初等数论中的欧拉定理

合集下载

欧拉公式数论

欧拉公式数论

欧拉公式数论
欧拉公式是数论中的一项重要公式,也被称为欧拉-莫比乌斯公式。

它描述了自然数的质因数分解性质。

具体地说,欧拉公式表明,对于任何正整数n和任何正整数a,如果a和n互质(即它们没有共同的质因数),那么a的欧拉函数φ(n)与n的最大公约数gcd(a,n)的乘积等于n。

欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数。

例如,φ(4)=2,因为小于或等于4的正整数中,只有1和3与4互质。

欧拉公式的证明基于数论中的欧拉定理,即a的φ(n)次幂与a mod n同余。

欧拉公式在密码学中得到广泛应用,特别是在RSA 加密算法中。

除了欧拉公式之外,欧拉还做出了许多其他重要的数论贡献,如欧拉函数、欧拉常数、欧拉-马斯刻罗尼常数等。

欧拉的工作对数学的发展做出了巨大的贡献,在数论、微积分、物理学、力学等领域都有重要的应用。

- 1 -。

欧拉定理和费尔马定理

欧拉定理和费尔马定理

欧拉定理和费尔马定理欧拉定理和费尔马定理是数学中非常重要的两个定理,它们在数论、代数、几何等领域都有广泛的应用。

本文将分别介绍这两个定理的定义、证明和应用。

欧拉定理,也称欧拉-费马定理,是数论中的一个重要定理,它描述了模运算下的幂运算的性质。

具体来说,欧拉定理指出,如果a 和n是正整数,且它们互质,那么a的φ(n)次幂与1对n取模的余数等于1,其中φ(n)表示小于n且与n互质的正整数的个数。

即:a^φ(n) ≡ 1 (mod n)证明欧拉定理的方法有很多种,其中一种比较简单的方法是利用费马小定理和欧拉函数的性质。

具体来说,我们可以先证明当n为质数时欧拉定理成立,然后再利用欧拉函数的性质推广到一般情况。

这个证明过程比较复杂,不在本文的讨论范围内。

欧拉定理在密码学中有广泛的应用,特别是在RSA加密算法中。

RSA算法是一种公钥加密算法,它的安全性基于大数分解的困难性。

RSA算法的加密过程中需要用到欧拉定理,具体来说,就是利用欧拉定理来计算模逆元,从而实现加密和解密的过程。

费尔马定理是数论中的另一个重要定理,它描述了模运算下的幂运算的性质。

具体来说,费马定理指出,如果p是一个质数,a是一个整数,那么a的p次幂与a对p取模的余数等于a本身,即:a^p ≡ a (mod p)证明费马定理的方法比较简单,可以利用二项式定理和费马小定理来证明。

具体来说,我们可以将a^p表示为(a-1+1)^p,然后利用二项式定理展开,再利用费马小定理来化简,最终得到费马定理。

费马定理在密码学中也有广泛的应用,特别是在椭圆曲线密码学中。

椭圆曲线密码学是一种基于椭圆曲线离散对数问题的加密算法,它的安全性基于椭圆曲线上的离散对数问题的困难性。

椭圆曲线上的离散对数问题可以利用费马定理来求解,从而实现加密和解密的过程。

欧拉定理和费马定理是数学中非常重要的两个定理,它们在密码学、代数、几何等领域都有广泛的应用。

熟练掌握这两个定理的定义、证明和应用,对于理解和应用相关领域的知识都有很大的帮助。

欧拉公式

欧拉公式

欧拉公式是指以欧拉命名的诸多公式。

其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来;拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。

此外还包括其他一些欧拉公式,比如分式公式等等(Euler公式)在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。

分式与欧拉公式a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0 当r=2时值为1当r=3时值为a+b+c复变函数论与欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cos x=1-x^2/2!+x^4/4!-x^6/6!……sin x=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。

将e^ix=cosx+isinx中的x 取作π就得到:e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。

