)或(2,-3).专题精练1.-1(答案不唯一)2.2(答案不唯一)3.∠BDF=∠A(答案不唯一)4.解:(答案不唯一)添加的条件是BE=DF.证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF,∴△ABE≌△CDF(SAS),∴AE=CF.5.解:(1)(答案不唯一)满足条件的△EFG,如图1,2所示.(2)(答案不唯一)满足条件的四边形MNPQ如图所示.6.解:(1)∵抛物线过原点,对称轴是直线x=3,∴点B的坐标为(6,0),设抛物线解析式为y=ax(x-6),把A(8,4)代入,得4=8a(8-6),解得a=,∴抛物线解析式为y=x(x-6)=x2-x.(2)设M(t,0),直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得∴直线AB的解析式为y=2x-12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=-2t,∴直线MN的解析式为y=2x-2t,解方程组得则N t,t,∴S△AMN=S△AOM-S△NOM=×4t-t×t=-t2+2t=-(t-3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0).(3)设点P(m,0),则点Q m,m2-m,当△PQO∽△COA时,=,即=,∴PQ=2PO,即m2-m=2|m|,解方程m2-m=2m,得m1=0(舍去),m2=14,此时P点坐标为(14,0);解方程m2-m=-2m,得m3=0(舍去),m4=-2,此时P点坐标为(-2,0).当△PQO∽△CAO时,=,即=,∴PQ=PO,即m2-m=|m|,解方程m2-m=m,得m5=0(舍去),m6=8(舍去),解方程m2-m=-m,得m7=0(舍去),m8=4,此时P点坐标为(4,0).综上所述,P点坐标为(14,0)或(-2,0)或(4,0).。

开放性问题1


(二)结论开放题
给出问题的条件,让解题者根据条件探索相应的结论, 并且符合条件的结论往往呈现多样性.这些问题都是结 论开放性问题.这类问题的解题方法是充分利用已知条 件或图形特征,进行猜想、类比、联想、归纳,透彻 分析出给定条件下可能存在的结论对象,然后经过论 证作出取舍.
1.已知一次函数y=kx+b(k≠0)的图象经过点(0, 1),且y随x的增大而增大,请你写出一个符合上述 条件的函数关系式
A
E B F C
Y
X
1 3
1
图2-1-9
D
-1 1 2 4.函数 y ax bx c 的图象如图所示, x 为该 3 图象的对称轴,根据这个函数图象,你能得到关于该函数的 那些性质和结论?(写出四个即可)
(三)组合开放题 组合开放型试题的条件和结论都不确定,需要考生 认定条件和结论,然后组成一个新命题,并加以证 明或判断. 这种新颖的组合型开放题,已使几何的论 证转向发现、猜想与探究.成为中考命题的热点.
3.编写一道应用题,使得根据题意列出的方程为:
再解答你所列出的应用题。(要求:所编应用题完
整,题意清楚,联系生活且其解符合实际。)
120 120 1 x x 10
A E图2-1ຫໍສະໝຸດ 12F BCD
2. 如图,四边形ABCD中,点E在边CD上,连接 AE、BE。给出下列五个关系式:①AD∥BC;② DE=CE;③∠1=∠2;④∠3=∠4;⑤ AD+BC=AB。将其中的三个关系式作为题 设,另外两个作为结论,构成一个命题。 ⑴用序号写出一个真命题 (书写格式如:如果…那么…) 并给出证明 ⑵用序号再写出三个真命题 (不要求证明)
1.如图2-1-12,△ADF和△BCE中,∠A=∠B, 点D、E、F、C在同一直线上,有如下三个关 系式:① AD=BC;② DE=CF;③BE∥AF. ⑴ 请用其中两个关系式作为条件,另一个作为结论, 写出所有你认为正确的命题.(用序号写出命题书写 形式,如:如果╳、╳,那么╳) ⑵ 选择⑴中你写出的—个命题,说明它正确的理由.

