平面四杆机构的设计与运动分析Matlab代码

平面四杆机构的设计与运动分析Matlab代码
平面四杆机构的设计与运动分析Matlab代码

平面四杆机构的设计与运动分析M代码平面四杆机构的设计M代码----

A=[cos(50*pi/180),cos((50-35)*pi/180),1;cos(75*pi/180),cos((75-80)*pi/180),1;cos(105*pi/180), cos((105-125)*pi/180),1];

B=[cos(35*pi/180);cos(80*pi/180);cos(125*pi/180)];

P=A\B

m= P(1)

n=-m/ P(2)

l=sqrt(m^2+n^2+1-2*n*P(3))

运行设计结果显示:

平面四杆机构的运动分析M代码----

%参数赋值

clc,clear

l0=1.2512;

l1=1.0;

l2=1.5829;

l3=1.5815;

M=-1;

Omiga1=10;

Theta1=0:0.01:360;

Theta1=Theta1*pi/180;

%求解各个构件位移、速度、加速度

A=2*l1*l2*sin(Theta1);

B=2*l2*(l1*cos(Theta1)-l0);

C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1);

E=2*l1*l3*sin(Theta1);

F=2*l3*(l1*cos(Theta1)-l0);

G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1);

Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G));

Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C));

Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2));

Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2));

Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2));

Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3));

%绘图

Theta1=Theta1*180/pi;

Subplot(3,1,1)

plot(Theta1,Theta3*180/pi),grid on

xlabel('曲柄转角(^。) ');ylabel('CD杆角位移(^。) ');

Subplot(3,1,2)

plot(Theta1,Omiga3),grid on

xlabel('曲柄转角(^。) ');ylabel('CD杆角速度(rad/s) ');

Subplot(3,1,3)

plot(Theta1,Alfa3),grid on

xlabel('曲柄转角(^。) ');ylabel('CD杆角加速度(rad/s^2) ');

by Xu jianping

CD杆运动规律

MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法)

%MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法) clear;clc; %凡是变量名前带v的为数值变量,不带的是符号变量 vxp1=0; vyp1=0; vsita1=0*pi/180; vxp2=-2; vyp2=6; vsita2=40*pi/180; vxp3=-10; vyp3=8; vsita3=90*pi/180; %精确位置P1,P2,P3及各角度 vsita12=vsita2-vsita1; vsita13=vsita3-vsita1; vxa=-10; vya=-2; vxd=-5; vyd=-2; %选定A,D点 %所有数值均在此确定,更改此处即可解出不同数值的四杆机构位移矩阵方程 syms xp1 yp1 xp2 yp2 xp3 yp3 sita12 sita13; syms xa ya xb1 yb1 xb2 yb2 xb3 yb3; f1='(xb2-xa)^2+(yb2-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; f2='(xb3-xa)^2+(yb3-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; %前两个机构方程 f3='xb2=cos(sita12)*xb1-sin(sita12)*yb1+xp2-xp1*cos(sita12)+yp1*sin(sita12)'; f4='yb2=sin(sita12)*xb1+cos(sita12)*yb1+yp2-xp1*sin(sita12)-yp1*cos(sita12)'; %由第一个位移矩阵方程得出 f5='xb3=cos(sita13)*xb1-sin(sita13)*yb1+xp3-xp1*cos(sita13)+yp1*sin(sita13)'; f6='yb3=sin(sita13)*xb1+cos(sita13)*yb1+yp3-xp1*sin(sita13)-yp1*cos(sita13)'; %由第二个位移矩阵方程得出 f1=subs(f1,{xa,ya},{vxa,vya}); f2=subs(f2,{xa,ya},{vxa,vya}); f3=subs(f3,{xp1,xp2,yp1,sita12},{vxp1,vxp2,vyp1,vsita12}); f4=subs(f4,{xp1,yp1,yp2,sita12},{vxp1,vyp1,vyp2,vsita12}); f5=subs(f5,{xp1,xp3,yp1,sita13},{vxp1,vxp3,vyp1,vsita13}); f6=subs(f6,{xp1,yp1,yp3,sita13},{vxp1,vyp1,vyp3,vsita13}); %代入具体数值 [xb1,xb2,xb3,yb1,yb2,yb3]=solve(f1,f2,f3,f4,f5,f6); %解方程 vxb1=vpa(xb1); vyb1=vpa(yb1); vxb2=vpa(xb2); vyb2=vpa(yb2); vxb3=vpa(xb3); vyb3=vpa(yb3); (vxb1-vxa)^2+(vyb1-vya)^2; (vxb2-vxa)^2+(vyb2-vya)^2; (vxb3-vxa)^2+(vyb3-vya)^2; %去掉这三行分号可验证B点三个位置是否距离A点相等 syms xd yd xc1 yc1 xc2 yc2 xc3 yc3;

