化水处理含计算书

合集下载

污水处理厂设计计算书

污水处理厂设计计算书

污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130********1max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5min 的出水量,即:V >0.347m 3/s ×5×60=104.1m 3,可将其设计为矩形,其尺寸为3m ×5m ,池高为7m ,则池容为105m 3。

游泳池水处理系统计算书

游泳池水处理系统计算书

积 m2
直径 m
数量
657
30
21.90
22.61
2.4
5
第2页,共4页
2
训练池
165
30
5.50
6.28
2
2
4.2.6 消毒及水质平衡系统:
消毒系统采用全自动分流量臭氧消毒辅以次氯酸钠溶液投加消毒系统 ,余氯监控系统;水质平衡 系统包括PH仪和加酸系统。这是整个循环系统中最复杂,对水质影响最大的部分。
a-1) 臭氧消毒系统: 比赛池、训练池采用一套分流量臭氧系统,训练池不设单独的臭氧系统,与比赛池合用臭氧系
统的发生器,水射器和接触塔。但实际因比赛池和训练池的循环量相差较大,臭氧需求量也有较大的 差异。所以,我司认为标书中建议的臭氧配置并不合适。我司根据计算认为给比赛池和训练池各配置 一套臭氧系统更加合适。通过管道的设计,训练池的臭氧系统可并入标准池的循环系统,以提高标准 池在高规格比赛过程中的水质。
4.1 给排水系统:
水池的初次充水按24小时、泄水按4小时计算,补充水量按总水量的10%计算。
初次充水和补充水由楼宇给水管网供给,泄水排至雨水管网。
给水管道采用UPVC管,排水采用UPVC管。
有关参数如下:
序号 名称
充水量 充水管径
m3/h
mm
泄水量 m3/h
泄水管径 循环水量 进水管径
mm
m3/h
120
1.60
1.69
计算投加浓度:0.6ppm;
C*T=臭氧投加浓度*臭氧接触时间;
臭氧浓度>5%;
a-2) 全自动消毒剂溶液压力加药消毒系统:
次氯酸钠是比较安全有效的含氯消毒剂,次氯酸钠加药系统应包括加药计量泵和余氯浓度监 控仪(见水质监控仪)。该系统应具备自动根据池水的余氯浓度调节加氯量。

医院污水处理设计计算书

医院污水处理设计计算书

第二章设计计算书第一节污水处理部分设计计算一、设计流量根据设计资料可得污水处理站设计流量如下:污水平均日流量:Q=1200m3/d,其中传染病室污水量100m3/d时变化系数:K h=2.0最大时设计流量:Q max=100m3/h平均时设计流量:Q=50m3/h二、传染病室污水预处理由于该医院污水中包含来自传染病室的一部分污水,所以需要对这部分污水进行预处理后排入非传染病污水中一起进行后面的处理。

本设计对该部分污水的预处理设施是预消毒调节池,经处理后排入总的调节池进行后续处理。

1.预消毒调节池(1)有效容积有效容积按污水量的8小时计算,则有效容积为:V=Q×8/24=100×8/24=33.36m3设计中采用的调节池容积,一般宜考虑增加理论容积的10%~20%,故本设计中调节池的容积为:V=33.36×1.2=40m3(2)结构尺寸取调节池的有效水深为2m,则调节池的面积为A=V/2=20m2取池长L=5m,则池宽B=A/L=20/5=4m(3)搅拌设施查《给水排水设计手册》第11册,选用两台LJB型推进式搅拌机,搅拌机基本参数:型号:LJB叶片形式:螺旋桨叶片直径:1200mm叶片数:3转速:134r/min功率:11kW生产厂家:河南省商城县水利机械厂(4)预消毒调节池进出水预消毒调节池进水直接用钢管进水,进水管中心距调节池池底的高度等于调节池有效水深,即进水管中心距池底高度h=2.0m 。

查《管渠水力计算表》选用进水管为:D=40mm ,v=0.91m/s ,1000i=61.3。

预消毒调节池出水用自流沟出水,出水后汇集到总调节池进水管中流入总调节池,进行后续处理。

2.预消毒设施对传染病室污水的预消毒是采用液氯消毒,将液氯通过加氯机投加到调节池中,通过搅拌机的搅拌对污水进行预消毒。

根据《医院污水处理工程技术规范》(HJ2029-2013),加氯量一般为30~50mg/L ,取投加量q 0=40mg/L 。

污水处理厂设计计算书 (2)

