高中数学必修一函数知识点总结

合集下载

高中数学函数知识点总结大全

高中数学函数知识点总结大全

高中数学函数知识点总结大全函数知识点大全一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b 取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y 轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y 随x的增大而增大;当k<0时,直线必通过二、四象限,y 随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P (x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b 的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

高中数学函数知识点总结

高中数学函数知识点总结

函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值X围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。

以下是对这些知识点的详细总结。

一、集合1、集合的概念集合是由某些确定的对象所组成的整体。

这些对象称为集合的元素。

2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。

(2)描述法:用确定的条件表示某些对象是否属于这个集合。

3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。

(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。

(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。

4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。

(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。

(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。

二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。

2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。

(2)值域:函数值的集合。

(3)对应关系:函数的表达式或法则。

3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。

(2)图象法:用图象表示函数关系。

(3)列表法:列出表格来表示两个变量之间的对应关系。

三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

高中数学函数知识点总结

高中数学函数知识点总结

高中数学函数知识点总结高中数学函数知识点总结一、函数概念函数是数学中重要的概念,具有广泛的应用。

函数是一种关系,它将一个集合的元素(自变量)与另一个集合的元素(因变量)联系起来。

常用的表示函数的方法是将它写为y=f(x),其中y是函数值,x是自变量,f是函数名。

例如,y=x²就是一个函数,它的自变量是x,因变量是x²。

二、函数的定义域、值域和图像1.定义域函数的定义域是指自变量可以取的实数范围。

有些函数定义域有限,有些函数定义域是整个实数集合。

例如,y=1/x的定义域是所有非零实数,y=sin x的定义域是所有实数。

2.值域函数的值域是指函数在定义域内可以取到的所有函数值。

有些函数值域有限,有些函数值域是整个实数集合。

例如,y=1/x的值域是(-∞,0)或(0,∞),y=sin x的值域是[-1,1]。

3.图像函数图像是函数在直角坐标系中的表示,它由所有(x,f(x))的点组成。

函数的图像能够反映函数的性质,例如函数的单调性、奇偶性、周期性等。

三、函数的分类函数可以按照多种方式进行分类,包括:1.初等函数与非初等函数初等函数包括基本初等函数和其它初等函数。

基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数,其它初等函数包括每个基本初等函数的若干种组合形式。

非初等函数则是指不能表示为初等函数的函数,例如Gamma函数和Bessel函数等。

2.显式函数与隐式函数显式函数就是已知函数值y,能够根据函数的表达式计算自变量x,例如y=x²+1。

隐式函数则是不能通过简单的代数运算得到x的表达式,例如x²+y²=1是一个圆的方程。

3.周期函数与非周期函数周期函数指函数f(x+T)=f(x),其中T为正周期。

非周期函数则是指没有正周期的函数。

4.单调函数与非单调函数单调函数指自变量增大时函数值单调增加或单调减少的函数。

非单调函数则是指既有增又有减的函数。

高中函数知识点总结(最新最全)

高中函数知识点总结(最新最全)

高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结第一章:集合与函数1. 集合的概念集合的定义元素与集合的关系集合的表示法2. 集合的运算交集、并集、补集的定义和性质子集和真子集3. 函数的概念函数的定义函数的三要素:定义域、值域、对应关系函数的表示方法:解析式、图象、列表4. 函数的性质单调性奇偶性周期性5. 反函数反函数的概念反函数的求法第二章:指数函数与对数函数1. 指数函数指数函数的定义指数函数的图象和性质2. 对数函数对数函数的定义对数函数的图象和性质3. 指数与对数的运算指数运算法则对数运算法则第三章:三角函数1. 角的概念任意角象限角2. 三角函数的定义正弦、余弦、正切函数的定义3. 单位圆上的三角函数单位圆的定义单位圆上的三角函数值4. 三角函数的图象正弦、余弦函数的图象正切函数的图象5. 三角函数的性质周期性奇偶性单调性第四章:解析几何1. 平面直角坐标系坐标系的建立点的坐标2. 直线的方程直线的斜率直线的点斜式、斜截式、一般式方程3. 圆的方程圆的标准方程圆的一般方程4. 点与圆的位置关系点与圆的切线点与圆的弦第五章:不等式1. 不等式的解法代数法图形法2. 不等式的性质不等式的基本性质不等式的传递性3. 一元一次不等式组不等式组的解法求解不等式组的技巧第六章:数学思维与方法1. 归纳推理归纳推理的定义归纳推理的应用2. 演绎推理演绎推理的定义演绎推理的应用3. 数学建模数学建模的概念数学建模的步骤第七章:数学文化1. 数学在日常生活中的应用数学在决策中的作用数学在数据分析中的应用2. 数学家的故事著名数学家的生平数学家的贡献3. 数学思想的发展数学思想的历史演变数学思想在现代科技中的应用。

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版哎呀,说起高中数学必修一知识点,真是让人头大啊!不过,既然咱们要总结,那就不能偷懒,得好好儿地聊聊。

