地表-土壤水动力学耦合模型在复杂沟灌条件下的应用

合集下载

土壤水动力学复习笔记

土壤水动力学复习笔记

1、 ;温[1] 土壤水动力学是许多学科的基础,它的研究涉及农田水利学、水文学、地下水文学、水文地质学、土壤物理学、环境科学等学科。

)合理开发和科学管理水资源;2)调控农 田墒情,促进农业节水;3)土壤改良和水土环境的改善。

[2] 土壤各个指标,计算意义,相互关系。

土壤—是由矿物质和生物紧密结合的固相、液相和气相三相共存的一个复杂的、多相的、非均匀多孔介质体系。

定性指标—质地、结构。

定量指标– 孔隙度、密度、含水率、饱和度等。

[3] 含水率。

体积含水率:θ v =Vw /V0 重量(质量)含水率:θ g =mw /ms 饱和度:w=Vw/Vv 贮水深度:h=H θ (量刚为 L ) 主要测定方法:称重法(烘干法) 核技术测量:中子仪, γ 射线仪、电磁测量:时域反射仪(TDR)、核磁共振测量、热脉冲测量、遥感测 量:大面积地表含水率;[4] 水分常数。

吸湿水,束缚在土粒表面的水汽,最大吸湿量(吸湿常数) 薄膜水,吸湿 水外层连续水膜,最大分子持水量,(薄膜水不能被植物吸收时)凋萎系数;毛管水, 土壤孔隙(毛管),水气界面为一弯月面,分毛管上升水、毛管悬着水,田间持水量(毛 管悬着水达到最大),田持;重力水,大孔隙中的水,饱和含水率。

农业生产中常用的 水分常数:田间持水量(field (moisture) capacity ):农田土壤某一深度内保持吸湿水、 膜状水和毛管悬着水的最大水量。

凋萎系数(wilting coefficient ):土壤中的水分不能被 根系吸收、植物开始发生永久凋萎时的土壤含水率,也称凋萎含水率或萎蔫点。

土壤有 效含水量(available water content of soil ):土壤中能被作物吸收利用的水量,即田间持 水量与凋萎系数之间的土壤含水量。

土壤含水率与水分常数的应用:估计水分对植物生 长的影响;计算灌溉水量;根据土壤水分的动态变化估算腾发量(地面蒸发+植物蒸腾) [5] 土水势(Soil water potential):可逆、等温地从特定高度和大气压下的纯水池转移极少量水到土壤中某一点时单位数量纯水所做的功。

基于HYDRUS-1D模型的荒漠苜蓿农田滴灌灌溉制度制定

基于HYDRUS-1D模型的荒漠苜蓿农田滴灌灌溉制度制定

2024年5月 灌溉排水学报 第43卷 第5期 May 2024 Journal of Irrigation and Drainage No.5 Vol.43 8文章编号:1672 - 3317(2024)05 - 0008 - 08基于HYDRUS-1D 模型的荒漠苜蓿农田滴灌灌溉制度制定苗庆远1,2,米丽娜1,覃兰玉2,朱俊毅2,卢 琦3,杨文斌4,程一本1,2*(1.宁夏大学 西北土地退化与生态恢复国家重点实验室培育基地/西北退化生态系统恢复与重建教育部 重点实验室,银川 750021;2.北京林业大学 水土保持学院,北京 100091;3.中国林业科学研究院,北京 100091;4.内蒙古低覆盖治沙科技开发有限公司,呼和浩特 010000)摘 要:【目的】探究提高干旱区荒漠苜蓿农田滴灌水分利用效率的方法,制定适宜的节水灌溉制度。

【方法】以苜蓿为研究对象,基于HYDRUS -1D 模型设置4种灌溉水平(高强度大灌溉量(LH -I )、中强度大灌溉量(MH -I )、低强度中等灌溉量(SM -I )、无灌溉(CK ))和5个0~20 cm 土层初始土壤体积含水率梯度(4%、6%、8%、10%、12%,分别表示为S1、S2、S3、S4、S5),分析苜蓿根系土壤体积含水率降至土壤凋萎点的时间、峰值及维持在土壤凋萎点以上的时长,筛选0~20 cm 土层不同土壤初始体积含水率下的最优灌溉水平。