污水处理厂设计计算书 (2)

第二篇设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。

1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。

最高日水量为生活污水最高日设计水量和工业废水的总和。

Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。

在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。

3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。

《水处理工程》课程设计计算书

《水处理工程》课程设计计算书

水处理工程课程设计计算说明书题目: A城市污水处理工程设计系部:化学工程系专业:环境监测与治理技术班级:环保721学号: 2007271021姓名:林立伟指导教师:张波填表日期: 2009 年 6 月 27 日目录第1章总论 (2)第2章总体设计 (3)第3章格栅 (4)第4章沉砂池 (9)第5章初次沉淀池 (10)第6章曝气池 (13)第7章二次沉淀池 (21)第8章污水处理厂高程的计算 (22)第9章污水处理厂的平面布置 (25)附主要参考文献 (26)第1章 总论1.1给水处理课程设计任务及要求 设计题目A 城市污水处理工程设计 根本资料1、污水水量、水质 〔1〕设计规模设计日平均污水流量Q=15000m3/d ; 设计最大小时流量Q max =812.5m3/h 〔2〕进水水质COD Cr =500mg/L ,BOD 5 =300mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求污水经过二级处理后应符合以下具体要求:COD Cr ≤ 100mg/L ,BOD 5≤20mg/L ,SS ≤20mg/L ,NH 3-N ≤15mg/L 。

3、处理工艺流程污水拟采用传统活性污泥法工艺处理。

4、气象资料该市地处内陆中纬度地带,属暖温带大陆性季风气候。

年平均气温9~13.2℃,最热月平均气温21.2~26.5℃,最冷月−5.0~−0.9℃。

极端最高气温42℃,极端最低气温−24.9℃。

年日照时数2045 小时。

多年平均降雨量577 毫米,集中于7、8、9 月,占总量的50~60%,受季风环流影响,冬季多北风和西北风,夏季多南风或东南风,市区全年主导风向为东北风,频率为18%,年平均风速2.55 米/秒。

5、污水排水接纳河流资料:该污水厂的出水直接排入厂区外部的河流,其最高洪水位〔50 年一遇〕为380.0m ,常水位为378.0m ,枯水位为375.0m 。

污水生物水处理计算书--水解酸化池

污水生物水处理计算书--水解酸化池

水解酸化池计算书总水量700m3/h,设两座水解酸化池,每座水量350 m3/h,停留时间6-8h,填料层高度2.5m,填料层以上水深1m,填料层一下高度1.5m。

1、容积:V=Qt=350×6=2100(m3)2、有效面积:根据要求取有效水深5mF===420(m2)水解酸化池长×宽×高=28×15×5.5(m3)(超高0.5m)3、进水分布:将水解酸化池分四格,每格之间设挡墙,每格长×宽×高=15×7×5.5(m3),进水量为350/4=87.5m3。

进水总管直径:D===282(mm)取D=300mm进水支管直径:d===144(mm)取d=150mm,为了布水均匀,进水支管在每格中再分出8个支管,每根长3m。

进水支管在分支后直径:d’===50(mm)进水管距池底150mm,进水管以上设置四台潜水搅拌器。

4、上升流速校核: =====0.83(m/h)水解反应器上升流速 =0.5-1.8 m/h,所以,上升流速符合要求。

5、出水堰:宽度方向上设置90°三角出水堰设计水量350m3/h,每米堰板设5个堰口,过堰流速为1.395m/s。

取出水堰负荷10L/ms,则每个堰口负荷q==1.7(L/s)=0.002(m3/s),过堰水深可由q=1.4h2.5计算,h=0.075m。

本设计取a=180mm,d=90mm,b=20mm,c=10mm,H1=300mm6、集水槽:宽度:B=0.9×Q0.4=0.9×87.50.4=0.203(m)取B=200mm临界水深:h k==0.113(m)取h k=115mm起端水深:h0=1.73h k=1.73×115=198.95(mm)取h0=200mm集水槽的自由跌落高度设为0.1m总深h=h1+h2+h0=0.032+0.1+0.2=0.332(m)7、出水管:设出水管流速为0.8m/s,则出水管直径d===0.197(m)取出水管直径为200mm。

