土壤水动力学

合集下载

土壤水动力学复习笔记

土壤水动力学复习笔记

1、 ;温[1] 土壤水动力学是许多学科的基础,它的研究涉及农田水利学、水文学、地下水文学、水文地质学、土壤物理学、环境科学等学科。

)合理开发和科学管理水资源;2)调控农 田墒情,促进农业节水;3)土壤改良和水土环境的改善。

[2] 土壤各个指标,计算意义,相互关系。

土壤—是由矿物质和生物紧密结合的固相、液相和气相三相共存的一个复杂的、多相的、非均匀多孔介质体系。

定性指标—质地、结构。

定量指标– 孔隙度、密度、含水率、饱和度等。

[3] 含水率。

体积含水率:θ v =Vw /V0 重量(质量)含水率:θ g =mw /ms 饱和度:w=Vw/Vv 贮水深度:h=H θ (量刚为 L ) 主要测定方法:称重法(烘干法) 核技术测量:中子仪, γ 射线仪、电磁测量:时域反射仪(TDR)、核磁共振测量、热脉冲测量、遥感测 量:大面积地表含水率;[4] 水分常数。

吸湿水,束缚在土粒表面的水汽,最大吸湿量(吸湿常数) 薄膜水,吸湿 水外层连续水膜,最大分子持水量,(薄膜水不能被植物吸收时)凋萎系数;毛管水, 土壤孔隙(毛管),水气界面为一弯月面,分毛管上升水、毛管悬着水,田间持水量(毛 管悬着水达到最大),田持;重力水,大孔隙中的水,饱和含水率。

农业生产中常用的 水分常数:田间持水量(field (moisture) capacity ):农田土壤某一深度内保持吸湿水、 膜状水和毛管悬着水的最大水量。

凋萎系数(wilting coefficient ):土壤中的水分不能被 根系吸收、植物开始发生永久凋萎时的土壤含水率,也称凋萎含水率或萎蔫点。

土壤有 效含水量(available water content of soil ):土壤中能被作物吸收利用的水量,即田间持 水量与凋萎系数之间的土壤含水量。

土壤含水率与水分常数的应用:估计水分对植物生 长的影响;计算灌溉水量;根据土壤水分的动态变化估算腾发量(地面蒸发+植物蒸腾) [5] 土水势(Soil water potential):可逆、等温地从特定高度和大气压下的纯水池转移极少量水到土壤中某一点时单位数量纯水所做的功。

土壤水动力学

土壤水动力学
弯曲度不能直接测量,它可以通过图像分析或流动和溶质运输建模
来计算。在这项研究中,通过两种方法从流体速度场计算出曲折值。
在第一种方法中
其中u是局部流速的平均值,而uj是平均流动方向上的速度的j分
量,其可以在x,y或z方向上。 这种方法基于一个简单的模型,
其中假定多孔介质等效于一组平行通道。
第15页/共28页
±1); 当i = 7 ... 10时,i被定义为
(±1,±1,0); 当i = 11 ... 14时,
i被定义为(0,±1,±1); 当对i
= 15 ... 18时,i被定义为(±1,0,
±1)。如左图
格子Boltzmann方法中的d3Q19晶格结构
第10页/共28页
04 图像处理和数值建模
采用D3Q19 LB模型(三维空间中的19个速度
正粘质土壤团聚体图像然后将其用作三维孔隙几何形状来
进行LB模拟。最后,根据LB模拟结果评估土壤样品的宏
观水力特性。
第3页/共28页
研究方法与材料
第4页/共28页
03 方法和材料
样本1
样本2
样本3
样本4
Vertisol ( 黑 土 , 中 国 北 方 的 江 苏 省 ( 34°17'39.4˝N ,
度都显着下降。x,y和z方向的平均弯曲度值减少了20%至30%,这与渗透率的增
加相吻合。上图显示了基于速度场的第一种方法计算出的曲折的尺度依赖性。一般
来说,曲折的尺度依赖性与渗透性的一致。在不同尺度上,较大的弯曲度对应较小
的渗透率。总体而言,生物炭修正大大减少了不同规模的曲折。
第24页/共28页

