土壤水动力学的发展.

合集下载

土壤水动力学参数及影响因素分析

土壤水动力学参数及影响因素分析

土壤水动力学参数及影响因素分析作者:宋城业来源:《农村经济与科技》2020年第16期[摘要]土壤水是农作物生长的主要水源,也是开展农业生产的必备条件之一。

分析土壤水的动力学参数以及相关影响因素对土壤水的水分调控和高效率利用具有重要意义。

[关键词]土壤水;动力学参数;影响因素;分析[中图分类号]S152[文献标识码]A土壤水是水资源的一个不可或缺组成部分,高效率利用土壤水受到有关人员的高度重视。

有关数据显示,土壤水动力学参数受到以下几个因素的影响:其一,土壤孔隙度;其二,土壤质地。

相关文献报道,还有学者在分析土壤水动力学参数的相关影响因素之外,建立了土壤水动力学基本方程、土壤水参数估计模型以及土壤水热运动模型等,以期阐述清楚土壤水的主要动力学参数特点,为我国农业生产提供相关数据参考。

1 国内外土壤水的有关研究分析1.1 国内土壤水的有关研究我国有关土壤水的形态学研究理论(以罗戴为代表)在20世纪中期兴起,该理论传人我国之后对我国的土壤水研究起到较大助推作用。

第一次土壤水物理学术讨论会在杭州举行,土壤水能量的有关概念首次进入到我国广大人民群众的视线内,逐渐转变土壤水分的有关研究观念——从定性的形态学观点逐渐转变成定量的连续能量观念。

20世纪80年代初期有关人员引入将土壤、植物和大气看作一个连续整体观念,利用水势将能量指标建立在不同介质之间,为土壤水以及农作物和生态环境之间做协调研究挖掘出新的路径。

20世纪80年代后,随着国内外的土壤水研究交流逐渐增多,我国对土壤水的理论研究和实验研究逐渐取得长足发展,与此同时出现一些关于土壤水研究的著作,如《土壤水动力学》《地下水与土壤水动力学》《土壤水分通量法实验研究》《土壤水热运动模型及其应用》《土壤一植物一大气连续体水分传输理论及其应用》等。

国内土壤水分的有关研究在互联网技术发展的基础上而发展,尤其是求解基本方程归功于计算机技术的应用,使得复杂的问题能够通过数学实验方法加以求解。

土壤入渗测定方法评述

土壤入渗测定方法评述

土壤入渗测定方法评述[摘要]为了解不同的土壤入渗测定方法,本文在介绍国内外有关土壤入渗测定方法的若干研究成果和进展的基础上,简要地分析了目前常用的双环法、人工降雨法、水文分析法、圆盘入渗仪法和盘式负压入渗仪法。

结果表明圆盘入渗仪法多用于测量土壤的饱和导水率,同时具有省时、省力、省水和准确等优势,更适合野外试验,可以代替双环法进行土壤渗透性的测定。

[关键词]土壤入渗;测定;方法0 引言入渗是指水分进入土壤形成土壤水的过程,是土壤水动力学中重要的基本概念,它是降水、地面水、土壤水和地下水相互转化的一个重要环节。

土壤水分入渗过程和入渗能力决定了降雨进程再分配中的地表径流和土壤储水性,在干旱、半干旱地区,林业发展的主要途径是充分有效地利用自然降水、减少地表径流、增加土壤水分。

定量描述土壤入渗过程是水循环及水利用的重要基础内容,对研究地表产流的机理,以及增加土壤入渗,提高作物水分利用效率等具有重要的理论意义和实践价值。

因此,土壤水分入渗的测定及其影响因子的研究受到极大的关注,许多学者就此问题进行了大量的研究,并获得了丰富的研究成果。

1 土壤入渗测定方法研究现状目前,国内外许多学者致力于土壤入渗测定方法的研究,并在试验研究中提出并应用了不同的方法和手段。

例如:环刀法、渗透筒法、单环法、水文法、马利奥特-双环法、人工降雨法、钻孔法、土柱法、稳定通量法、示踪法以及各种精密入渗仪法(如Hood入渗仪,Guelph入渗仪)等,可分为田间测定和室内试验2种。

