吸收塔的工艺计算样本

吸收塔的工艺计算样本
吸收塔的工艺计算样本

第3章 吸取塔工艺计算

3.1基本物性数据

3.1.1液相物性数据

对低浓度吸取过程,溶液物性数据可近似取纯水物性数据。由手册查得,20℃时水关于物性数据如下:

密度为

3

998.2/L km m ρ= 粘度为 001.0=L μs Pa ?=3.6 kg/(m ·h)

表面张力为 272.6/940896/L dyn cm kg h ==σ

查手册得20C 时氨在水中扩散系数为 921.76110/D m s -=?

3.1.2气相物性数据

混合气体平均摩尔质量为

0.05170.952928.40/Vm i i M y M kg kmol =∑=?+?=

混合气体平均密度为

3Vm PM 101.32528.4= 1.161 kg/m 8.314298

Vm RT ρ?==? 25C 时混合气体流量:

)/(2.229215

.27315.29821003h m =? 混合气体粘度可近似取为空气粘度,查手册得25C 时空气黏度为:

518.110

0.065/()v pa s kg m h -=??=?μ 由手册查得,25C 时氨在空气中扩散系数为:

220.236/0.08496/v D cm s m h ==

3.1.3气相平衡数据

有手册查得氨气溶解度系数为

30.725/()H kmol kPa m =?

计算得亨利系数

998.276.410.72518.02

L

S E kPa HM ρ===? 相平衡常数为

76.410.7543101.3

E m P === 3.2物料衡算 进塔气相摩尔比为:05263.005

.0105.01=-=Y 出塔气相摩尔比为:003158.0)94.01(05263.0)1(12=-?=-=A Y Y ?

对于纯溶剂吸取过程,进塔液相构成为:02=X (清水) 惰性气体流量:)/(06.89)05.01(4

.222100h kmol V =-?=

最小液气比: 7090.00

7543.0/05263.0003158.005263.0/)(21212121min =--=--=--=X m Y Y Y X X Y Y V L 取实际液气比为最小液气比2倍,则可得吸取剂用量为:

)

/(287.12606.894180.14180.17090.02)(2min h kmol L V

L V L =?==?== 03876.06584

.113)003158.005263.0(06.89)(211=-?=-=L Y Y V X V ——单位时间内通过吸取塔惰性气体量,kmol/s;

L ——单位时间内通过吸取塔溶解剂,kmol/s;

Y 1、Y 2——分别为进塔及出塔气体中溶质组分摩尔比,kmol/kmol;

X 1、X 2——分别为进塔及出塔液体中溶质组分摩尔比,kmol/kmol;

3.3填料塔工艺尺寸计算

3.3.1塔径计算

填料塔直径计算采用式子D = 计算塔径核心是拟定空塔气速 ,采用泛点气速法拟定空塔气速. 泛点气速是填料塔操作气速上限,填料塔操作空塔气速必要不大于泛点气速才干稳定操作.泛点气速(/)f u m s 计算可以采用EcKert 通用关联图查图计算,但成果不精确,且不能用于计算机持续计算,因而可采用贝恩-霍根公式计算:

气体质量流量:

h /kg 2.2661161.12.2292=?=V W

液相质量流量可近似按纯水流量计算,即:

h kg W L /69.227502.18287.126=?=

120.20.2583lg[()()]()()t v v F L L L v L

u W A K g W αρρμερρ=- 式中 29.81/g m s =

23114.2/t m m α=

30.927

1.161/v kg m ερ==

3998.2/L kg m ρ=

0.204

1.75

1.0042275.69/2661.2/L L v A K mpa s W kg h

W kg h

μ===?==

代入以上数据解得泛点气速 4.219/F u m s =

取 0.8 3.352/F u u m s ==

则塔径

0.492D m == 圆整后取 0.5500D m mm ==

3.3.2泛点率校核

22292.2/3600 3.244/0.7850.5u m s =

=? 3.244100%76.89%4.219

F u f u ==?= f 在50%-85%之间,因此符合规定.

3.3.3填料规格校核 有50010850

D d ==> 即符合规定. 3.3.4液体喷淋密度校核

对于直径不超过75mm 散装填料塔,取最小润湿速率为:

()()h m m L w ?=/08.03min

本设计中填料塔喷淋密度为:

32222275.6911.62/()0.785998.20.7850.5

h L U m m h D ===??? 最小喷淋密度:32min min ()0.08114.29.136/()w t U L m m h α=?=?=?

min U U >

阐明填料能获得良好润湿效果.