像素(避免边缘效应)
选择合适的阈值将图

大学土壤水分溶质动力学实验报告

大学土壤水分溶质动力学实验报告

土壤水分溶质动力学实验报告实验目的通过水平土柱以及垂直土柱入渗实验,了解水分的入渗过程、入渗特性,以及用水平土柱入渗法测定土壤水分扩散率的方法,利用垂直入渗实验测定土壤饱和导水率的方法。

实验方法和步骤1、土壤样品准备:样品风干、磨细、过筛等。

2、装土柱:分层次将一定容重的土壤装填在土柱中。

3、入渗实验:在土壤入渗过程中,观测不同时间土壤湿润峰的迁移,不同时间的入渗水量,入渗结束后测定不同层次土壤含水量。

实验结果分析(1)用EXCEL绘制土壤累积入渗量曲线,土壤入渗速率曲线、湿润锋的迁移与时间的平方根曲线、土壤水分在剖面分布曲线,分析土壤的入渗特性。

(2)计算土壤水分扩散率,绘制扩散率与含水量曲线。

计算土壤饱和导水率。

一、水平土柱入渗实验1、实验目的在熟练掌握水平土柱吸渗法测定非饱和土壤水扩散率原理的基础上了解土壤水平入渗特性,确定入渗条件下湿润锋x和时间t之间的关系,了解入渗条件下土壤累积入渗量曲线以及数学表达式,在此基础上,计算土壤的入渗速率以及数学表达式,同时得到土壤水扩散率D(θ)的关系,并绘制相应的图表。

2、实验要求水平土柱(长30cm),是由直径5cm,厚度为2cm的单环组装形成的,土柱装土土壤为老师事先准备好的沙壤土,控制装土容重为1.4g/cm3。

水平入渗过程中,进水端的水位由马氏瓶控制。

入渗过程中,观测不同时间的累积入渗量以及湿润锋的距离。

实验结束后,用烘干法分层测定土壤重量含水率,计算体积含水率。

3、实验方法与步骤(1)土壤样品准备:样品风干,磨细、过筛(孔径2 mm);(2)装土柱:在内径为5cm的水平实验土槽底部垫上滤纸,然后将实验用土按设计容重 1.4g/cm3的标准分层装入水平土槽中,为保证土的均匀性,我们将土按2cm高度分层装入;(3)在马氏瓶中装入一定量的水,将下部进气阀和出水阀关闭;(4)用橡皮输水管将马氏瓶的出水口与水平土槽进水口相连,然后打开马氏瓶顶部的加水孔的橡皮塞和出水阀,同时将水平槽的排气孔打开,给水平土槽下部的水室进行排气和充水,保证水能够均匀的入渗;(5)水室充满水后,立即将马氏瓶加水孔和水平土柱的排气孔密封,打开马氏瓶下部的进气阀,将水平土柱放平,让水平土柱中心轴与马氏瓶的进气阀相平,这样才能保证水平入渗在无压条件下进行,同时,打开秒表开始计时,并记下马氏瓶上的刻度数;(6)按照先疏后密的原则进行连续观测,每记下时间和马氏瓶上的刻度数,达到稳定入渗时,停止实验,然后打开水平土槽,将其中的土按2cm长度分层装入事先准备好的的铝盒中,然后称重,并放入烘箱进行烘干、承重。

土壤水动力学

土壤水动力学

修订时间:2013年3月太原理工大学博士研究生入学考试专业基础课考试大纲考试科目代码2017考试科目名称土壤水动力学招生学院代码007招生学院名称水利科学与工程学院招生专业代码081500招生专业名称水利工程参考书目1.《土壤水动力学》,雷志栋,杨诗秀,谢森传,清华大学出版社,北京,19882.《土壤物理学》,华孟,王坚,北京农业大学出版社,1993考查要点一、土壤水分的形态和能态1. 土壤水的形态2. 土壤水分运动的能态3. 非饱和土壤流的达西定律4. 非饱和土壤水力传导度5. 土壤水分特征曲线及其应用重点:土水势、土壤水力传导度、土壤水分特征曲线二、土壤水分运动的基本方程1. 土壤的物理点2. 多孔介质水分运动的基本假定3. 直角坐标系下土壤水分运动的基本方程4. 土壤水分运动的其他基本方程5. 土壤水分运动通量法重点:土壤水分运动过程的基本简化和假定、基本方程的变换和适用条件、土壤水分运动通量法。