金老师教育-中考数学总复习:53创新、开放与探究型问题--知识讲解(附培优提高题练习含答案解析)

中考冲刺:创新、开放与探究型问题—知识讲解(提高)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律1.(2020•武汉校级二模)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2020,最少经过()次操作.A.7 B.6 C.5 D.4【思路点拨】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【答案】D.【解析】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选D.【总结升华】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.举一反三:【变式】(2020•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2020的坐标为 .【答案与解析】解:∵△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,3),∵2020÷3=672,∴A2020是第672个等边三角形的第3个顶点,∴点A2020的坐标为(0,×3),即点A2020的坐标为(0,4483);故答案为:(0,4483).类型二、条件开放型、结论开放型2.在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B、点C的坐标:;(2)若底边BC的两端点分别在x轴、y轴上,请写出一组满足条件的点B、点C的坐标: .【思路点拨】(1)首先由BC在x轴上,在等腰△ABC中,即可过顶点A作AD⊥BC交BC于D,根据三线合一的性质,可得BD=CD,即B,C关于点D对称,则可求得满足条件的点B、点C的坐标;(2)连接OA,由等腰三角形ABC的顶点A的坐标为(2,2),易证得△AOB≌△AOC,则可知OB=OC,继而可得满足条件的点B、点C的坐标.【答案与解析】解:(1)∵BC在x轴上,在等腰△ABC中,过顶点A作AD⊥BC交BC于D,∵顶点A的坐标为(2,2),∴D的坐标为(2,0),在等腰△ABC中,有BD=CD,∴B,C关于点D对称,∴一组满足条件的点B、点C的坐标为:B(0,0),C(4,0);(2)连接OA,∵等腰三角形ABC的顶点A的坐标为(2,2),∴∠AOC=∠AOB=45°,∴当OB=OC时,在△AOB与△AOC中,OB=OCAOB=AOC OA=OA⎧⎪∠∠⎨⎪⎩∴△AOB≌△AOC,∴AB=AC,即△ABC是等腰三角形,∴一组满足条件的点B、点C的坐标:(0,1),(1,0).【总结升华】此题考查了等腰三角形的性质,全等三角形的判定与性质等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.举一反三:【变式】在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B,点C的坐标:________________;设点B,点C的坐标分别为(m,0),(n,0),你认为m,n应满足怎样的条件?(2)若底边BC的两个端点分别在x轴,y轴上,请写出一组满足条件的点B,点C的坐标:______________;设点B,点C的坐标分别为(m,0),(0,n),你认为m,n应满足怎样的条件?【答案】解:可以通过等腰三角形的作法来探求符合题意的条件:由于AB=AC,故点B和点C在以A为圆心的同一个圆上.(1)如图(a),作AE⊥x轴于E,以大于AE的长度为半径画弧,与x轴的交点即为符合题意的点B和点C.易知E(2,0)为线段BC的中点,故CE=EB,即n-2=2-m;如:点B(0,0),点C(4,0);m+n=4且m ≠n.(2)类似于(1)作OA,与两条坐标轴分别交于B1,B2,C1,C2,显然当A,B,C三点不共线时这样确定的点B,C均符合题意.如:点B(1,0),点C(0,1),或点B(3,0),点C(0,1);m=n,且m,n不为0和4;或m+n=4.类型三、条件和结论都开放的问题3.如图(1),四边形ABCD中,AD与BC不平行,现给出三个条件:①∠CAB=∠DBA,②AC=BD,③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件后能够推出ABCD是等腰梯形,并加以证明(只需证明一种情况).【思路点拨】有两种方法,第一种是:①∠CAB=∠DBA,②AC=BD;第二种是:②AC=BD,③AD=BC,均可利用等腰梯形的判定方法进行验证.【答案与解析】解:第一种选择:①∠CAB=∠DBA,②AC=BD.证明:由△ACB≌△BDA,可得AD=BC,∠ABC=∠BAD.如图(2)作DE∥BC交AB于点E,则∠DEA=∠CBA.∴∠DAE=∠DEA,AD=ED=BC.由ED=BC及DE∥BC知,四边形DEBC是平行四边形,所以AB∥CD.∵ AD与.BC不平行,∴四边形ABCD是等腰梯形.第二种选择:②AC=BD,③AD=BC.证明:如图(3),延长AD、BC相交于点E.由△DAB≌△CBA,可得∠DAB=∠CBA,∴EA=EB.由AD=BC,可得DE=CE,∠EDC=∠ECD.再由三角形内角和定理可得∠EDC=∠EAB,∴DC∥AB.∵AD与BC不平行,∴四边形ABCD是等腰梯形.【总结升华】此题一道开放性的题目,主要考查学生对等腰梯形的判定的掌握情况.举一反三:【高清课堂:创新、开放与探究型问题例3】【变式】如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MNK的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)【答案】解:(1)∵ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=70°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠KNM=∠KMN,∴MK=NK,又MK≥ME,∴NK≥1.∴△MNK的面积=NK•ME≥.∴△MNK的面积不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.MK=MD=x,则AM=5﹣x.由勾股定理得12+(5﹣x)2=x2,解得x=2.6.∴MD=ND=2.6.S△MNK=S△MND==1.3.情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.MK=AK=CK=x,则DK=5-x.同理可得MK=NK=2.6.∵MD=1∴S△MNK=S△MND==1.3.△MNK的面积最大值为1.3.