经以上校核可知,填料塔直径选用D=500mm 能较好地满足设计规定。

3.4填料塔填料高度计算

3.4.1传质单元高度计算

传质过程影响因素十分复杂,对于不同物系、不同填料及不同流动状况与操作条件,传质单元高度迄今为止尚无通用计算办法和计算公式.当前,在进行设计时多选用某些准数关联式或经验公式进行计算,其中应用较普遍是修正恩田(Onde )公式:

???????

??????? ?????? ?????? ?????? ??--=-2.0205.0221.075.045.1exp 1t L L L L t L L t L L C t w U g U U ασρραμασσαα 查]1[ 13-5 得

233/427680/C dyn cm kg h σ==

液体质量通量为

()222275.6911585.8726/0.7850.5

L U kg m h ==?? 0.050.750.12280.2242768011595.872611595.8726114.21.45940896114.2 3.6998.2 1.27101exp 0.348211595.8726998.2940896114.2w t αα-?????????-?? ? ? ????????????=-=?????? ?????????

230.348239.76/w t m m αα==

气膜吸取系数有下式计算:

气体质量通量为:

222292.2 1.16113560.48/()0.7850.5V kg m h U ?==??

111水吸收二氧化硫填料吸收塔设计说明书完整版

吉林化工学院 化工原理课程设计 题目处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 教学院 专业班级 学生姓名 学生学号 指导教师 2011 年 12 月 5 日

课程设计任务书 1、设计题目:处理量为2550~3200m3/h水吸收二氧化硫过程填料吸收塔的设计 。 矿石焙烧炉送出的气体冷却到20℃后送入填料塔中,用20℃清水洗涤洗涤除去其中的SO 2入塔的炉气流量为3100m3/h,其中进塔SO2的摩尔分率为0.05,要求SO2的吸收率为95%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小用量的1.5倍。 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=20℃ (3)选用填料类型及规格自选。 3、设计任务: 完成吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,撰写设计说明书。 处理量为3100m3/h水吸收二氧化硫过程填料吸收塔的设计 化工原理教学与实验中心 2011年11月

目录 摘要.................................................................................................................................IV 第一章绪论. (1) 1.1 吸收技术概况 (1) 1.2 吸收设备发展 (1) 1.3 吸收在工业生产中的应用 (3) 第二章吸收塔的设计方案 (4) 2.1 吸收剂的选择 (4) 2.2 吸收流程选择 (5) 2.2.1 吸收工艺流程的确定 (5) 2.2.2 吸收工艺流程图及工艺过程说明 (6) 2.3 吸收塔设备及填料的选择 (7) 2.3.1 吸收塔设备的选择 (7) 2.3.2 填料的选择 (8) 2.4 吸收剂再生方法的选择 (10) 2.5 操作参数的选择 (11) 2.5.1 操作温度的确定 (11) 2.5.2 操作压强的确定 (11) 第三章吸收塔工艺条件的计算 (12) 3.1 基础物性数据 (12) 3.1.1 液相物性数据 (12) 3.1.2 气相物性数据 (12) 3.1.3 气液两相平衡时的数据 (12) 3.2 物料衡算 (12) 3.3 填料塔的工艺尺寸计算 (13)

精馏塔的工艺标准计算

2 精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2.1 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2.2精馏塔工艺计算 2.2.1操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0.1Mpa ,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544 总计 226.8659 13.2434 213.6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562.2 48.9 甲苯 92 591.8 41.0 乙苯 106 617.2 36.0 名称 A B C D

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ=h C K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书 (一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为98.5%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R 4.单板压降不大于0.7kPa min (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为77.31kpa的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3 ) 3.组分的表面张力σ(mN/m ) 4.液体粘度μ(mPa ?s )

5.Antoine常数 二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为78.11 kg/kmol和112.6kg/kmol

2精馏塔的工艺计算

2精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯 212.6868Kmol/h ;苯 3.5448 Kmol/h ;甲苯 10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 由《分离工程》P65式3-23得: LK W Z — X LK ,W D = F ------------- 1 — X HK ,^ — X LK ,W 1-0.01-0.005 W=F-D=226.8659-13.2434=213.6225Kmol/h 表2.1 进料和各组分条件 编号 组分 f i /kmol/h f i /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100 HK ,D LK ,W X iK , W/ = 0.0 0 5 X HK . D =0.01 (式 2. 1) D =226.865护 空遊8305 =13.2434Kmol/h