【结果】0~20 cm 土层土壤体积含水率的变化对SM -I 、CK 灌溉水平具有显著影响;在无灌溉的情况下,体积含水率˃10%的0~20 cm 土层土壤会补给根系层水分;低含水率的0~20 cm 土层土壤更有利于LH -I 灌溉水平下的水分在根系层的留存,SM -I 水平下根系层水分的留存时长与0~20 cm 土层土壤体积含水率呈正相关。

LH -I 灌溉水平下的深层土壤体积含水率峰值相比MH -I 、SM -I 、CK 灌溉水平分别提高10.28%、27.91%、107.93%;MH -I 灌溉水平下根系层土壤体积含水率维持在凋萎点之上的时长最久,平均为5.7 d 。

基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化

基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化

基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化目录1. 内容概览 (2)1.1 研究背景与意义 (3)1.2 研究目标与内容 (4)1.3 研究方法与技术路线 (4)2. 水稻水肥一体化研究现状 (6)2.1 水稻水肥一体化的发展历程 (7)2.2 水稻水肥一体化的应用现状 (9)2.3 水稻水肥一体化存在的问题与挑战 (10)3. AquaCrop模型介绍 (11)3.1 AquaCrop模型的基本原理 (12)3.2 AquaCrop模型的主要功能与应用范围 (14)3.3 AquaCrop模型在水稻上的应用案例 (15)4. WinSRFR模型介绍 (16)4.1 WinSRFR模型的基本原理 (17)4.2 WinSRFR模型的主要功能与应用范围 (18)4.3 WinSRFR模型在玉米上的应用案例 (20)5. 基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化 (21)5.1 方案优化的理论基础 (24)5.2 方案优化的具体步骤 (25)5.2.1 数据收集与整理 (26)5.2.2 模型构建与参数设置 (27)5.2.3 方案优化与实施 (28)5.3 方案优化的效果评估 (30)5.3.1 产量与水分利用效率的提高 (31)5.3.2 水分胁迫与养分流失的减少 (32)5.3.3 农业可持续发展的促进 (33)6. 结论与展望 (34)6.1 研究结论 (35)6.2 研究不足与局限 (36)6.3 未来研究方向与展望 (37)1. 内容概览背景介绍:阐述当前夏玉米种植中沟灌方式的现状,分析存在的主要问题以及进行优化的必要性。

简要介绍AquaCrop和WinSRFR模型的基本原理及其在农业水资源管理中的应用。

模型构建:详细阐述如何使用AquaCrop模型进行作物生长模拟,包括作物参数设置、土壤水分动态模拟等。

介绍如何利用WinSRFR模型进行流域尺度的水资源模拟,包括降雨、蒸发、径流等水文过程。

基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究

基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究

2023年4月灌溉排水学报第42卷第4期Apr.2023Journal of Irrigation and Drainage No.4Vol.42文章编号:1672-3317(2023)04-0057-10基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究崔赫钊1,周青云1*,韩娜娜1,张宝忠2(1.天津农学院,天津300392;2.中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京100083)摘要:【目的】探究河套灌区滴灌条件下玉米各生育期土壤水氮变化规律及不同灌水量对土壤硝态氮累积量的影响。

【方法】通过田间试验,设置高灌水量(D1:76mm)处理和低灌水量(D2:60mm)处理,分析土壤含水率和土壤氮素(铵态氮和硝态氮)的动态变化规律,利用HYDRUS-2D模型进行模拟验证与预测。

【结果】各处理灌水后土壤含水率呈增加趋势;而土壤铵态氮和硝态氮在灌水施肥后迅速升高,随后下降,D1处理和D2处理不同生育期0~10cm土层铵态氮量和硝态氮量的平均降幅分别为60.0%~62.0%和40.0%~46.7%。