三、土壤水分入渗1. 土壤入渗过程2. 土壤入渗过程的线性化解析解3. Green-Ampt入渗模型4. 水平渗吸条件下的Philip解5.经验入渗公式与讨论重点:土壤水分入渗过程及其驱动力、线性化解析解和各种经验入渗公式及其适用条件。

四、土壤水分蒸发1. 土壤水分入渗蒸发过程2. 定水位条件下均质土壤的稳定蒸发3. 层状土壤的稳定蒸发4. 非稳定蒸发过程重点:土壤水分入渗蒸发过程及其控制条件、均质土壤的稳定蒸发过程的求解。

五、土壤水分运动参数的测定方法1. 土壤水分运动参数室内测定方法2. 土壤水分运动参数田间测定方法。

土壤水动力学SWD土壤水分动态模拟模型简介

土壤水动力学SWD土壤水分动态模拟模型简介
是一种基于误差反向传播的多层前馈型网络,是目前 应用最为广泛的ANN模型之一。
典型模型2——土壤水分模拟的BP网络模型
BP-ANN结构:
三层网络结构:
输入层
隐含层
输出层 误差反向传 播
… …

输入层:Xn
Xn
Ym
隐含层:Hq
f(u) 1 1exp(u)
信息正向传
Hjpf n WiIjXipH j
与土壤水量平衡模型相比,偏微分方程形式的土壤水动 力学模型可以更细致地描述土壤水的运动与转化,得到 土壤水分动态的时空分布规律。
实际情况下,多采用数值方法来进行求解
土壤水分动态模拟的确定性模型和随机性模型
(1)确定性模型
影响农田土壤水分动态变化的因素(气象、土 壤等)在时间、空间上均有一定ቤተ መጻሕፍቲ ባይዱ随机特性。 如果不考虑上述因素的随机性,则模型属于确 定性模型,目前常用的水量平衡模型和水动力 学模型多为确定性模型,适用于下垫面(土壤 、作物等)均匀、气象要素确定的情况。
(2)随机性模型
考虑农田土壤水分动态变化的因素(气象、土壤 等)在时间、空间上的随机特性,建立的模型。
对于时域随机性,首先用适当的随机过程模型来 描述降水、腾发等的随机变化特性。然后建立描 述土壤水量平衡或水分运动的随机微分(差分) 方程模型或状态空间模型,可以求解得到土壤水 分动态的概率分布。
土壤水动力学SWD土壤水分 动态模拟模型简介
土壤水分动态模拟模型的必要性 模型的分类 典型模型介绍 土壤水动态模拟模型的发展方向
土壤水分动态模拟模型的必要性
土壤水分研究在水文学、土壤学、农田水利 学、生态学、环境科学等学科的重要作用, 众多学者对土壤水分变化规律进行深入研究, 有必要建立土壤水分动态模拟模型,以模拟 土壤水分在不同自然及人为条件下的动态变 化及分布规律,进而对农田及天然植被耗水 过程、污染物迁移过程进行模拟分析