欧拉定理 直线上的托勒密定理

欧拉定理 直线上的托勒密定理

欧拉定理直线上的托勒密定理欧拉定理和直线上的托勒密定理都是数学中的重要定理,它们有许多应用和推广,特别是在几何学和数论中。

下面将分别对这两个定理进行详细的解释和说明。

欧拉定理(Euler's theorem)是数论中的一个重要定理,也被称为费马小定理(Fermat's little theorem)的一个特殊情况。

欧拉定理的表述如下:对于任意的正整数a和与之互素的正整数m,有a^φ(m) ≡1 (mod m)。

其中,φ(m)表示小于m且与m互素的正整数的个数,也称为欧拉函数(Euler function)。

这个定理的意义在于,对于任意的正整数a和与a互素的模数m,a的欧拉指数满足a^φ(m) ≡1 (mod m)。

这个定理在密码学中起着重要的应用,尤其是在RSA加密算法中。

直线上的托勒密定理(Ptolemy's theorem on a straight line)是几何学中的一个重要定理,它可以用来描述一个平面四边形的性质。

具体表述如下:对于任意平面四边形ABCD,它的对角线AC和BD以及四个边线AB、BC、CD、DA之间满足以下关系式:AB·CD + BC·AD = AC·BD。

这个定理可以被看作是勾股定理的一个推广,它给出了四边形内部各个线段的关系。

通过这个定理,我们可以探讨四边形的性质,例如判断四边形是平行四边形、矩形、正方形还是一般的四边形等。

此外,直线上的托勒密定理还有一个应用是可以用来证明某个四边形是圆内接四边形。

如果一个四边形的对角线互相垂直,那么根据托勒密定理,这个四边形可以被证明是圆内接四边形。

总结起来,欧拉定理和直线上的托勒密定理在数论和几何学中都是非常重要的定理。

欧拉定理是数论中关于模运算和欧拉函数的一个基础定理,而直线上的托勒密定理则为解决四边形的性质和证明圆内接四边形提供了重要工具。

欧拉拓扑公式

欧拉拓扑公式

欧拉拓扑公式答案:欧拉公式,它们分散在各个数学分支之中.(1)分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c(2)复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.(3)三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr(4)拓扑学里的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h.X(P)叫做P的拓扑不变量,是拓扑学研究的范围.(5)初等数论里的欧拉公式:欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数.n 是一个正整数.欧拉证明了下面这个式子:如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等.则有φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)利用容斥原理可以证明它.此外还有很多著名定理都以欧拉的名字命名.。

欧拉定理

欧拉定理

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。

在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。

欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。

欧拉定理实际上是费马小定理的推广。

此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。

西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。

另有欧拉公式。

欧拉1707年4月15日生于瑞士,1783年9月18日卒于俄国圣彼得堡,他简直是个超级猛人,他的一生真的是战斗的一生。

欧拉从19岁开始发表论文,直到76岁,共写下了886本书籍和论文,其中在世时发表了700多篇论文。

彼得堡学院为了整理他的著作,整整用了47年。

小奥许多知识点和欧拉有关,除了我们接下来要聊的欧拉定理和欧拉函数,还有一笔画问题也和欧拉解决的哥尼斯堡七桥问题有关。

对这类问题的讨论研究,引导了图论和拓扑学的发展。

好,我们还是言归正传。

欧拉函数与欧拉定理在开始欧拉定理之前我们先看一个小问题,透过这小问题来了解什么是欧拉函数。

小于n且与n互质的自然数有多少个?或者我们把n具体到100,那么问题就是小于100且与100互质的自然数有多少个?这就是欧拉函数要解决的问题。

欧拉函数用φ表示;φ(100) = 100 x (1-1/2) x (1-1/5)先将100分解质因数100 = 2^2 x 5^2所有和100互质的数一定不含约数2或5在1~100中,每2个数中有1个是2的倍数,100 x(1-1/2)把所有2的倍数去掉。