类型四、动态探究型4.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求EFEG的值.【思路点拨】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用SAS证得Rt△FED≌Rt△GEB,则问题得证;(2)首先点E分别作BC、CD的垂线,垂足分别为H、I,然后利用SAS证得Rt△FEI≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.【答案与解析】解:(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,又∵ED=BE,∴Rt △FED ≌Rt △GEB , ∴EF=EG ;(2)成立.证明:如图,过点E 分别作BC 、CD 的垂线,垂足分别为H 、I ,则EH=EI ,∠HEI =90°,∵∠GEH+∠HEF=90°,∠IEF+∠HEF =90°, ∴∠IEF=∠GEH , ∴Rt △FEI ≌Rt △GEH , ∴EF=EG ;(3)解:如图,过点E 分别作BC 、CD 的垂线,垂足分别为M 、N ,则∠MEN=90°, ∴EM ∥AB ,EN ∥AD .∴△CEN ∽△CAD ,△CEM ∽△CAB ,∴,NE CE EM CEAD CA AB CA ==, ∴NE EM AD AB =,即NE AD b EM AB a==, ∵∠IEF+∠FEM=∠GEM+∠FEM=90°, ∴∠GEM=∠FEN , ∵∠GME=∠FNE=90°, ∴△GME ∽△FNE ,∴EF ENEG EM =, ∴EF bEG a=. 【总结升华】此题考查了正方形、矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.举一反三:【变式1】已知:如图(a),在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t 的值.若不存在,说明理由;(4)如图(b),连接PC,并把△POC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.【答案】解:(1)在Rt△ABC中,AB=5.由题意知AP=5-t,AQ=2t.若PQ∥BC,则△APQ∽△ABC.∴AQ AP AC AB=.∴2545t t-=.解得107t=.(2)过点P作PH⊥AC于H,如图(c).∵△APH∽△ABC,∴PH AP BC AB=.∴535PH t-=.解得335PH t=-.∴211132(3)32255y AQ PH t t t t =⨯⨯=⨯⨯-=-+. (3)若PQ 把△ABC 周长平分,则AP+AQ =BP+BC+CQ .∴(5-t)+2t =t+3+(4-2t). 解得t =1.若PQ 把△ABC 面积平分, 则12APQ ABC S S =△△,即23335t t -+=. ∵t =1代入上述方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt △ACB 的周长和面积同时平分. (4)过点P 作PM ⊥AC 于M ,PN ⊥BC 于N ,如图(d). 若四边形PQP ′C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M ,∴QM =CM .∵PN ⊥BC 于N ,易知△PBN ∽△ABC .∴PN BP AC AB =,∴45PN t=.解得45tPN =.∴QM =CM =45t.∴442455t t t ++=. 解得109t =.∴当109t =时,四边形PQP ′C 是菱形.此时37353PM t =-=,4859CM t ==.在Rt △PMC 中,PC ===∴菱形PQP ′C . 举一反三:【高清课堂:创新、开放与探究型问题 例4】【变式2】如图,点D ,E 在△ABC 的边BC 上,连接AD ,AE. ①AB=AC ;②AD=AE ;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ; (2)请选择一个真命题进行证明(先写出所选命题,然后证明).【答案】 解:(1)三个都是真命题;(2)解法一 ①②⇒③如图,过点A 作AD ⊥BC 于点F . ∵AB =AC , ∴BF =CF . ∵AD =AE , ∴DF =EF . ∴BD =CE .解法二 ①③⇒②∵AB =AC ,∴∠ABD =∠ACE . ∵BD =CE ,∴△ABD ≌△ACE (SAS ). ∴AD =AE .解法三 ②③⇒①∵AD =AE ,∴∠ADE =∠AED , 即∠ADB =∠AEC ∵BD =CE ,∴△ABD ≌△ACE (SAS ). ∴AB =AC类型五、创新型5.先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作:E DCB A(1)(1)C (1)321n m m m m n n n --+=-⨯⨯⨯例从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种. 【思路点拨】本题需要学生读懂m 个元素中选取n 个元素的计算规则,然后针对具体的从10人中选取3人参加的计算.【答案与解析】由给出的公式可知从10个人中取3个人参加活动,有3101098C 120321⨯⨯==⨯⨯种不同的选法.【总结升华】本题构思精妙、情境新颖.从试题的情境来看,本题以初中数学中的整数的乘除运算等基本运算为素材,以高中数学中组合数的定义及其计算公式为背景,展示给学生的是一个全新的问题,试题具有较大的自由度和思维空间,考查了阅读理解、知识迁移等多种数学能力,体现了主动探究精神,呈现出研究性学习的特点,从而进一步考查了学生自学高中数学知识的能力.从试题的解答来看,直接以组合数的定义及其计算公式为背景的试题在各种复习资料和模拟试题中从未见过,解决这个问题没有现成的“套路”和“招式”,需要学生自主学习组合数的定义及其计算公式的定义,综合运用多种数学思想方法,才能解决问题.中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】 一、选择题1.(2020•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为( )A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4.(2020•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是个,最少是个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是个;最少是个.