废水处理毕业设计计算书

设计计算书一.格栅1.设计参数设计流量 3350000/0.58/Q m d m s =≈栅前流速 10.8/v m s = 过栅流速 20.9/v m s =栅条宽度 0.01s m = 格栅间隙宽度 0.016b m = 栅前部分长度0.5m 格栅倾角 =60° 栅后部分长度1.0m 2.设计计算(1)确定格栅前水深。

根据最优水力断面公式 21112B v Q = 计算得出:格栅前槽宽1 1.2B m === 则栅前水深1 1.20.622B h m === (2)栅条间隙数0.60590.0160.60.9n bhv ==≈⨯⨯ (3)格栅有效宽度 (1)0.01(591)0.01659B S n b n m =-+=⨯-+⨯= (4)进水渠道渐宽部分长度111 1.524 1.20.42tan 2tan 20B B L m α--==≈︒1α为进水渠道展开角20°(5)栅槽与出水渠道连接处的渐窄部分长度 120.40.222L L m === (6)通过格栅的水头损失 设栅条断面为锐角矩形断面33322244410.010.90.010.9()sin 2.42()sin 603 2.42()sin 6030.13820.01619.60.01619.6S v h k mb g βα==⨯⨯︒⨯=⨯⨯︒⨯=(7)栅后槽总高度设栅前渠道超高 20.3h m =120.60.1380.3 1.038H h h h m =++=++=(8)格栅总长度1120.5 1.00.60.30.40.20.5 1.0600.95.23 3.460H L L L tg tg mtg α=+++++=++++︒=+=︒(9)每日栅渣量在格栅间隙16mm 的情况下,设栅渣量为每1000m 3污水产0.05 m 333max 18640086.40.580.05 2.51/0.2/1000ZQ W W m d m d K ==⨯⨯≈〉所以应采用机械清渣。

(完整版)污水处理厂设计计算书

2.格栅槽宽度
式中一一格栅槽宽度(m);
S――每跟格栅条的宽度(m)。
设计中取S=0.01m。
3.进水渠道渐宽部分的长度
式中——进水渠道渐宽部分的长度(m);
进水明渠宽度(m;
渐宽处角度(°),一般采用10°〜30
设计中=1.27m,=20°,此时进水渠道内的流速为0.67m/s,介于0.4〜0.9m/s之间。
1.格栅间隙数
式中一一格栅栅条间隙数(个);
3
Q――最大设计流量(m /s);
――格栅倾角(°);
b――栅条净间距(m);
h——栅前水深(m);
v――过栅流速(m/s),宜采用0.6〜1.0m/s。
栅前水深:根据水力最优断面公式计算得,0.57=X0.7/2,=1.28m ,/2=0.64m
设计中取=0.64m,0.9m/s,0.02m,60°。
4.出水渠道渐窄部分的长度
式中一一出水渠道渐窄部分的长度(m;
——渐窄处角度(°),。
设计中=1.27m,=20°。
5.通过格栅的水头损失
式中——水头损失(m;
――格栅条的阻力系数;
――格栅受污染物堵塞时的水头损失增大系数,一般采用=3。
因栅条为矩形截面,取=2.41o
6.栅后明渠总高度
式中 一一栅后明渠总高度(m);
(三)平面布置67
十七、污水处理厂高程布置68
(一)主要任务68
(二)高程布置的原则68
(三)污水处理构筑物的高程布置68
参考文献72
第一部分污水处理
一、
格栅按照远期规划进行设计。
3
Q=8.16万m/d=944.4L/s
总变化系数=1.2,Qmax=944.4X1.2=1133.28 L/s