土壤水动力学的发展解析

土壤水动力学的发展解析
1. 土壤水动力学的发展
1.1 概述 1.2 土壤水势与土壤水分运动 1.3 SPAC 水热传输 1.4 土壤中溶质的迁移与转化 1.5 土壤水问题应用研究
1.1 概 述
❖ 科学 学科 学科分支
流体→液体→水→土壤水
流体动力学→水动力学
→多孔介质水动力学→饱和流、非饱和流
→土壤水动力学(地下水动力学、土壤水动力学)
❖ 土壤溶质迁移转化的研究背景 环境问题 —— 面源污染 (化肥、农药等) 土壤盐碱化
❖ 土壤溶质迁移基本方程
c
t
cs
z
Dsh
v.
c z
qc
z
SC
对 流: q c
弥 散: Dsh c/ z 分子扩散+机械弥散→水动力弥散
源汇项:S c
液相以外的动态贮存:cs
1.4.2 土壤溶质迁移转化行为
Rn
大气 c
λE
Ta
ea
冠层 cv cs
Rv
ra
ra
λE v
r1
T1
eb r1 rC e1*
Tb
Rs λE s
r2
r2 rs
土壤
G
显热 潜热
T2
e2
温度 水汽压
大叶模型
三个介质 土壤 植物(叶) 大气
两个介面 土壤-植物 植物-大气
1.3.2 SPAC水热传输
❖ SPAC水热传输模拟模型
能量平衡
RN RV RS RV CV EV RS CS ES E EV ES C CV CS
➢可动水体与非可动水体间的质量迁移
❖ 化学动力学反应方程
X+Y→Z Z/t = kXnYm Z/t = kXn n=0、1、2

土壤水动力学

土壤水动力学

§2 土壤水分运动线性化方程的入渗解……………………………….36
一、 水平入渗解……………………………………………………… 36
二、 垂直入渗解……………………………………………………… 37
§3 Green-Ampt 模型与δ 函数入渗解………………………………… 37
一、 Green-Ampt Model…………………………………………… 37
5. Water Flow in Soils
张蔚榛主编 D.希勒尔著 华雪,叶和才译 D.希勒尔 著 罗焕灰 等译 华孟 王坚 主编
Tsuyoshi Miyazaki
2
土壤水动力学
绪论
目录
绪论……………………………………………………………………………1 一、什么是土壤水动力学?…………………………………………….1 二、为什么要学习土壤水动力学?…………………………………….1 三、怎样学习土壤水动力学?………………………………………….1
§1 非饱和土壤水流动的达西定律………………………………… 15
§2 土壤水运动的主要参数………………………………………… 17
一、水力传导度…………………………………………………… 17
二、水分扩散度…………………………………………………… 18
三、容水度………………………………………………………… 18
4
土壤水动力学
绪论
二、 单根吸水的土壤水运动模型…………………………………… 57 §4 腾发量的估算……………………………………………………… 59
一、 概述……………………………………………………………… 59 二、 腾发量的估算方法……………………………………………… 59 三、 根据潜在腾发量估算实际腾发量………………………………..62 §5 考虑作物根系吸水时恒温条件下土壤水分运动的模拟………… 62

土壤水动力学1(77)

土壤水动力学1(77)

重量含水量
GRAVIMETRIC WATER CONTENT (GWC)
•GWC = Mw / Ms100%
qg
体积含水量
VOLUMETRIC WATER CONTENT (VWC)
qv
• VWC = Vw / Vt 100% • = Vw / (Vs + Vf) • = GWC BD / DW
二、土壤水的研究概况
研究概况
1931年理查兹(Richards)在用能量概念研究土壤水的基础 上对达西定律进行了推广,使其适用于非饱和土壤,大大推 动了土壤水的动态研究,也使土壤水运动的数学模拟得到了 发展。 近几十年来,土壤水的研究已成为土壤物理学中一个重要分 支,一个最活跃的领域。随着电子计算机的大量应用和各学 科的相互渗透,非饱和土壤水运动的研究发生了由经验到理 论,从定性到定量的深刻变化,从而形成相对独立的一个领 域——土壤水动力学。 土壤水分的研究已成为土壤物理、农田水利、水文学等众多 学科领域的前沿课题。如国家自然科学基金委员会的自然科 学发展战略的报告中,自然地理和土壤学科均把土壤圈(或 地表)物质(水、热、盐)循环和能量转换列为优先资助领 域。水利学科中的地表水、土壤水、地下水三水之间的转化 规律、SPAC水分传输理论等列为优先研究。
所有土壤孔隙都为水所充满时的土壤含水率。
土壤水分常数
土壤水分的有效性 土壤水 无效水 汽态水 吸着水 有效水 毛管水 过剩水 重力水
土壤水分状况:干 大气压:1000 105 ℃ 土壤 下 水分 烘 干 常数 土 31 15~16 吸 凋 湿 萎 系 系 数 数
湿
的土 0 引水 力之 全间
6.25 1/3 1/10 毛 最 毛 管 田 大 管 断 间 持 分 持 水 子 裂 持 水 含 水 量 持 量 水 量 水 量 量 毛管悬着水 吸湿水 膜状水 重力水 毛管上升水 难有效水 无效水 易有效水 多余水 65%田持 灌水下限
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:土壤水动力学课程编号:课程类型:学位课、非学位课考核方式:考试、考查学科专业:农业水土工程年级:2012 姓名: 张廷强学号:10076120270河北工程大学2012~2013学年第学期研究生课程论文报告“四水”转化研究分析摘要:“四水”是指大气水、地表水、土壤水和潜水,“四水”之间的相互转化关系研究,对水资源评估、供需预测、合理开发利用水资源和节水灌溉都有十分重要的意义。