拔节期、抽雄期和灌浆期各土层灌水后D1处理相比D2处理的土壤含水率分别增加了5.9%、8.0%和6.7%,而土壤铵态氮量和硝态氮量随着土层深度的增加而降低。

不同生育期硝态氮累积量为拔节期>抽雄期>灌浆期,随着生育期的推进,硝态氮累积量呈降低趋势。

土壤含水率及氮素模拟值与实测值的吻合度较高,R2、RMSE和d均介于合理范围内。

【结论】玉米生育期120mm的灌溉定额可有效降低0~60cm土层的硝态氮累积量,可降低硝态氮在60~100cm土层的积累量。

该研究可为当地灌区合理的水肥调控及灌溉制度的制定提供参考。

关键词:土壤含水率;铵态氮;硝态氮;数值模拟;HYDRUS-2D模型中图分类号:S27文献标志码:A doi:10.13522/ki.ggps.2022361OSID:崔赫钊,周青云,韩娜娜,等.基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究[J].灌溉排水学报,2023,42(4):57-66.CUI Hezhao,ZHOU Qingyun,HAN Nana,et al.Simulating Water and Nitrogen Dynamics in Drip-irrigated Soil Based on the HYDRUS-2D Model[J].Journal of Irrigation and Drainage,2023,42(4):57-66.0引言【研究意义】全球平均氮回收率为59%,近41%的氮在生态系统中损失[1]。

基于Matlab地表滴灌土壤水分运动的数值模拟

基于Matlab地表滴灌土壤水分运动的数值模拟

基于Matlab地表滴灌土壤水分运动的数值模拟王希望;赵艳;李岩【摘要】滴灌条件下土壤水分运动规律是当前农业工程中重要研究领域.基于土壤水运动基本方程,结合作物根系吸水特点,建立了地表滴灌条件下土壤水分运动二维数学模型.应用Matlab软件,通过数值模拟方法,得出了Van Genuchten模型的参数值,推导了渗透参数拟合公式,进一步对地表滴灌土壤水分运动过程进行模拟.同时,利用Matlab强大的绘图功能对拟合曲线与实测数据进行了直观的比较.结果表明,所构建的数学模型对地表滴灌条件下的土壤水分运动变化具有较好的模拟效果.【期刊名称】《农机化研究》【年(卷),期】2012(034)001【总页数】4页(P67-70)【关键词】Matlab;地表滴灌;土壤;水分运动【作者】王希望;赵艳;李岩【作者单位】河北农业大学信息科学与技术学院,河北保定071001;河北农业大学信息科学与技术学院,河北保定071001;河北农业大学信息科学与技术学院,河北保定071001【正文语种】中文【中图分类】S275.60 引言水分在土壤中的运动是影响作物生长的一个主要方面,对农业灌溉决策管理中实施土壤水分的动态监测、科学地指导灌溉、提高灌溉精度和农田水分利用效率及农作物产量有着重要的现实意义[1]。

同时,地表滴灌具有显著的节水、增产以及提高作物品质的优势,因而成为农业工程学科的重要研究领域。

近年来,随着非饱和多孔介质中水和溶质运移模拟的进一步开展,国内外的研究机构陆续开发了一系列数学模型软件,进行水、溶质、热运移等模型的模拟。

例如,Li[2]等用HYDRUS模拟了地表滴灌条件下的水、氮在土壤中的运移规律;魏义长[3]、彭建平[4]等应用Matlab软件研究了土壤水分特征曲线参数;李晓斌[5]等人运用Matlab进行了土壤水分运移数值模拟。

本文在前人研究的基础上,综合考虑作物根系吸水情况建立了地表滴灌条件下土壤水分运动方程,应用Matlab软件编程模拟了地表滴灌条件下土壤水分运动情况,并与田间实测数据进行直观比对。