A2O污水处理工艺设计计算书

( 1 )反应器内 MLSS 浓度取 MLSS 浓度 X=3000mg/L ,回流污泥浓度 X R=9000mg/L( 2 )求硝化的比生长速率( 3 )求设计 SRT d (污泥龄)( 4 )好氧池停留时间( 5 )好氧池面积( 6 )生物固体产量( 7 )比较求由氮氧化成的硝酸盐数量( 1 )内回流比 IR( 2 )缺氧池面积( 1 )厌氧池容积( 1 )设计最大需氧量 AORAOR= 除去 BOD 需氧量—剩余污泥当量 +消化需氧量—反硝化产氧量( 2 )供气量的计算采用 STEDOC300 型橡胶膜微孔曝气器,敷设于距池底 0.2m 处,淹没水深4.8m ,氧转移效率 30% ,计算温度定为30℃。

氧在蒸馏水中的溶解度:( 3 )曝气器计算在每一个廊道中每平方米中该设置一个曝气器,一个曝气池的总面积 360m2 。

故曝气池中的微孔曝气器数量 N=360 个。

这里采用 STEDOC300 型橡胶膜微孔曝气器,其主要性能参数见下:校核每一个曝气头的供气量( 4 )空压机的选择空气管路中总压力损失按 5KPa 计算故空压机所需压力 P 为:1.45m ×1m) ,一根据所需压力和供气量,采用两台 RD-125 型罗茨鼓风机(用一备。

( 1 )厌、缺氧区搅拌器取搅拌能量 5w/m3 ,故厌、缺氧区所需能量为 :选用两台 DOTO 15 型低速潜水推流器。

( 2 )内回流泵内回流比 IR=132% ,故内回流流量 Qr 为:( 1 )反应池廊道布置A/A/O 反应池采用 4 廊道设计,好氧池两个廊道,缺氧池和厌氧池共两个廊道,有效水深 5m ,每一个廊道宽 5m ,大 36m( 2 )出水堰堰上水头 h。

污水处理厂设计计算书(给排水计算书)

污水处理厂设计计算书(给排水计算书)目录第一章污水处理构筑物设计计算第二章污泥处理构筑物设计计算第三章高程计算第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数: 生活排水量3m /d 411102100002.31101000Q ⨯==⨯公共建筑生活污水量3/d 420.6310Q m =⨯ 工业污水量3m /d 43 1.0410Q =⨯总流量4433(2.310.63 1.04)10 3.9810/0.461/Q m d m s =++⨯=⨯=最高日平均时设计秒流量434331.210.46110/ 4.8210/0.557/d Q K Q m d m d m s ==⨯⨯=⨯= 最高日最高时设计秒流量43433max 1.42 4.8210/ 6.8410/0.791/h Q K Q m d m d m s ==⨯⨯=⨯=栅前流速v 1=0.8m/s ,过栅流速v 2=1.0m/s 栅条宽度s=0.01m ,格栅间隙e=20mm 栅前部分长度0.5m ,格栅倾角α=60°单位栅渣量W 1=0.07m 3栅渣/103m 3污水 2.设计计算(1)确定格栅前水深,根据最优水力断面公式2121max vB Q =计算得:栅前槽宽1 1.41B m ==,栅前水深1 1.410.722B h m ===(2)栅条间隙数252.57n === (取n=54),设计两组格栅,每组格栅数n=27条(3)栅槽有效宽度2(1)0.01(271)0.02270.8B s n en m =-+=⨯-+⨯=总水槽宽220.220.80.2 1.8B B m m =+=⨯+=(考虑中间隔墙厚0.2m ) (4)进水渠道渐宽部分长度111 1.8 1.40.552tan 2tan 20B B L m α--===︒(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度120.272L L m == (6)过栅水头损失h 1因栅条边为迎水面为半圆形的矩形截面,取k=3,β=1.83则m g v e s k g v ki h 096.060sin 81.920.1)02.001.0(83.13sin 2)(sin 22343/4122=︒⨯⨯⨯⨯===αβα(7)栅后槽总高度H取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.7+0.3=1.0m 栅后槽总高度H= H 1+h 1=1.0+0.096≈1.096m ,取1.1m(8)格栅总长度L=L 1+L 2+0.5+1.0+H/tanα=0.55+0.27+0.5+1.0+1.0/tan60°=2.9m (9)每日栅渣量33max 186400864000.7910.073.47/0.2/10001000 1.38z Q W W m d m d K ⨯⨯===>⨯所以宜采用机械格栅清渣(10)计算草图如下:进水二、提升泵站设计流量Q=0.791m 3/s ,选择机器间与集水池合建的自灌式圆形泵站,考虑4台水泵(三用一备)每台水泵容量791/3=263.67L/s ,取264L/s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章.设 计 总 说 明 1.工程概况 松江东部地区污水处理厂建设场地为一直边梯形地块,其尺寸为:底边350m,上边300m,高300m。北侧民强路为主要通道,东侧为规划路,南侧为北泖泾,西侧为规划路。场地内地面基本平整,为一般闲置农田,无拆迁内容。地面标高3.8~4.2m范围之内。进水管由场地西北角接入,进水管管径为1350,管低标高-1.5m,管道充满度0.70。