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

平面机构的运动分析答案

1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μ ν 表示图上每单位长度所代表的速度大小,单位为: (m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为 (m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij P直接标注在图上)。 P 24)

12 三、 在图a 所示的四杆机构中, l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) a ) (P 13) P P 23→∞

基于matlab的连杆机构设计

基于matlab的连杆机构设计

————————————————————————————————作者: ————————————————————————————————日期:

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程...................................................1 1.3.2求解方法.....................................................................2 2基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计……………………………………………………………………………………………11 3.2代码设计……………………………………………………………………………………………12

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp ' * * * * * * 平面四杆机构的运动分析* * * * * *' L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); for m=1:length(th2)

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

第3章 平面机构的运动分析答案

一、填空题: 1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有6个速度瞬心,其中3个是绝对瞬心。 8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 P直接标注在图上)。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij

12 三、 在图a 所示的四杆机构中,l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度 a ) 24) 14(P 13) P 24 P 23→∞

平面连杆机构的运动分析

平面连杆机构的运动分析 以典型平面连杆机构(牛头刨床机构)为研究对象,首先进行机构的运动分析,并列出相应方程,然后采用计算机C语言编程的方法,计算出机构中选定点的位移、速度,并绘出相关数据图像。 标签: 连杆机构;位移;速度;计算机编程 TB 1 前言 平面连杆机构是现代机械中应用的最为广泛的一种典型机构。平面连杆机构的典型应用包括牛头刨床机构、缝纫机、颚式破碎机等。在研究平面连杆机构的过程中对机构上某个特定点的研究是必不可少的。然而在传统的研究方法中,手工计算不仅计算量大,而且极易出错。随着计算机技术的广泛普及,计算机逐渐成为分析研究典型机械结构的有力工具。因此本文力求通过C语言编程技术来对牛头刨床机构来进行简单运动分析。 2 牛头刨床机构运动分析 图1所示的为一牛头刨床。假设已知各构件的尺寸如表1所示,原动件1以匀角速度ω1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度的变化情况。 角速度变化较为平缓,保证刨头慢速、稳定工作;在220°~340°之间为回程阶段,角速度变化较快,以提高效率;4杆有4个角速度为0点,即4杆的速度方向改变了四次。 C点的位移、速度分析:在0°~200°范围内,C点位移曲线斜率的绝对值变化较小,说明此时C点速度及加速度的变化量不大,且保持在较小值。200°~260°范围内C点的速度变化量明显增大,由速度图像可以推知加速度在220°左右达到最大值后快速减小,并使其速度在260°左右达到最大,而后加速度反向缓慢增大,速度持续减小到零以后又开始反向增大。 ①工作行程为θ1:0°~220°,回程为θ1:220°~340 °;工作行程角度大于回程角度,工作效率较高; ②工作行程阶段,刨头C点位移的变化较为平稳,速度可以近似看为匀速,

基于MATLAB的双摇杆机构运动分析与仿真模板

本科生毕业设计 基于MATLAB的双摇杆机构运动分析与仿真 Based on the MATLAB double rocker organization movement analysis and simulation