包气带井回灌引起的非饱和饱和流分析

包气带井回灌引起的非饱和饱和流分析

第4期
祁翠婷等:包气带井回灌引起的非饱和 - 饱和流分析
119
VZWi
n
e
c
t
i
on.[Me
t
hod
s]
I
nt
h
i
ss
t
udy,t
he MN mode
l(
wh
i
chi
nc
l
ude
st
heGa
rdne
rmode
land MB mode
l
j
a
ssubs
e
t
s)wa
semp
l
oyedt
oe
s
t
ab
l
i
sha VZW i
第 42 卷 第 4 期
2023年
7月
地 质 科 技 通 报
Bu
l
l
e
t
i
no
fGeo
l
og
i
c
a
lSc
i
enc
eandTe
chno
l
ogy
Vol.
42 No.
4
Jul. 2023
祁翠婷,詹红兵,郝永红 .包气带井回灌引起的非饱和 - 饱和流分析[
J].地质科技通报,
2023,
42(
4):
118
129.
t
i
t
u
t
i
ve mode
l
s.
[
Re
s
u
l
t
s]
Theana
l
i
sdemons
t
r
a

涌灌条件下非饱和土壤水分运动的数值模拟

涌灌条件下非饱和土壤水分运动的数值模拟

涌灌条件下非饱和土壤水分运动的数值模拟
张巧利;张亮
【期刊名称】《节水灌溉》
【年(卷),期】2017(0)8
【摘要】基于非饱和土壤水动力学理论,通过计算机模拟方法,应用HYDRUS-3D 软件建立了地下涌流根灌土壤水分轴对称三维数值模型,采用Galerkin有限元分析法对土壤水分运动状况进行了数值模拟。

利用土壤入渗试验剖面含水率指标的实测值与模拟值来验证模型的正确性。

结果表明,相对误差基本在10%以内,吻合良好,表明所建模型可以用于分析供试土壤条件下水分运动状况,可为涌流灌溉系统的合理设计及运行提供一定的理论依据。

【总页数】5页(P64-68)
【关键词】涌流根灌;HYDRUS-3D;模拟;水分运移
【作者】张巧利;张亮
【作者单位】河南广播电视大学机电工程学院;郑州职业技术学院
【正文语种】中文
【中图分类】S275.6
【相关文献】
1.蓄水坑灌条件下土壤水分运动的数值模拟 [J], 周青云;孙西欢;康绍忠
2.波涌灌溉条件下非饱和土壤水分运动的数值模拟 [J], 张耀峰;耿智琳
3.波涌灌间歇入渗饱和-非饱和土壤水分运动数值模拟及试验 [J], 傅渝亮;费良军;
聂卫波;王博
4.降雨条件下非饱和土壤水分运动数值模拟和实验对比研究 [J], 刘超; 董晓华; 孙立
5.涌泉根灌条件下土壤水分运动数值模拟研究 [J], 李耀刚;王文娥;胡笑涛;黎平因版权原因,仅展示原文概要,查看原文内容请购买。

基于HYDRUS模型全膜双垄沟模式下土壤水盐运移模拟

基于HYDRUS模型全膜双垄沟模式下土壤水盐运移模拟

基于HYDRUS模型全膜双垄沟模式下土壤水盐运移模拟金辉; 郭军玲; 查元源; 杨治平【期刊名称】《《山西农业科学》》【年(卷),期】2019(047)008【总页数】6页(P1428-1433)【关键词】全膜双垄沟; 种植模式; HYDRUS-1D/2D; 水盐运移【作者】金辉; 郭军玲; 查元源; 杨治平【作者单位】山西省农业科学院农业资源与经济研究所山西太原030006; 土壤环境与养分资源山西省重点实验室山西太原030031; 山西省农业科学院农业环境与资源研究所山西太原030031; 武汉大学水资源与水电工程国家重点实验室湖北武汉430072【正文语种】中文【中图分类】S152.7山西盐碱地面积30 万hm2,其中,大同盆地约占2/3,作为宝贵的后备土地资源,盐碱地的合理开发和利用在增加耕地面积、提高生产力、恢复退化生态环境方面具有重要意义[1-2]。