咱们来谈谈函数吧。

函数这东西,就像是一个大管家,它可以把一堆数据(自变量)变得有规律(因变量)。

比如说,你家里有个冰箱,里面装满了各种食物。

你想要知道现在冰箱里有多少食物,就得看看里面的食物数量。

这时候,冰箱就是个函数,它把食物的数量映射成了一个数字(10、20、30......)。

函数有哪些基本概念呢?首先是函数的定义域和值域。

定义域就是函数能接受的数据的范围,值域就是函数能表示的数据的范围。

接着是函数的图像,也就是函数在坐标系上的表示。

最后是函数的性质,比如单调性、奇偶性等。

咱们来谈谈导数。

导数就像是一个神奇的小助手,它可以帮助我们更快地找到函数的变化趋势。

比如说,你想知道吃一块巧克力会不会让你的体温升高,就得先算出吃巧克力时的体温变化率。

这时候,导数就能帮上忙了。

导数有哪些基本概念呢?首先是导数的定义,也就是函数在某点处的变化率。

接着是导数的计算方法,有四种基本运算:加法、减法、乘法和除法。

最后是导数的应用,比如求最值、判断单调性等。

再来说说极限。

极限就像是一个超级英雄,它可以帮助我们解决那些看似无解的问题。

比如说,你想知道地球到月亮的距离是多少米,就得用极限的方法来解决。

极限有哪些基本概念呢?首先是极限的定义,也就是函数在无穷远处的值。

接着是极限的性质,比如极限存在的条件、极限唯一性等。

最后是极限的应用,比如求无穷级数的和、证明定理等。

以上就是高中数学必修一知识点的小结啦!希望对大家有所帮助。

不过,记住哦,学习数学可不是一件容易的事情,需要我们不断地练习和思考。

加油吧,少年!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一函数知识点总结
函数作为高中数学的重要内容,是数学思维的重要工具之一。

在学习函数时,不仅需要掌握函数的定义和性质,还需要理解函数与实际问题的应用。

本文将对高中数学必修一中的函数知识点进行总结。

一、函数的定义和性质
1. 函数的定义:函数是一个自然数集合和一个对应关系的二元组,其中每一个自然数对应唯一的一个实数。

2. 定义域和值域:函数的定义域是自然数集合,值域是实数集合。

函数的定义域和值域可以是实数集合的一个子集。

3. 要素和表达式:函数由其对应关系和函数表达式两部分构成。

函数的对应关系是函数的要素,函数表达式是将自变量和因变量联系在一起的表达式。

4. 定义关系的表示:可以通过图像、函数表、显式表达式和隐式表达式等方式表示函数的定义关系。

5. 函数的性质:包括奇偶性、单调性、周期性和双射性等。

二、函数的基本类型
1. 一次函数:函数表达式为y = kx + b,是一种线性函数,图像为直线。

其中k为斜率,b为截距。

2. 二次函数:函数表达式为y = ax^2 + bx + c,是一种抛物线
函数,图像为开口向上或开口向下的U型曲线。

其中a为二次项系数,b为一次项系数,c为常数项。

3. 幂函数:函数表达式为y = x^a,是一种以底数为自变量的幂函数,其中a为指数。

4. 指数函数:函数表达式为y = a^x,是一种以指数为自变量的函数,其中a为底数。

5. 对数函数:函数表达式为y = logax,是一种以对数为自变量的函数,其中a为底数。

6. 三角函数:包括正弦函数、余弦函数和正切函数等,是以角
度为自变量的函数。

三、函数的图像与性质
1. 函数的图像:函数的图像反映了自变量和因变量之间的对应
关系。

可以根据函数表达式找出函数的图像特点,如函数的开口方向、对称轴、零点等。

2. 函数的奇偶性:若对于定义域内的任意自变量x,函数满足
f(-x) = f(x),则函数为偶函数;若对于定义域内的任意自变量x,函数满足f(-x) = -f(x),则函数为奇函数;若既不满足偶函数的性质,也不满足奇函数的性质,则函数既不是偶函数也不是奇函数。

3. 函数的单调性:若对于定义域内的任意自变量x1和x2,若
x1 < x2,则有f(x1) < f(x2),则函数为增函数;若对于定义域内的
任意自变量x1和x2,若x1 < x2,则有f(x1) > f(x2),则函数为减
函数。

四、函数的运算和变换
1. 函数的四则运算:可以对两个函数进行加减乘除的运算。

2. 函数的复合运算:可以通过两个函数的复合运算构建新的函数。

记作f(g(x)),表示先将x代入g(x)中得到中间结果,再将中间结果代入f(x)中得到最终结果。

3. 函数的平移:通过改变函数的表达式中的常数项,可以使函数图像上下平移或左右平移。

4. 函数的伸缩:通过改变函数的表达式中的各项系数,可以使函数图像上下伸缩或左右伸缩。

总结:函数是高中数学中重要的知识点,掌握函数的定义、性质、类型、图像与性质以及运算和变换等方面的知识,对于理解和应用函数具有重要的作用。

通过对函数知识点的总结,希望能对高中数学必修一中的函数内容有一个全面而深入的了解。

相关文档
最新文档