基于MATLAB/SIMULINK的双摇杆机构运动学分析与仿 真 邹凯旋 云南农业大学工程技术学院,昆明黑龙潭650201 摘要 平面连杆机构的应用十分广泛,它的分析及设计一直是机构学研究的一个重要课题。MATLAB的Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。借助其强大的模拟仿真分析功能可以方便的实现机构性能分析和动态仿真,降低分析的难度,有效提高设计工作效率、产品开发质量、降低开发成本。本设计课题以MATLAB的simulink\simMechanics 动态模拟仿真工具为平台,对双摇杆机构进行运动分析。结果表明该仿真方法能方便、准确的得到机构的运动、动力数据,能为机构的选择、优化设计提供参考依据。应用此工具可很好地对机械系统的各种运动进行分析,构造出平面连杆机构的数学模型。通过对此数学模型分析,分离出可独立求解的机构模型,并用相应的机构分析方法对它进行求解,建立了平面连杆机构运动学分析专家系统。系统可完成部分平面连杆机构的运动学分析及动画仿真,从而为机械系统的建模仿真提供一个强大而方便的工具。 关键词:连杆机构;动态仿真;SimMechanics;数学模型

Based on the MATLAB double rocker organization movement analysis and simulation Zou kaixuan Faculty of Engineering and Technology Yunan Agricultural University,Heilongtan Kunming 650201 ABSTRACT Planar linkage mechanism used widely, its analysis and design of the study of institutions has been an important subject. MATLAB Simulink is a dynamic system modeling and simulation software package, for signal and system simulation results provide a good platform. With its powerful simulation analysis function is realized the performance analysis and the dynamic simulation institutions, reduce the difficulties of analysis, effectively improve the design work efficiency and product development quality, reduce development costs. This design task to MATLAB simulink \ simMechanics dynamic simulation tools as the platform, on the double rocker organization motion analysis. The results show that the simulation method can conveniently, accurately to get the kinematic and dynamic data organization, for the choice of institutions, optimum design to provide the reference. This tool can application is mechanical system analysis of all kinds of sports, constructed the mathematical model of the planar linkage mechanism. Through mathematical model to analysis, separating out can be independent of solving mechanism model, and the corresponding institutions analysis method to solve it, a planar linkage mechanism kinematic analysis of the expert system. System can finish part of planar linkage mechanism kinematic analysis and animated simulation, thus for mechanical system modeling simulation provide a strong and convenient tool. Key words: linkage;Dynamic Simulation;SimMechanics;mathematical model

平面四杆机构分析报告

工业设计机械设计基础大作业 一、序言 平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。 二、平面连杆机构优缺点的介绍 连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。 它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。 连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。 正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。 三、平面四杆机构的基本类型与应用实例。 连杆机构是由若干刚性构件用低副连接所组成的。在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。即曲柄摇杆机构、双曲柄机构和双摇杆机构。其中: 1.曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。 在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。如飞剪、间歇传送机构、传送带送料机构等。

基于matlab的平面四连杆机构设计以及该机构的运动分析

基于matlab 的平面四连杆机构设计以及该机构的运动仿真分析 摘要 四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意 义。传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。随着计算机辅助数值解法的发展,特别是MATLAB 软件的引入,解析法已经得到了广泛的应用。对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe 软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。 在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB 中编程可以求得其他杆件的长度。 针对范例中所求得的各连杆的长度,我们在proe 软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出B,C的角加速度的变化,从而得到B,C两接触处所受到的力是成周期性变化的,可以看出B,C两点处极易疲劳断裂,针对B,C两点处的疲劳断裂,我们提出了在设计四连杆中的一些建议。 关键字:解析法MATLAB软件proe软件运动仿真

建立用解析法设计平面四杆机构模型 对于问题中所给出的连架杆AB的三个位置与连架杆CD的三个位置相对应,即三组对应位置为: f 1」2卜2,「3卜3,其中他们对应的值分别为:135 ,112 ,90 ,82 ,45 ,52,为了便于写代数式,可作出AB与CD对应的关系,其图如下: 图一2 AB与CD三个位置对应的关系 通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下: 图一3平面机构直角坐标系 通过建立直角坐标系OXY,如上图所示,其中:0与°为AB杆与

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp '* ** *** 平面四杆机构的运动分析*** ***' L1=304.8;L2=101.6;L3=254.0;L4=177.8;%给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)');%连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)');%连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); form=1:length(th2)