=2 1 36 2 2 50.0 0 5=1.06 8 Kmol/h 2, W

cb = f2 -?2 =10.6 34 31.0 6 8 19.5 6 6 Kmol/h d3 =D X3. D =13.2434X0.01 =0.132434 Kmol/h X3, D 03 = f s -d s =212.6868-0.132434 =212.5 54 Kmol/h 表2-2 物料衡算表 编号组分f i/kmol/h 馏出液d i 釜液⑷i 1 苯 3.5448 3.5448 0 2 甲苯10.634 3 9.5662 1.0681 3 乙苯212.6868 0.132 4 212.5544 总计226.8659 13.2434 213.6225 2.2精馏塔工艺计算 2.2.1操作条件的确定 、塔顶温度纯物质饱和蒸气压关联式(化工热力学P199): ln(P S/P C) =(1 -x)」(Ax + Bx1.5 +Cx3 +D X6) X =1 -T/Tc 表2-3 物性参数

工艺专业塔器水力学计算设计导则

1 塔器设计概述 1.1 石油化工装置中塔器占有很大的比重。几乎每种工艺流程都存在蒸馏或吸收等分离单元过程,因此塔器设计至关重要。往往塔器设计的优劣,决定着装置的先进性和经济性,必须给予重视。 1.2 塔器设计与工艺流程设计有着非常密切的关系,亦即塔器的选型和水力学计算与工艺流程的设计计算是结合在一起的。有时塔器设计影响着分离流程和操作条件的选择。例如减小蒸馏塔的回流比,能降低能耗,但塔板数增加,对塔器讲就是减小塔径和增加塔高,其中必有一个最经济条件的选择。又如真空塔或对釜温有要求的蒸馏塔均对压降要求较严,需要选择压降低的板式塔或填料塔,在塔器水力学计算后,压降数据要返回工艺作釜温核算。 1.3 一般工艺流程基本确定后,进行塔器的选型、设计等工作。塔器设计涉及到工艺、化学工程、设备、仪表、配管等专业。化学工程专业的任务及与各专业间关系另有说明。见化学工程专业工作手册H-P0101-96、H-P0301-96。 1.4 随着石油化工和科技的迅猛发展,蒸馏塔从一般的一股进料、二股产品的常规塔发展为多股进料、多侧线,有中间换热的复杂塔。要求塔的生产能力大、效率高、塔板数多,即大塔径、多程数、高效、低压降等,对塔器设计提出了更高的要求,并推动了塔器设计工作的发展。 1.5 近年来电子计算机的普及和发展,为工艺与塔器设计提供了有力的工具。我们可应用PROCESS或PRO/Ⅱ等工艺流程模拟软件进行计算,得到塔的最大和最小汽液负荷、密度等数据,以便进行分段的塔的水力学计算,使工艺和塔的水力学计算能同步进行,并作多方案比较,求得最佳设计。 1.6 设计中主要考虑的问题 1.6.1 确定工艺流程(尤其是分离流程) 通过工艺流程模拟电算,选定最佳切割方案,其中包括多股进料、侧线采出、进料状态和位置等方面的选择。 1.6.2 塔压的设定

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据 [6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222s i n 1802π (3-11)

水吸收二氧化硫填料吸收塔的设计

河南城建学院化学与材料工程学院 《化工原理》 课 程 设 计 说 明 书 指导教师:李霞 学生姓名:刘超巧 班级学号:101412133 2015 年 1 月 6 日

1 任务及操作条件 (5) 1.1 设计任务 (5) 2 设计方案的确定 (5) 2.1 吸收剂的选择 (5) 用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。 (5) 2.2 填料的选择 (5) 3 吸收塔的工艺计算 (6) 3.1 基础物性数据 (6) 3.1.1 液相物性数据 (6) 3.1.2 气相物性数据 (6) 3.1.3 气液相平衡数据 (6) 3.2 物料衡算 (7) 3.3 填料塔的工艺尺寸的计算 (8) 3.3.2 传质单元高度计算 (10) 3.3.3传质单元数的计算 (12) 3.4 填料层高度 (13) 3.5填料层压降的计算 (13) 3.6液体分布器计算 (14) 3.6.1液体分布器 (14) 3.6.2布液孔数 (15) 3.6.3塔底液体保持管高度 (15) 液体保持管高度:取布液孔直径为10mm,则液体保持管高度可由式 (15) 3.7其他附属塔内件的选择 (15) 3.7.1液体分布器 (15) 3.7.2液体再分布器 (16) 3.7.3填料支撑板 (16) 3.7.4填料压板与床层限制板 (16) 3.7.5气体进出口装置与排液装置 (16) 附录一工艺设计计算结果汇总及主要符号说明 (17) 参考文献 (21) 致谢 (21)