本文总结八个8方面“四水”两两之间相互转化的研究成果,归纳了“四水”转化研究存在的问题,讨论了未来的研究重点。

关键词:模型研究、大气水;地表水;土壤水;潜水;产流区域的四水转化水资源是区域社会经济发展的支撑和保证条件。

水土资源平衡分析在区域水资源配置的分析中具有十分重要的作用,而区域的四水转化问题的研究是水土资源平衡分析的科学基础和依据。

区域的四水指的是大气水——降水与蒸发、地表水、土壤水和地下水。

如今四水转化广泛应用与区域水资源计算模型建立。

例如根据水循环机理和水平衡原理,利用水文学径流形成理论,建立平原区“四水”转化模型,对土壤含水率进行过程模拟。

可广泛应用于平原区“四水”转化关系分析,可以用于评价平原区区域水资源量。

除此之外针对以往灌区耗水量计算方法的不足和灌区水循环机制的特点,建立了基于四水(大气水、地表水、土壤水、地下水)转化的灌区耗水量计算模型。

应用该模型可计算灌区各耗水类型的耗水量,并能对灌区各水均衡模块之间的水量交换进行分析计算。

由此可见四水转化的学习研究具有非常重要的意义。

1研究进展“四水”研究是在“三水”(大气降水、地表水、潜水)转化关系的研究基础上发展起来的,是陆面水文循环的一个主要部分,研究手段与水文学发展密切相关。

从20世纪50年代末期开始,随着近代水文学发展,以产汇流理论为基础建立的概念性水文模型得以广泛应用。

水文概念模型建立了降雨~产流(地表径流、地下径流)、蒸散发~土壤水消耗的简化计算方法。

20世纪80年代初,随着对水资源量的重视,水资源量的计算以及不同水源之间转化研究得以开展。

水资源实验研究逐步揭示了大气降水、地表水、土壤水和潜水相互转化、相互制约的作用关系。

1.1降雨入渗大气水到土壤水的转化常称为降雨入渗,其计算有三种途径:经验性方法、半经验性方法和数学物理方法。

最有名的是Horton、Green和Ampt 和Philip入渗方程,在此基础上,中外有关学者又提出了许多入渗模型,如Smith等人从土壤水分运动的基本方程出发,导出了任意降雨强度下入渗的计算公式。