基于matlab GUI的平面四杆机构的运动分析

基于matlab GUI的平面四杆机构的运动分析 一、目的 通过matlab对平面四杆机构进行运动仿真,并以GUI界面方式实现输入输出的参数化,对平面四杆机构进行位置分析、速度分析、加速度分析和静力学分析。此外,通过动画演示,更加形象直观地观察机构的运动过程。最后,将程序编译成.exe独立可执行文件,可以在其它没有安装matlab的机器上运行。 二、设计思路 通过matlab的GUI功能模块,创建一个图形用户界面,在自动生成的代码框架中对初始化函数和回调函数等进行编辑,建立与控件相关联的程序:控件属性、位置分析、速度分析、加速度分析、静力学分析、动画演示等。 图1是平面四杆机构的示意图,输入角q的运动规律为q=pi/50*t^2+q0,r1、r2是从动角。对t时刻沿着杆长距离原点A的任意一点进行分析。 注意:输入输出角的单位为度,时间t的取值范围为0:0.05:10,任意点lx的取值范围为0~a1+a2+a3,估算的从动角r1、r2的迭代初始值不能偏离平衡位置太大。 图1、平面四杆机构示意图 三、设计流程 1、通过GUI模块创建图形用户界面

命令方式:在Matlab命令窗口键入>>guide;菜单方式:在Matlab的主窗口中,选择File>New>GUI命令,就会显示GUI的设计模板。如图1所示。 图2、创建图形界面 2、设计图形界面 在创建之后的图形界面中插入坐标轴axes,静态文本框static text,编辑文本框edit text,按钮push button等等。如图所示。 图3、图形界面设计

3、编辑回调函数 1)位置分析:输入角的函数为:q=pi/50*t^2+q0。在时间t=0~10s内,每一个时间点估算两个初始从动角,根据牛顿-拉普森迭代得到准确的机构位置。10s刚好主动角经历了360度,记录每一时刻的位置,便可以动画演示。 2)速度分析:输入角速度为:dq=pi/25*t。选择杆件上的任意一点(坐标表示为质点沿着杆件到原点A的距离)做分析,正确表达出角速度系数和速度系数,便可以求出质点的速度。 3)加速度分析:输入角加速度为:ddq=pi/25。正确表达出向心系数和角加速度系数,便可以求出质点的加速度。 4)静力学分析:由虚功原理可知,当广义力Q(V,H)=0(或近似为零)时机构达到平衡,记录该平衡条件下的位置数据。 四、结果演示 1、机构杆长条件判断 1)不符合杆长条件。如图4所示。 图4、不符合杆长条件

第二章平面机构的运动分析

1、试求出下列机构中的所有速度瞬心。 (a) (b) (c) (d) 2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。 题2图凸轮机构题3图组合机构 3、图示机构,由曲柄1、连杆2、摇杆3及机架6组成铰链四杆机构,轮1′与曲柄1

固接,其轴心为B,轮4分别与轮1′和轮5相切,轮5活套于轴D上。各相切轮之间作纯滚动。试用速度瞬心法确定曲柄1与轮5的角速比ω1/ω5。 4、在图示的颚式破碎机中,已知:x D=260mm,y D=480mm,x G=400mm,y G=200mm,l AB=l CE=100mm,l BC=l BE=500mm,l CD=300mm,l EF=400mm,l GF=685mm,?1=45°,ω1=30rad/s逆时针。求ω 5、ε5。 题4图破碎机题5图曲柄摇块机构 5、图示的曲柄摇块机构, l AB=30mm,l AC=100mm,l BD=50mm,l DE=40mm,?1=45°,等角速度ω1=10rad/s,求点E、D的速度和加速度,构件3的角速度和角加速度。 6、图示正弦机构,曲柄1长度l1=,角速度ω1=20rad/s(常数),试分别用图解法和解析法确定该机构在?1=45°时导杆3的速度v3与加速度a3。 题6图正弦机构题7图六杆机构 7、在图示机构中,已知l AE=70mm,l AB=40mm,l EF=70mm,l DE=35mm,l CD=75mm,l BC=50mm,?1=60°,构件1以等角速度ω1=10rad/s逆时针方向转动,试求点C的速度和加速度。