SO2填料吸收塔设计任务书 一、《化工原理》课程设计目的、任务 1. 培养学生查阅资料选用公式和搜索数据的能力 2. 培养学生在填料吸收塔设计时,既考虑技术上的先进性和可行性,又考虑经济上的合理性并注意操作时的劳动条件和环境保护的正确设计思想。 3. 培养学生能迅速准确的对填料塔进行工艺设计计算的能力 4. 培养学生能用简洁的文字清晰的图表来表达自己设计思想的能力 二、设计任务 SO2气体填料吸收塔设计 三、设计条件 1、混合气(空气+ SO2)处理量:9900 m3/h 2、进塔混合气中含SO2(体积分数):6.7 % 3、进塔吸收剂(清水),温度:20℃ 4、SO2排放含量(体积分数):0.16% 5、操作压力:常压 四、《化工原理》课程设计主要内容 1、化工单元设备设计 (1)方案设计; (2)物料衡算与热量衡算; (3)主要设备工艺计算; (4)辅助设备的选择; 2、制图 包括工艺流程图、设备图。 3、编写设计说明书 五、《化工原理》课程设计说明书的要求 本课程的设计任务要求学生做设计说明书一份、图纸两张。各部分的具体要求如下: 1、设计说明书内容与顺序

塔体工艺尺寸计算

塔体工艺尺寸计算 1 精馏段塔径的计算 精馏段的气、液相体积流率计算为 3600Vm S Vm VM V ρ= ? (5.1) 3441.828.08 3.326/36003600 1.036 Vm S Vm VM V m s ρ?= ==?? 3600Lm Lm LM Ls ρ= (5.2) 3283.424.73 0.0019/36003600976.4 Lm Lm LM Ls m s ρ?= ==? 由: max μ= (5.3) 式中C 由上式计算,其中的20C 査取,图的横坐标为: 1/2 1/2 30.00193600976.40.018/3.3263600 1.036h L h V L m s V ρρ?????== ? ???? ?? 取板截距T H =450m m ,板上液层高度L h =80m m 则, 0.450.080.37T L H h m -=-= 由史密斯查图的, 20C =0.075 /m s max 2.585/m s μ=== 取安全系数为0.6,则空塔气速为 max 0.60.6 2.585 1.55μμ==?= D = (5.4)

1.653D m = == 按标准塔径圆整后为:D=1.8m 塔截面积为: 2 4 T A D π= (5.5) 2221.8 2.54344 T A D m ππ = =?= 实际空塔气速为: S T V A μ= (5.6) 3.326 1.3082.543 S T V A μ= ==/m s 5.1.2 精馏塔的有效高度 (1)T Z N H =- (5.8) (1)(81)0.45 3.15T Z N H m =-=-?=精精 第5.2节 提馏段的计算 5.2.1 提馏段塔径的计算 提馏段的气、液相得体积流率为 '' '3' 441.822.62 3.2.61/360036000.8513Vm S Vm V M V m s ρ?===?? '''3' 844.319.30.004688/36003600965.5Lm s LM LM L m s ρ?===?

苯氯苯板式精馏塔的工艺设计工艺计算书

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 2004年5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p(mmHg)

2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01238.012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分)

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。 入塔的炉气流量为2250m3/h,其中进塔SO2的摩尔分数为0.05,要求SO2的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) 3.4.1传质单元高度 H计算 (11) OG

氨吸收塔的设计

电信工程系毕业设计(论文)学生自拟课题审批表

江苏联合职业技术学院江苏省惠山中等专业学校(办学点) 毕业设计(论文)任务书 设计课题填料吸收塔的设计 系部电信工程系 专业精细化学品生产技术 年级班级 姓名 学号 指导教师职称 2014年4月 2 3 日