在干旱少雨的自然条件下,土壤水分快速蒸发和盐分表层积聚成为盐碱地作物出苗与后期生长的制约因素[3]。

近年来,干旱半干旱地区全膜双垄沟栽培技术以提高土壤温度[4-6]、节水集雨[7-8]、改善土壤水盐胁迫环境[9]、增产效果显著[10-11]而得到广泛应用。

而在山西大同盆地因其气候干旱多风、地下水埋深较浅、地势低洼导致土壤盐碱化严重。

显然,利用全膜双垄沟栽培技术以合理配置地区水资源,调控土壤盐分的时空分布是解决该地区土壤盐渍化严重、水资源匮乏的基础,这就需要研究大同盆地土壤水资源循环和盐分迁移的机制。

本研究为明确山西北部冷凉干旱地区盐碱土水盐运移规律,开展田间试验,运用HYDRUS 构建田间尺度二维土壤水盐运移模型,通过对不同种植模式(平作不覆膜、平作覆膜、起垄覆膜和全膜双垄沟)下的土壤水分的径向迁移和盐分的交换过程进行模拟预测,确定节水控盐的优化种植模式,为当地农业生产、水资源利用和土壤水盐调控提供科学依据。

1 材料和方法1.1 试验区概况表1 土层0~60 cm 土壤理化性质土层c深m度/(全g/氮kg)/(全g/磷kg)/(全g/钾kg)/有(g机/k质g)/黏粒各级颗粉粒粒占比/%砂粒(土美壤国质制地)(μE SC/c/m)0~200.640.3115.0311.0310.4434.8154.75砂壤土865 20~400.430.3814.6112.9111.8334.1953.98砂壤土687 40~600.340.3413.847.8612.2134.4253.37砂壤土615试验地位于山西省朔州市怀仁县毛皂镇,该地区春秋季干旱多风、夏季高温多雨、冬季寒冷干燥,年均气温7.3 ℃,年均日照时数2 800 h,年均降雨量315~159 mm,年均蒸发量1 500 mm,无霜期150 d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第07期(总第446期)吉林水利

2019年07

[文章编号]1009-2846(2019)07-0022-05

[收稿日期]

2018-01-29

[作者简介]杨旭(1987-),男,辽宁铁岭人,本科,助理工程师,主要从事水利水电工程等工作。

我国是农业用水大国,而沟灌作为我国目前应用于耕作物的主要地表灌溉方式之一,灌水条件复杂[1]

。灌水过程数学模型都是以非线性偏微分

方程表述,地表水流运动及土壤水分运动等条件复杂,很难求出精确解析解,采用模型数值方法求解其数值解是目前最有效的办法。而Matlab建模和仿真功能强大且直观易用,数值计算能力突出,在工程科学研究与计算方面得到广泛运用。对土壤水分运动和地表水流运动进行有效的耦合是研究复杂条件下灌水模型的主要手段。Gandolfi等[2]运用MacCormark数值方法对地表径流渗流耦合模型进行求解并验证了模型的精度;董勤各等[3]建立了一维畦灌的地表水流-土壤水耦合动力学模型并采用混合数值方法进行求解;章少辉等[4]在描述沟灌地表水流运动的基础上运用有限体积法对沟灌耦合模型进行数值模拟。虽然前人的研究取得了长足的进展,但仍需对此进行进一步研究。本文以辽宁某灌区玉米覆盖垄为研究对象,对于影响因素多、条件复杂的沟灌,研究沟灌过程中地表水流运动模型和土壤水分运动方程,将地表水流运动和土壤水分运动模型进行耦合,借助Matlab软件强大的数值计算功能进行数值模拟,研究成果可为类似工程提供参考。

1工程概况

在作物生长过程中,灌溉方式会影响其生长及产量。当前我国农业沟灌模式仍在北方地区大面积应用,研究其地表-土壤水动力学耦合关系具

有重要意义。辽宁某区玉米覆盖垄采用沟灌灌水方式进行灌溉,灌区土质为粉土、黏土,现场调研可知,单沟为梯形槽状明渠,沟深15cm左右,沟顶宽约

50cm,沟底宽约20cm,沟底纵坡0.4%。

现场实测土壤水力参数如表1所示,地表水流运动的基本参数如表2所示。对现场试验大田

进行灌水试验,得到的实测数据与模拟结果进行对比。

地表-土壤水动力学耦合模型在复杂沟灌条件下的应用

杨旭(葫芦岛平山供水有限责任公司,辽宁葫芦岛125000)