剩下的数中,每5个有一个是5的倍数,所以乘以(1-1/5)将剩下的含有约数5的数也去掉最后有100 x (1-1/2) x (1-1/5)=40个数小于100且与100互质欧拉函数就是这样,再来看欧拉定理:若n, a为正整数,且n,a互质,则:a^φ(n)≡1(mod n)意思很明白,若n, a为正整数,且n,a互质,那么a的φ(n)次方模n恰好余1。

欧拉定理公式

欧拉定理公式

欧拉定理公式
在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。

它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。

第一个欧拉公式的严格证明,由20岁的柯x给出,大致如下:从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。

不失一般性,可以假设变形的边继续保持为直线段。

正常的面不再是正常的多边形即使开始的时候它们是正常的。

但是,点,边和面的个数保持不变,和给定多面体的一样(移去的面对应网络的外部。


重复一系列可以简化网络却不改变其欧拉数(也是欧拉示性数)的额外变换。

初等数论知识点总结

初等数论知识点总结

初等数论知识点总结初等数论是数论中的一个分支,它主要研究自然数的整除性质以及其它基本性质。

初等数论主要包括素数与合数、整数表示、整数方程、模运算、同余方程、数乘次幂循环节等内容。

下面将对初等数论的关键知识点进行总结。

1.素数与合数:素数(质数)是只能被1和自身整除的自然数,合数是除了1和自身以外还能被其它数整除的自然数。

质数有无穷多个,这个结论由欧几里得证明。

常见的质数有2、3、5、7等。

2.素因子分解:任何一个自然数都可以唯一分解成若干个素数的乘积形式,这个分解过程称为素因子分解。

例如,24可以分解为2^3*3,其中2和3是24的素因子。

3.最大公约数与最小公倍数:最大公约数(GCD)是指两个或多个数中最大的能够整除所有这些数的自然数,最小公倍数(LCM)是指两个或多个数中最小的能够被这些数整除的自然数。

GCD可以通过欧几里得算法进行计算,而LCM可以通过两个数的乘积除以它们的GCD得到。

4.模运算与同余方程:模运算是将一个数除以另一个数所得到的余数,同余方程是指具有相同余数的整数关系。

例如,如果a除以n与b除以n得到相同的余数,即a≡b (mod n),则称a与b在模n下是同余的。

5.素数定理与欧拉定理:素数定理是指当自然数x趋于无穷大时,小于等于x的素数的数量约等于x / ln(x),其中ln(x)是自然对数。

欧拉定理是指当正整数a与自然数n互质时,a^(φ(n)) ≡ 1 (mod n),其中φ(n)是小于n且与n互质的自然数的个数。

6.立方与四方数:立方数是指一个数的立方,四方数是指一个数可以表示为四个整数的平方和。

高斯数学说是指四方数的性质,它由高斯证明,表示为四个整数的平方和的非负整数解的个数等于该数的除以8的余数。

7.费马小定理与小费马定理:费马小定理是费马定理的一个特殊情况,它表明如果p是一个素数,a是一个与p互质的整数,那么a^(p-1) ≡ 1 (mod p)。

小费马定理是费马小定理的推广,它表明如果a是一个整数,m是一个大于1的自然数,且a与m互质,那么a^φ(m) ≡ 1 (mod m),其中φ(m)是小于m且与m 互质的自然数的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。

欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)证明首先证明下面这个命题:对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n 且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn1) 由于a,n互质,xi也与n互质,则a*xi也一定于n互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素2) 对于Zn中两个元素xi和xj,如果xi ≠ xj则a*xi(mod n) ≠ a*xj(mod n),这个由a、n互质和消去律可以得出。