其方法是先确定积水时间,然后分别计算积水前后的入渗率Bardossy等分别以Green-Ampt方程为基础,运用模糊数学的有关法则得出了模糊入渗模型。

E.Smith以Parlange等方程为基础,提出了一个复杂降雨条件下的入渗概念性模型。

范荣生等在黄土地区用水文参数取代Mein-Larson方程中物理参数提出入渗模型。

包为民等根据蓄满产流和超渗产流的产流机制,结合半干旱地区产流的实际情况,提出了垂向混合产流模型。

郭瑛利用Horton入渗方程,结合流域下渗分配曲线,提出了非饱和产流的产流计算方法。

郝振纯基于饱和下渗理论,考虑新入渗雨水驱替旧土壤水分的作用,根据力学原理提出了一个简明入渗模型。

1.2直接径流大气水直接转化为地表水通俗的理解即流域水面上或不透水面上的降雨量。

这部分水量在水文模型中通常和流域上道路、屋顶等不透水表面的产流量合并考虑,称为直接径流量,并以一个可调的不透水系数来描述。

实际上,这部分水量应当通过遥感等测量手段,得到流域上的水面面积之后再计算。

也有模型(或学者)把流域上的饱和面积也算直接径流,用关系式:式中:f 0是基本径流率;f1是一次附加径流率;P1是雨量。

此时这部分水量又和入渗~产流模型计算交叉在一起。

1.3降雨产流大气水在土壤表面形成地表水的过程称为降雨产流,产流模型可以分为确定性模型和随机性模型:确定性模型应用有限的物理学规律描述水文过程,其预测结果不存在不确定性;随机模型应用概率理论和随机性过程描述水文环节,其预测结果多为条件概率的形式。

确定性模型根据模型对流域是空间集总式的还是分布式的描述,以及对水文过程是经验性描述、概念性描述还是完全物理描述进一步划分为黑箱模型、概念模型和基于物理学的分布式模型,他们分别代表确定性水文模型的不同发展阶段。

黑箱模型基于传输函数,几乎没有任何物理意义;概念模型处于完全物理描述和经验式黑箱分析的中间位置;基于物理的水文模型建立在人们对控制流域响应的水文过程的物理认识的基础上。

基于物理学的分布式水文模型基本上可以应用于大部分水文学问题,不过针对大多数并不复杂的水文问题,使用结构简单的经验模型、集总式概念模型或者统计模型更为经济有效。

f 0P 0≤P ≤P1 f 0P+f 1(P-P 1) P 1≤PD=但是,当水文问题变得复杂时,基于物理学原理的分布式水文模型成为解决这类问题的最佳选择。

1.4大气水直接转化为潜水大气水直接转化为潜水,主要是指降雨通过大孔隙补给潜水部分。

在某些情况下,土壤水分在非饱和带中的运移不是传统上理解的均质一维垂直向下流动,而是伴随着有水分沿着一些优先途径的集中流动,这种优先流(Preferential flow) 可分为指流( Finger flow)、大孔隙流( Macropore flow) 和漏斗流( Funnel flow)。

由于大孔隙的存在,水分在运动过程中不能与土体发生充分的相互作用,而是直接快速的进入土壤深层,称为土壤深层水分可能来源的唯一通道。

大孔隙在非饱和土壤水中的作用,早在1964年就引起了土壤学家们的注意。

首先提起大孔隙作用的是Schumachar,他指出“在毛管力的影响下,当毛管的吸持作用不大时,入渗期间土壤的入渗率主要受大孔隙控制”。

而Hursh认为“当潜水位接近地表时,侧向扩散率会有明显增加,其孔隙情况不是由土壤的颗粒组成来决定,而是与形成土壤晶格的三位结构有关。

这些结构是由生物作用形成的管道为主要透水”。

Horton也注意到了“集中流动”产生的情况,这部分水量常在下渗~产流模型中考虑,并以一个可调的大孔隙系数来描述,多见于概念性水文模型。

1.5土壤水转化为大气水土壤水转化为大气水即土壤蒸发过程。

自1802年著名的Dalton蒸发定律提出以来,蒸发的研究就一直没有间断过,大量工作针对点上的蒸发进行,除了各种测量手法以外,目前有许多气象学方法和经验公式。

在点蒸发研究的同时,区域蒸发量的研究始终是困扰国内外科学界的主要问题。

直到20世纪后期,随着遥感和GIS技术的发展,区域蒸发量的研究才取得了突破性的成果,如Brown 和Rosenberg提出了作物阻抗~蒸散模型,为热红外温度遥感应用到蒸散模型提供了理论依据;Idso等发展了用遥感估算潜在蒸散的经验模型;Jackson等建立了每日1次的热红外冠层空气~温度差与日蒸散的统计模型;Suguin 等研究了用卫星获得的中午地表温度估算每日蒸发量;张仁华等提出了以微分热惯量为基础的地表蒸发全遥感信息模型等等。