[摘要]反映地表水流运动和土壤水分运动的数学模型大多都是非线性偏微分方程,通常采用数值计算方法来求解较为复杂的地表水流运动模型和土壤水分运动方程。本文以辽宁某灌区玉米覆盖垄为例,利用零惯量模型和土壤水分运动方程(Richards方程)来描述沟灌灌水时水分的运动特征,构建沟灌地表-土壤水动力学的耦

合模型,通过迭代法实现有效耦合,借助Matlab软件进行数值模拟与计算,将模拟结果与实测结果相对比,模拟结果符合实际情况,能够满足实际工作要求。[关键词]沟灌;零惯量模型;Richards方程;地表-土壤水动力学的耦合模型

[中图分类号]S275.3[文献标识码]

B

土壤质地滞留含水率θr饱和含水率θs经验参数α1经验参数nn饱和导水率

K

S

粉土0.004220.090.0040.00220.49

土壤水力参数表1

22--

DOI:10.15920/j.cnki.22-1179/tv.2019.07.006图1沟灌模型示意图及其几何特征

地表-土壤水动力学耦合模型在复杂沟灌条件下的应用吉林水利杨旭2019年07月2沟灌地表水流运动模型

运动波模型、零惯量模型、水量平衡模型和完全水动力学模型是当前用于描述地表水流运动过程的4种主要模型。其中零惯量模型适用于一般

情况下畦灌和沟灌的地表水水流运动过程[5]

,求解

精度足够且求解过程简便,故本文采用零惯量模型对地表水流运动进行研究。沟灌地表水流运动属明渠非稳定流,满足圣维南方程[6]

。沟灌模型几何特征示意图如图1所示。在灌水过程工程实践中,沟灌地表水深h0与水流流速v都较小,此时圣维南运动方程中的加速度项和惯性项可忽略不计,即简化为零惯性模型[7],其基本方程为:连续方程:鄣A鄣t+鄣Q鄣y+鄣Z鄣t=0(1)运动方程:鄣h0鄣y=S0-Sf(2)其中,A为地表水流的过水断面面积,m2;Q为地表水流的过水断面流量,m3/s;Z为累积入渗量,m2;y为水流推进距离,m;t为时间,s;h0为地表水深,m,h0=δ1Aδ2,δ1、δ2为拟合参数,对于沟灌时可取δ1=0.782,δ2=0.536[7];S0为田面坡度;Sf为地表水流阻力坡降,Sf=Q2n2A2R43=Q2n2ρ1Aρ2,ρ1和ρ2为经验系数,沟灌可取ρ1=1、ρ2=3.3333,n为田面曼宁糙率。初始条件及边界条件分别为Q(y,t)=0,t=0h0(y,t)=0,t=鄣0

(3)

Q(y,t)=Q0y=0,0≤t≤t1

Q(y,t)=0y=0,t1≤t≤t2

A(y,t)=0y=yr,t2≤t≤t4

≤≤≤≤≤≤

≤≤≤≤≤≤

(4)

A(y,t)=0y=ya,0≤t≤t3

Q(y,t)=0y=L,t3≤t≤t4

≤(5)

其中,Q0为沟首进水流量,m3/s;t1为沟首的断水时间,s;t2为沟首的垂直消退时间,s;t3为水流前

锋推进到沟尾端时间,s;t4为水流尾锋退水到沟尾

端时间,s;ya为水流前锋位置,m;yr为水流退水尾锋位置,m;L为沟长,m。

3沟灌土壤水分运动Richards方程

Richards方程常用于描述土壤水分运动[8]。为

简化计算,将土壤设为各向同性均匀多孔介质,忽略空气阻力、温度和蒸发量对入渗的影响。根据非饱和达西定律和质量守恒定律,可以建立二维Richards方程以描述二维非饱和土壤水分运动方

程[9]

。以负压水头h为独立变量的Richards方程基

本形式为:

C(h)鄣h鄣t=鄣鄣xK(h)鄣h鄣x≤≤+鄣鄣zK(h)鄣h鄣z≤≤-鄣K(h)

鄣z(6)

其中,h为负压水头,cm;C(h)为比水容量,

cm-1;K(h)为非饱和土壤的导水率,cm·min-1;x为

空间水平坐标,cm;z为空间垂直坐标,规定向下为正,cm

沟长(m)入沟流量(m3/s

)田面糙率地面坡度入渗系数入渗指数

1200.004220.090.0040.00220.49

地表水流运动基本参数表2

xyAFO

HDB

ah0

CB

z

23--图3沟灌迭代耦合过程流程图图2求解区域初始条件为:

h(x,z,t)=hin(x,z)0≤x≤X,0≤z≤Z,t=0(7)其中,X,Z为求解区域水平和垂直方向的最大

距离,cm;hin(x,z)为初始负压水头分布,cm。

求解区域Ω如图2所示,则Richards方程边界条件为:h=h0-H,0<t<T,DE边

h=(h0-H)cosα,0<t<T,EG边

鄣h鄣x

=0,t>0,AB和CD边

-K(h)鄣h鄣x-K(h)鄣h鄣z---1=0,t>0,GF边

-K(h)鄣h鄣z+K(h)=0,t>0,FA边

h=hin,t>0,BC

----------------

----------------

-

(8)

其中,t为时间,min;T为停水时间,min;h0为

地表水深,cm;H为沟深,cm;α为EF边与x轴负方向的夹角。

4沟灌地表-土壤水动力学耦合模型及数

值模拟

在沟灌灌水过程中,地表水流沿田块沟槽方向向前流动,同时水分通过地表表面发生入渗。地表水流运动可利用零惯量模型来描述其运动过程,土壤水分运动可通过Richards方程来描述其

运动过程。将两模型进行迭代耦合求解,借助Matlab软件进行数值计算,实现对沟灌地表-土壤

水动力学耦合模型的数值模拟。两种模型耦合流程图如图3所示。

通过上述耦合过程对沟灌地表-土壤水运动

过程进行耦合之后,即可得到地表水流运动和土壤水分运动的过程。对零惯量模型,取空间步长Δy=1,水流运动基本参数如表2所示。对Richards方程取Ω=[0,100]×[-135,0],α=45°,沟深

H=

OD=15,AB=135,AF=75,DE=10,BC=100,Δt=1,Δz=-5,Δx1=Δx2=Δx3=5。

耦合过程中累积入渗量Z采用Kostiakov入渗

公式[10]

即式(7)计算。

Z=krtαr(9)

其中,kr为入渗系数,t为入渗时间,αr为入渗指数。对实验大田进行沟灌试验,沟灌时长达2h,断

水阶段不计,并测出水流推进到不同沟长位置的

时间实测值,利用自制取芯杆于T=3000s时迅速

沿y=0和y=60处土壤剖面中心线插入(杆长

1.5m,截面直径3cm,插入深度1.2m,上端突出水

面),取出土芯,利用烘干法测出不同埋深处含水

地表-土壤水动力学耦合模型在复杂沟灌条件下的应用吉林水利杨旭2019年07月AFO

HGED

BC

z

Ω

xh0

利用零惯量模型求解到某结点处的初始地表水深h0

将初始地表水深h0作为Richards方程的上边界条件代入,对Richards方程差分求解得到该结点处初始负压水头h的二维分布情况

根据

θ(h)~h关系式求得土壤剖面各结点处的含水率θ(h)

对含水率积分可求得土壤水分累积入渗量Z将累积入渗量Z代入零惯量模型再一次求解得到该结点处更新后的地表水深h0(1)

将更新后的地表水深h0(1)作为Richards方程的上边界条件,对Richards方程差分求解得到该结点处新的负压水头h的分布情况

根据θ(h)~h关系式求得土壤剖面各结点处含水率

对含水率进行积分得到累积入渗量Z(1)

是该结点处地表水深h0和入渗量Z

是否满足收敛要求

结束本结点的耦合计算进入下一结点的计算

24--

相关文档
最新文档