所以,很明显,S=Zn既然这样,那么(a*x1 × a*x2×...×a*xφ(n))(mod n)= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)= (x1 × x2 × ... × xφ(n))(mod n)考虑上面等式左边和右边左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)右边等于x1 × x2 × ... × xφ(n))(mod n)而x1 × x2 × ... × xφ(n)(mod n)和n互质根据消去律,可以从等式两边约去,就得到:a^φ(n) ≡ 1 (mod n)推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)费马定理:a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p) 编辑本段平面几何里的欧拉定理定理内容设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.证明O、I分别为⊿ABC的外心与内心.连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点.连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径.由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明)但DB=DI(可连BI,证明ÐDBI=ÐDIB得),故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.而这个比例式可由⊿AFI∽⊿EBD证得.故得R2-d2=2Rr,即证.编辑本段拓扑学里的欧拉公式V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

编辑本段经济学中的“欧拉定理”在西方经济学里,产量和生产要素L、K的关系表述为Q=Q(L,K),如果具体的函数形式是一次齐次的,那么就有:Q=L(ðQ/ðL)+K(ðQ/ðK),换句话说,产品分配净尽取决于Q能否表示为一个一次齐次函数形式。

因为ðQ/ðL=MPL=w/P被视为劳动对产量的贡献,ðQ/ðK=MPK=r/P被视为资本对产量的贡献,因此,此式被解释为“产品分配净尽定理”,也就是所有产品都被所有的要素恰好分配完而没有剩余。

因为形式上符合数学欧拉定理,所以称为欧拉定理。

【同余理论中的"欧拉定理"】设a,m∈N,(a,m)=1,则a^(f(m))≡1(mod m)(注:f(m)指模m的简系个数)定理内容e^ix=cosx+isinxe是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。

“上帝创造的公式”将e^ix=cosx+isinx中的x取作π就得到:e^iπ+1=0.这个等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。

数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

编辑本段意义(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。

定理引导我们进入一个新几何学领域:拓扑学。

我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。

欧拉定理告诉我们,简单多面体f (p)=2。

除简单多面体外,还有非简单多面体。

例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。

它的表面不能经过连续变形变为一个球面,而能变为一个环面。

其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题如:为什么正多面体只有5种?足球与C60的关系?否有棱数为7的正多面体?等编辑本段V+F-E=2的证明方法1:(利用几何画板)逐步减少多面体的棱数,分析V+F-E先以简单的四面体ABCD为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。

因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1(1)去掉一条棱,就减少一个面,V+F1-E不变。

依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。

因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和设多面体顶点数V,面数F,棱数E。

剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα一方面,在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:Σα = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]= (n1+n2+…+nF -2F) ·180度=(2E-2F) ·180度 = (E-F) ·360度(1)另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。

中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。

所以,多面体各面的内角总和:Σα = (V-n)·360度+(n-2)·180度+(n-2)·180度=(V-2)·360度(2)由(1)(2)得: (E-F) ·360度=(V-2)·360度所以 V+F-E=2.方法3 用拓扑学方法证明欧拉公式图尝试一下用拓扑学方法证明关于多面体的面、棱、顶点数的欧拉公式。

欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末F-E+V=2。

证明如图(图是立方体,但证明是一般的,是“拓朴”的):(1)把多面体(图中①)看成表面是薄橡皮的中空立体。

(2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。

假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。

(3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。

每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。

因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。

有些三角形有一边或两边在平面图形的边界上。

(4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。

这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。

(5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。

这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。

(6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。

这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。

(7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

(8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。

因此F′-E′+V′仍然没有变。

即F′-E′+V′=1成立,于是欧拉公式:F-E+V=2得证。

编辑本段欧拉定理的运用方法(1)分式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c(2)复数由e^iθ=cosθ+isinθ,得到:sinθ=(e^iθ-e^-iθ)/2icosθ=(e^iθ+e^-iθ)/2(3)三角形设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr(4)多面体设v为顶点数,e为棱数,f是面数,则v-e+f=2-2pp为欧拉示性数,例如p=0 的多面体叫第零类多面体p=1 的多面体叫第一类多面体(5) 多边形设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:V+Ar-B=1(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)(6). 欧拉定理在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。

相关文档
最新文档