污水处理处理量7.5×104m3/d。设计进水浓度与出水水质标准见下表。 表1 设计进水浓度

项目 pH CODcr BOD5 SS NH3- N TKN TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 指标值 6~9 500 250 220 25 35 4.5 (注:污水除生活污水外还可能含有各种行业的工业废水,重污染与特种污染行业的废水已经处理达到《污水排入城市下水道水质标准》(CJ 18-86)的有关规定。) 表2 出水水质标准

项目 pH CODcr BOD5 SS NH3- N TN TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 指标值 6~9 60 20 20 8 15 1.0 3.设计原则 1. 贯彻国家关于环境保护的基本国策,执行国家的相关法规、政策、规范和标准; 2. 污水处理厂作为环保工程,设计中尽量减少污水处理厂本身对环境的负面影响,如气味、噪音、固体废弃物等; 3. 污水处理工艺的选择必须根据原水水质与水量,受纳水体的环境容量与利用情况,综合考虑南通市的实际情况,通过经济技术比较优先采用低能耗、低 运行费用、低基建费用、占地少、操作管理方便成熟的处理工艺; 4. 积极慎重地采用经过鉴定或实践证明是行之有效的新技术、新工艺、新材料和新设备。污水处理厂出水水质达到国家和地方现行的有关规定; 5. 污水处理设备、仪表选用首先立足于国内,对目前暂不能生产或质量尚未过关的部分产品考虑适当引进; 6. 污水厂总平面布置力求紧凑,土方平衡,减少占地和投资费用; 7. 以人为本,充分考虑便于污水厂运行管理的措施; 8. 污水厂的劳动组织、劳动定员、环境保护和安全卫生均严格按照国家和地方的有关规定; 9. 污水处理产生的污泥,其处理和处置的工艺按污泥量、污泥性质,根据国情和当地的自然环境以及农业、园林业的可利用条件、卫生填埋等因素综合考虑确定; 10. 污泥处理应因地制宜采取经济合理的方法进行稳定化处理。 4.工艺简介 根据松江东部地区污水处理厂的污水水质、要求的处理标准以及处理后排放时对污水水质的要求,松江东部地区污水处理厂污水处理工艺采用MSBR工艺的主体二级处理工艺。 5.工艺特点 该工艺的主要特点是: 1. 为了防止硝酸盐影响厌氧池中的磷释放,在污泥进入厌氧池之前设置了预缺氧池,依靠内碳源反硝化去除污泥中的硝酸盐,好氧池后续的两个序批反应池,将其中之一作为沉淀池使用时,通过特殊的配水及中间碟板构造形式,使该序批池可对好氧池的混合液进行接触絮凝沉淀作用,而且不会使系统污泥在该池中过度积累,另一个序批池则进行缺氧、好氧序批反应。 2. MSBR 的总体特点是借助大流量低扬程过墙式回流泵、空气控制出水堰及表面搅拌器等设备,使各处理功能区可以有机地组合在一起,配上自动控制系统,各反应区域相互协调,功能上相互促进,使灵活集约化的设计理念得以实现。 3. MSBR 系统始终保持满水位、恒水位运行,得以在较小的体积内保持高的去除率。与传统A2/ O 工艺相比,MSBR 系统各单元(包括序批池) 合建为一体化处理构筑物,省略了各构筑物间的联络管道,既便于平面布置,又减小了整个处理流程的水头损失,降低了工程造价。 4. 系统运行过程中在沉淀区没有污泥回流,从而降低了沉淀区的水力及悬浮物固体负荷,减少了沉淀体积;反应和沉淀的交替运行避免了任何的老化污泥及反硝化污泥的上浮,稳定了污泥性质,排出的剩余污泥浓度比一般工艺要高许多(中试及实际运行数据测得污泥含固率> 2 %) ,可降低污泥处理的费用。 5. MSBR 系统的高度一体化,所以混合液回流和污泥回流系统的扬程仅需克服相邻池体的水位差,采用搅拌推进式过墙回流泵则大大降低了回流系统的造价及运行能耗。 6. MSBR 系统的搅拌目前都采用浮筒式表面搅拌器,在有效搅拌的同时不会形成液面的剧烈更替,降低了空气的表面复氧率,保证了较为绝对的厌氧或缺氧条件。 7. 序批池采用空气堰控制出水,控制灵活,可有效防止表面浮渣及其他悬浮固体进入出水管道,出水悬浮固体量的降低是保证较低的磷酸盐浓度的重要前提。 8. 污泥进入厌氧池之前有一个浓缩和预反硝化过程,浓缩过程保证了在较小的污泥回流量下厌氧池内有足够的污泥浓度,增加了厌氧池的实际水力停留时间,同时减少了对进水的稀释,相当于提高了反应物的浓度,从而增加了反应速率。 9. 原水直接进入厌氧池,易降解有机物及在厌氧条件下产生的挥发性脂肪酸优先供给聚磷菌使用。相对于厌氧池污泥浓度而言,提高厌氧池的挥发性脂肪酸的浓度更有利于保证聚磷菌的磷释放,从而提高系统的除磷效果。 10. MSBR系统完全自动化控制,运行管理简单,通过对各阶段时间长短进行调节,可实现不同进水水质的处理要求。 工艺流程如下: 技术经济指标 工程总投资:7000万元(污水处理厂内投资,不含征地费)。 吨顿水运行成本:0.50元/t 关键词 城市污水处理厂;MSBR;脱磷除氮; General Statement of Design