(n 是正整数)5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.(2020•丹东模拟)已知,点D 为直线BC 上一动点(点D 不与点B 、C 重合),∠BAC=90°,AB=AC ,∠DAE=90°,AD=AE ,连接CE .(l )如图1,当点D 在线段BC 上时,求证:①BD ⊥CE ,②CE=BC ﹣CD ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CE 、BC 、CD 三条线段之间的关系;(3)如图3,当点O 在线段BC 的反向延长线上时,且点A 、E 分别在直线BC 的两侧,点F 是DE 的中点,连接AF 、CF ,其他条件不变,请判断△ACF 的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】A;【解析】∵第①个图形中空心小圆圈个数为:4×1﹣3+1×0=1个;第②个图形中空心小圆圈个数为:4×2﹣4+2×1=6个;第③个图形中空心小圆圈个数为:4×3﹣5+3×2=13个;…∴第⑦个图形中空心圆圈的个数为:4×7﹣9+7×6=61个;2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP 1=54,AP 2=1516,AP 3=26532⨯…APn=12532n n-⨯, 故可得AP 6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题 4.【答案】(1)4;10;(2)5;14;(3)4n+2;n+2.【解析】 (1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形; (2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形; 第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形; 第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形; …第n 个图形:是一个(2n+1)×2的矩形,最多可分成n ×4+2=4n+2个正方形,最少可分成n+2个正方形. 故答案为:(1)4;10;(2)5;14;(3)4n+2;n+2.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+1[2()]()2L R r R r =--- 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】3331-3=4416A B C S =⨯⨯△…三、解答题 7.【答案与解析】(1)证明:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE , 在△ABD 和△ACE 中,,∴△ABD≌△ACE,∴∠ABD=∠ACE=45°,BD=CE,∴∠ACB+∠ACE=90°∴∠ECB=90°,∴BD⊥CE,CE=BC﹣CD.(2)如图2中,结论:CE=BC+CD,理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CE=BC+CD.(3)如图3中,结论:△ACF是等腰三角形.理由如下:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE,∴∠ABD=∠ACE,∵∠ABC=∠ACB=45°,∴∠ACE=∠ABD=135°,∴∠DCE=90°,又∵点F是DE中点,∴AF=CF=DE,∴△ACF是等腰三角形.8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE≌△ADC.②120°,90°,72°.(2)①360n°.②证法一:依题意,知∠BAD和∠CAE都是正n边形的内角,AB=AD,AE=AC,∴∠BAD=∠CAE=(2)180nn-°.∴∠BAD-∠DAE=∠CAE-∠DAE,即∠BAE=∠DAC.∴△ABE≌△ADC.∴∠ABE=∠ADC.∵∠ADC+∠ODA=180°,∴∠ABO+∠ODA=180°.∴∠ABO+∠ODA+∠DAB+∠BOC=360°.∴∠BOC+∠DAB=180°.∴∠BOC=180°-∠DAB=(2)180360 180nn n--=°°°.证法二:延长BA交CO于F,证∠BOC=∠DAF=180°-∠BAD.证法三:连接CE.证∠BOC=180°-∠CAE.9.【答案与解析】解:(1)作DF⊥BC,F为垂足.当CP=3时,四边形ADFB是矩形,则CF=3.∴点P与点F重合.又∵BF⊥FD,∴此时点E与点B重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°,∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF . ∴BE FP BP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a=--,整理, 得21(1536)(312)y x x x a =-+<< ② (ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FP BP FD =. 由FP =3-x 得21(1536)(03)y x x x a=-+<<. ∴ 221(1536)(03)1(1536)(312).x x x a y x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩ (3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a =--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件,∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0.解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件,∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02AD d <<. ④ 又∵AD ∥BC ,∴d =a . ∴由④式得902a <<.10.【答案与解析】解:(1)EF=EB.证明:如图(d),以E为圆心,EA为半径画弧交直线m于点M,连接EM.∴EM=EA,∴∠EMA=∠EAM.∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB,∠FAB=∠ABC.∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。