迄今为止, 国际上对蒸( 散) 发量的测定和计算方法的研究已取得了一系列成果。

比较有代表性的如: Bowen 早在1926 年就提出的利用地表能量平衡方程得到的计算蒸发的波文比- 能量平衡法( BREB 法) ; Thornthwait 和Holzman 利用边界层相似理论计算蒸发量的空气动力学方法; Monteith 于1963年通过引入“表面阻力”的概念导出的计算蒸发量的Penman - Monteith ( P - M) 公式; Swinbank 于1955 年提出用涡旋相关技术直接测量并计算蒸发( 散) 量的涡旋相关法等。

1.6土壤水转化为地表水土壤水转化为地表水即侧向壤中流和回归流。

壤中流是指水分在土壤内的运动,包括水分在土壤内的垂直下渗和水平侧流,水文领域内的壤中流主要指其中的侧向流,即发生于非均质土壤或有层理土壤中相对不透水界面上的超渗壤中径流。

壤中流的进一步发展,上层相对透水层达到饱和后出现的地表径流称为饱和地面流;回归流是由壤中流派生出来的径流成分,是壤中流在较易渗出的地形及坡度条件下渗出地表形成地表径流。

壤中流与地表径流、地下径流一起构成流域的径流过程,在某些情况下壤中流还可以形成洪峰。

对于壤中流产生的主要机制,许多学者有研究,并利用不同的假设发表了许多关于壤中流产生机制的模型。

1.7土壤水与潜水的相互转化土壤水与潜水的相互转化。

土壤水向潜水的转化过程主要表现为降水和灌溉入渗补给潜水;潜水向土壤水转化过程主要表现为潜水蒸发,这个过程主要由包气带的下界面(潜水面)以上土壤水分的能量和数量、及其分布状态等因素决定。

当潜水面以上相邻区域的土壤水势梯度小于零时,土壤水分就会向上移动,引起潜水蒸发;当潜水面以上相邻区域的土壤水势梯度大于零时,土壤水分就会向下移动,潜水得到土壤水的补给。

土壤水与潜水的相互转化可以分为入渗型、蒸发型、蒸发~入渗型和复合型,当潜水埋深大于潜水蒸发极限深度时,潜水不在出现上渗损耗,始终处于缓慢的入渗补给状态。

土壤水与潜水相互转化通常用Richard方程来描述。

1.8潜水与地表径流的相互转化潜水与地表径流的相互转化自然界中几乎所有的地表水体都和潜水发生着作用,这直接影响着地表水和潜水体的水质和水量。

最常见的一种情形是傍河区潜水的连续过量开采可使潜水和地表水由连续性接触转变为脱节状态,而且这种转化过程经常是一个漫长的过程,具有很强的隐蔽性。

最早涉及地表水和潜水相互作用的研究可追溯到Boussinesq 在1877 年对河流与连续冲积含水层作用规律的探讨,当时对该相互作用的意义重视不够, 直至国际水文科学协会( IAHS) 和国际水文地质学家协会( IAH ) 分别于1986 年和1994年将地表水和潜水相互作用正式提上会议讨论议题。

由于地表水和潜水相互作用规律的复杂性,因此它仍是水文学及水文地质学研究的热点和难点。

2存在的主要问题尽管关于“四水“转化理论的研究很多,但是还存在很多不足,可以简单的归纳唯以下三点。

(1)目前的“四水”转化研究在大气水、地表水、土壤水和潜水两两之间的相互转化规律方面比较重视,但还需要把“四水”转化作为一个地表水循环的整体来进一步深入研究,即不仅要研究“四水”两两之间的关系,还要研究这些关系之间的相互影响和相互制约。

(2)目前的“四水”转化理论定性研究居多、定量究较少,尤其和具体的土壤类型结合、能直接应用于生产实践的成果较少。

有限的定量研究成果大多是基于特定地区实验数据的分析与归纳,还不能上升到理论高度或推广应用。

(3)现有的综合考虑“四水”的研究成果多从属于水文模型,这些模型主要用来研究降雨~径流关系和洪水预报,追求的是洪水过程的预报精度。

相关文档
最新文档