毕业设计(论文)任务书精细化学品生产技术专业G1051 教学班

吸收塔课程设计 摘要:氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。 引言:填料塔是以塔内装有大量的填料为相间接触构件的汽液传质设备。填料塔于19世纪中期已应用于工业生产,此后,它与板式塔竞相发展,构成了两类不同的汽液传质设备。填料塔属于连续接触式的汽液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 与板式塔相比,填料塔具有以下特点:①生产能力大。②分离效率高。③压力降小。 ④持液量小。⑤操作弹性大。但是,填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效的润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太合适等。因此,在选择塔的类型时,应根据分离物系的具体情况和操作所追求的目标综合考虑上述各因素。 填料的种类很多,根据装填方式不同,可分为散装填料和规整填料两大类。散装填料中较为典型的有拉西环填料、鲍尔环填料、阶梯环填料、弧鞍填料、矩鞍填料、金属环矩鞍填料、球形填料。工业上常用的规整填料有格栅填料、波纹填料、脉冲填料等。 塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。

精馏塔的工艺计算

2 精馏塔的工艺计算 2、1精馏塔的物料衡算 2、1、1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212、6868Kmol/h;苯3、5448 Kmol/h;甲苯10、6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。 2、1、2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2、1 进料与各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2、 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226、8659-13、2434=213、6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500 总计 226、8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2、2精馏塔工艺计算 2、2、1操作条件的确定 一、塔顶温度 纯物质饱与蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0、1Mpa,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544 总计 226、8659 13、2434 213、6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 A B C D

脱硫装置吸收塔的设计计算

(一)设计方案的确定 用水吸收S02,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。 (二)填料的选择 该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。 (三)设计步骤 本课程设计从以下几个方面的内容来进行设计 (1)吸收塔的物料衡算; (2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (3)设计液体分布器及辅助设备的选型; (4)绘制有关吸收操作图纸。 (四)基础数据 1、液相的物性数据 对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下: 密度 ρ=998.2 kg/m3 L 粘度 μ=0.001 Pa·s=3.6 kg/(m·h) L

表面张力 L σ=73 dyn/cm=940 896 kg/h 2 S02在水中的扩散系数 L D =1.47×10-5 cm 2 /s=5.29×10-6 m 2 /h 2、 气相的物性数据 混合气体的平衡摩尔质量 M =0.04×64.06+0.96×29=30.40 g/mol 混合气体的平均密度 G ρ=101.330.408.31427330??+() =1.222 kg/m 3 混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为 G μ=1.81×10-5 Pa ·s=0.065 kg/(m ·h) 查手册得S02在空气中的扩散系数为 G D =0.108 cm 2 /s =0.039 m 2 /h 3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数 E=3.55×1O 3 kPa 相平衡常数为 m E P = =3.55×1O 3 /101.3=35.04 溶解度系数 L L H EM ρ= =998.2/3.55×1O 3 /18.02=0.0156 kmol/h 4、填料的填料因子及比表面积数据 泛点填料因子 F φ=184 /m

吸收塔的设计1

大庆师范学院 《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 第一节前言 (6) 1.1 填料塔的主体结构与特点 (6) 1.2 填料塔的设计任务及步骤 (6) 1.3 填料塔设计条件及操作条件 (6) 第二节填料塔主体设计方案的确定 (7) 2.1 装置流程的确定 (7) 2.2 吸收剂的选择 (7) 2.3填料的类型与选择 (7) 2.3.1 填料种类的选择 (7) 2.3.2 填料规格的选择 (7) 2.3.3 填料材质的选择 (8) 2.4 基础物性数据 (8) 2.4.1 液相物性数据 (8) 2.4.2 气相物性数据 (8) 2.4.3 气液相平衡数据 (9) 2.4.4 物料横算 (9) 第三节填料塔工艺尺寸的计算 (10) 3.1 塔径的计算 (10) 3.2 填料层高度的计算及分段 (11) 3.2.1 传质单元数的计算 (11) 3.2.3 填料层的分段 (13) 3.3 填料层压降的计算 (13) 第四节填料塔内件的类型及设计 (14) 4.1 塔内件类型 (14) 4.2 塔内件的设计 (14) 4.2.1 液体分布器设计的基本要求: (14) 4.2.2 液体分布器布液能力的计算 (14) 注:15

1填料塔设计结果一览表 (15) 2 填料塔设计数据一览 (15) 3 参考文献 (17) 4 后记及其他 (17) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (18)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