六、开放性问题

开放性问题专题研究一、考点解读及解题策略开放题打破传统模式,构思新颖,使人耳目一新。

数学开放题被认为是当前培养创新意识、创造能力的最富有价值的数学问题,加大数学开放题在中考命题中的力度,是应试教育向素质教育转轨的重要体现,对发挥学生主体性方面确实具有得天独厚的优势,是培养学生主体意识的极好材料。

这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、综合开放型等.由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.二、分类解析(一)开放型问题 考点一:条件开放型:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求. 这类问题一般是由给定的结论,反思,探索应具备的条件,而满足结论的条件并不唯一。

中考数学二轮专题复习 专题六 开放性问题教案(2021学年)

吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省农安县新农乡2017届中考数学二轮专题复习专题六开放性问题教案的全部内容。

专题六——开放性问题解题依据、解题方法、问题结论这四项要素中,缺少解题,或者条件、结论有待探求、补充等。

一个数学问题系统中,通常包括已知条件、解题依据、方法和结论.如果这些部分齐备,称之为封闭性问题.若不完全齐备,称之为开放性问题,数学开放题就是指那些条件不完整,结论不确定,解法不限制的数学问题,它的显著特点是正确答案不唯一。

常见题型:(1)条件开放型;(2)结论开放型;(3)策略开放型;(4)综合开放型。

解题策略:(1)条件开放型,指结论给定,条件未知或不全,需要探求结论成立的条件,且与结论成立相对应的条件不唯一的数学问题。

这类开放题在中考试卷中多以填空题形式出现。

解条件开放型问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,挖掘条件,逆向追索,逐步探求,最终得出符合结论的条件。

这是一种分析型思维方式.(2)结论开放型,指条件充分给定,结论未知或不全,需要探求,整合出符合给定条件下相应结论的一类试题。

这类开放题在中考试卷中,以解答题居多。

解结论开放型问题的一般思路是:充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍。

这是一种归纳类比型思维方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档