Design task The construction place of Songjiang East Area Wastewater Treatment Plant is a Rtechelon,down side is 350m,up side 300m,hight is 300m.Mingqiang Road in the north is the primary 1 road,in the east is Wuming Road,in the south is Wuchu Road and Beimao river is in the west. Flow of wastewater is 7.5103 m3/d.The quality of inflow and out flow is as followed. Table1 designed inflow concentration

item pH CODcr BOD5 SS NH3- N TKN TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) indicate 6~9 500 250 220 25 35 4.5

Table2 designed outflow concentration item pH CODcr BOD5 SS NH3- N TN TP (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) indicate 6~9 60 20 20 8 15 1.0

Design Principle 1 Implement the national policy of environmental protection, relevant policy, regulations and state-level norm and standard. 2 As a environment-friendly project. The wastewater treatment plant tries to minimize its negative effect on the environment such as unpleasant odor, noise, solid wastewater, etc. 3 The treatment processes are to be choosed according to the influent character and the environmental capacity and using situation of accepting water body. Alternative designs are to be compared regarding some economic and technological index, and priority is to be given to the alternative design with widely-used technology, lower energy consumption, less operation expenses , less investment for infrastructure construction, more convenience for management & operation. 4 New technology, process, material and equipment proven to be effective and efficient are to be used cautiously. The effulent quality should meet the current state and local standard. 5 The priority of the Equipments and instruments selection is given to the domestic products. The products which can’t be produced or meet the quality standard should be introduced cautiously 6 The planning of the treatment plant should be compact considering the earthwork balance to reduce occupation of land and investment cost. 7 The design should have full consideration for the people and staffs. Measures should be taken to make the management & operation more convenient. 8 Work organization , laboring, environmental protection hygiene and security of the treatment plant should be carried out strictly based upon the relevant state and local regulations. 9 The treatment and disposal processes of sludge produced in the wastewater treatment should be chosen according to the volume and characteristics, state situation, local natural environment, the using condition of local agriculture and forestation, safe landfill and other factors. 10 The stabilization processes of the sludge should be carried out in the most economically feasible way according to the local situation.

相关文档
最新文档