工艺计算之塔径设计

. 2.3塔的设计 1、塔径的初选 查有机液体的相对密度共线图可得, 85.73℃时乙醇的密度ρ乙醇=738kg/m 3,水的密度ρ水=968.1kg/m 3 进料料液与塔顶气体的平均温度t=(85.73+78.29)÷2=82℃,查乙醇—水 平衡数据可知: 82℃时,乙醇—水的平均摩尔分率为x=0.2857,y=0.5672 计算得:乙醇—水的平均质量分率为w 乙醇=0.51,w 水=0.49 又查得82℃时乙醇的密度ρ 乙醇 =735kg/m 3,水的密度ρ水=970.5kg/m 3 气体平均的摩尔质量Mv=46.07×0.5672+18.02×(1-0.5672)=33.93kg/kmol 液体平均的摩尔质量M L =46×0.2857+18×(1-0.2857)=26.03kg/kmol 混合液的平均密度ρL =735×0.51+970.5×0.49=850.395 kg/m 3 由PV=nRT 可知ρ=PM/RT ,带入数据可得: 气体的平均密度ρv =PM/RT=1.163 kg/m 3 气体的平均质量流量 Wv=V G M V =121.52×33.93=4123.2kg/h 液体的平均质量流量 W L =V L M L =91.14×26.03=2372.4kg/h 液体平均体积流量3 2.790s L L h W m L ρ == 气体平均体积流量3 3545.31s h m V = 两相流动参数0.5 (/) L LV V L V W F W ρρ= ? =0.0213 设H T =0.45m , 查筛 此时200.083f C = 则液泛流速5 ..02 ..020] /)[() 20/(V V L f f C u ρρρσ-==2.196(其中σ取18mN/m) 取泛点百分率为0.8,可求出设计气速u h 和所需气体流通面积A n u h =0.8×2.196=1.757m/s V s= 3600V W v ρ =0.985m 3/s A n =V S / u h =0.560 m 2 按表10-2选择单流型塔板,并取堰长lw=0.7D,由图10-40查得溢流管面积和塔板总 面积之比: 088.0) (=-= T n T T f A A A A A ,0.61510.088 T A n A = =-m 2 D=(4A T /π)0.5 =0.89m 根据设备系统化规格,将D 圆整到D=1.0m,作为初选塔径,对此初选塔径可以标出:

精馏塔的工艺计算

2 精馏塔的工艺计算 精馏塔的物料衡算 基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯h ;苯 Kmol/h ;甲苯h 。 (三)分离要求: 馏出液中乙苯量不大于,釜液中甲苯量不大于。 物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+?=D Kmol/h W=F-D= 0681 .1005.06225.21322=?==W X W ,ω编号 组分 i f /kmol/h i f /% 1 苯 2 甲苯 3 乙苯 总计 100

5662.90681.16343.10222=-=-=ωf d 132434 .001.02434.1333=?==D X D d ,5544.212132434.06868.212333=-=-=d f ω 表2-2 物料衡算表 精馏塔工艺计算 操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 0 2 甲苯 3 乙苯 总计 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 甲苯 92 乙苯 106 名称 A B C D

精馏塔的工艺计算

2 精馏塔得工艺计算 2、1精馏塔得物料衡算 2、1、1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212、6868Km ol/h;苯3、5448 Kmol/h;甲苯10、6343Kmo l/h 。 (三)分离要求: 馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。 2、1、2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 表2、1 进料与各组分条件 由《分离工程》P65式3-23得: ? Km ol /h W=F-D =226、8659-13、2434= 213、6225Kmol/h Km ol/h K mo l/h K mol/h Kmo l/h 表2-2 物料衡算表 2、2精馏塔工艺计算 2、2、1操作 编号 组分 /kmol/h /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500 总计 226、8659 100 编号 组分 /km ol/h 馏出液 釜液 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544 总计 226、8659 13、2434 213、6225

条件得确定 一、塔顶温度 纯物质饱与蒸气压关联式(化工热力学 P199): 表2-3 物性参数 注:压力单位0、1Mp a,温度单位K 表2-3饱与蒸汽压关联式数据 以苯为例, . 033213.1434.098273.6()434.01()(1?+?-? -=-C S P P In 同理,可得 露点方程:,试差法求塔顶温度 表2-4 试差法结果统计 二、塔顶压力 塔顶压力 三、塔底温度 泡点方程: 试差法求塔底温度 组份 相对分子质量 临界温度 临界压力 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 A B C D 苯 -6、98273 1、33213 -2、62863 -3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯 -7、48645 1、45488 -3、37538 -2、2304 8

相关文档
最新文档