机械原理-MATLAB基于四杆机构运动分析的运用

MATLAB软件由美国MathWorks公司于1982年推出,经过十几年的发展和竞争,现已成为国际公认的最优秀的科技应用软件之一。 MATLAB提供了强大的矩阵处理和绘图功能。它主要包括两部分内容:核心函数和工具箱。Matlab编程代码接近数学推导公式,简洁直观,与科技人员的思维方式和书写习惯相适应,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果,拓展思路。 编制相应的M函数文件。Pos.m用于求解位置、角度和角加速度。th1为初始角度,w1为杆1角速度,其余为杆长。将课本P35(i)、(ii)、(iii)式用MATLAB语言表述,即可编制为四杆机构求解函数文件pos.m。 function f=pos(th1,w1,l1,l2,l3,l4) syms x21 x31 x22 x32 x1=th1*pi/180;x11=cos(x1);x12=sin(x1); eq1=l1*x11+l2*x21-l3*x31-l4; eq2=l1*x12+l2*x22-l3*x32; eq3=x21^2+x22^2-1;eq4=x31^2+x32^2-1; s=solve(eq1,eq2,eq3,eq4,x21,x22,x31,x32); s1=double(s.x21); s2=double(s.x22); s3=double(s.x31); s4=double(s.x32); x2=(acos(s1(1,1)))/pi*180; x3=(acos(s3(1,1)))/pi*180; A=[l2*s2(1,1),-l3*s4(1,1);l2*s1(1,1),-l3*s3(1,1)]; B=[-l1*x12;-l1*x11]; w=A\(w1*B);w2=w(1,1);w3=w(2,1); C=[-l2*w(1,1)*s1(1,1),l3*w(2,1)*s3(1,1);l2*w(1,1)*s2(1,1),-l3*w(2,1)*s4(1,1)]; D=[w(1,1);w(2,1)];E=[-l1*w1*x11;l1*w1*x12]; F=[l2*s2(1,1),-l3*s4(1,1);l2*s1(1,1),-l3*s3(1,1)]; t=F\(C*D+w1*E);a2=t(1,1);a3=t(2,1); l1=cat(1,th1,w1,0);l2=cat(1,x2,w2,a2); l3=cat(1,x3,w3,a3);f=(cat(2,l1,l2,l3))'; subplot(2,2,1);plot(th1,w2,'r-');hold on;title('连杆2角速度分析'); subplot(2,2,2);plot(th1,a2,'b-');hold on;title('连杆2角加速度分析'); subplot(2,2,3);plot(th1,w3,'r-');hold on;title('连杆3角速度分析'); subplot(2,2,4);plot(th1,a3,'b-');hold on;title('连杆3角加速度分析'); return 在MA TLAB命令窗口输入命令: >> th1=60;w1=pi/3;l1=20;l2=30;l3=40;l4=45; >> function f=pos(th1,w1,l1,l2,l3,l4) 60°,ω=pi/3时的值 即可得到 theta= 采用实时动画的方法编写draw.m文件: function dw = draw(l1,l2,l3,l4,x1,x2,x3) figure(2); th1=x1*pi/180;th2=x2*pi/180;th3=x3*pi/180; x=0:0.001:l4;plot(x,0,'r-');axis([-25,70,-25,60]);hold on for i=0:0.1:l1; s=i*cos(th1); c=i*sin(th1); plot(s,c,'b-');hold on; end; for x=0:0.1:l3; s2=x*cos(th3)+l4;c2=x*sin(th3); plot(s2,c2);hold on; end for x=0:0.1:l2; s3=l1*cos(th1)+x*cos(th2); c3=l1*sin(th1)+x*sin(th2); plot(s3,c3);hold on; end return 代入pos.m中所得的结果,输入命令: >>draw(l1,l2,l3,l4,y(1,1),y(2,1),y(3,1)) 即可得到当前位置下的四杆图形。 实例计算 假设已知各杆的尺寸和杆1的初始角度th1及角速度w1,其分别为th1=60,w1=pi/3,l1=25,l2=40,l3=50,l4=60。 现求在图1所示位置时的杆2和3的角位移,角速度和角加速度及当前位置下的四杆机构图形。仅需输入: >> th1=60;w1=pi/3;l1=25;l2=40;l3=50;l4=60; >> pos(th1,w1,l1,l2,l3,l4) >>draw(l1,l2,l3,l4,y(1,1),y(2,1),y(3,1)) 若要得到四杆机构的运动图形,则输入: >>for m=0:1:360;%步距为1°,可更改; y=pos(m,w1,l1,l2,l3,l4);

相关文档
最新文档