Betrand(1965)曾对土壤入渗速率的测定方法作过评述。

在实际操作中常常受制于某些因素,使得基于不同方法所测定的结果有所不同。

目前使用较多的方法为双环法(注水法)、人工降雨法、水文分析法、圆盘入渗仪法和盘式负压入渗仪法等。

1.1 双环法双环法通常采用同心环入渗装置。

同心环为两个同心铁环,其上下无底,要有足够刚度,以便打入土中不变形。

一般常用的同心环,外环直径50.5㎝,内环直径30.5㎝,环高25㎝,打入土中15㎝,环高及打入土中深度与内环相同。

大学土壤水分溶质动力学实验报告

大学土壤水分溶质动力学实验报告

土壤水分溶质动力学实验报告实验目的通过水平土柱以及垂直土柱入渗实验,了解水分的入渗过程、入渗特性,以及用水平土柱入渗法测定土壤水分扩散率的方法,利用垂直入渗实验测定土壤饱和导水率的方法。

实验方法和步骤1、土壤样品准备:样品风干、磨细、过筛等。

2、装土柱:分层次将一定容重的土壤装填在土柱中。

3、入渗实验:在土壤入渗过程中,观测不同时间土壤湿润峰的迁移,不同时间的入渗水量,入渗结束后测定不同层次土壤含水量。

实验结果分析(1)用EXCEL绘制土壤累积入渗量曲线,土壤入渗速率曲线、湿润锋的迁移与时间的平方根曲线、土壤水分在剖面分布曲线,分析土壤的入渗特性。

(2)计算土壤水分扩散率,绘制扩散率与含水量曲线。

计算土壤饱和导水率。

一、水平土柱入渗实验1、实验目的在熟练掌握水平土柱吸渗法测定非饱和土壤水扩散率原理的基础上了解土壤水平入渗特性,确定入渗条件下湿润锋x和时间t之间的关系,了解入渗条件下土壤累积入渗量曲线以及数学表达式,在此基础上,计算土壤的入渗速率以及数学表达式,同时得到土壤水扩散率D(θ)的关系,并绘制相应的图表。

2、实验要求水平土柱(长30cm),是由直径5cm,厚度为2cm的单环组装形成的,土柱装土土壤为老师事先准备好的沙壤土,控制装土容重为1.4g/cm3。

水平入渗过程中,进水端的水位由马氏瓶控制。

入渗过程中,观测不同时间的累积入渗量以及湿润锋的距离。

实验结束后,用烘干法分层测定土壤重量含水率,计算体积含水率。

3、实验方法与步骤(1)土壤样品准备:样品风干,磨细、过筛(孔径2 mm);(2)装土柱:在内径为5cm的水平实验土槽底部垫上滤纸,然后将实验用土按设计容重 1.4g/cm3的标准分层装入水平土槽中,为保证土的均匀性,我们将土按2cm高度分层装入;(3)在马氏瓶中装入一定量的水,将下部进气阀和出水阀关闭;(4)用橡皮输水管将马氏瓶的出水口与水平土槽进水口相连,然后打开马氏瓶顶部的加水孔的橡皮塞和出水阀,同时将水平槽的排气孔打开,给水平土槽下部的水室进行排气和充水,保证水能够均匀的入渗;(5)水室充满水后,立即将马氏瓶加水孔和水平土柱的排气孔密封,打开马氏瓶下部的进气阀,将水平土柱放平,让水平土柱中心轴与马氏瓶的进气阀相平,这样才能保证水平入渗在无压条件下进行,同时,打开秒表开始计时,并记下马氏瓶上的刻度数;(6)按照先疏后密的原则进行连续观测,每记下时间和马氏瓶上的刻度数,达到稳定入渗时,停止实验,然后打开水平土槽,将其中的土按2cm长度分层装入事先准备好的的铝盒中,然后称重,并放入烘箱进行烘干、承重。

土壤侵蚀研究进展

土壤侵蚀研究进展
摘 要: 土壤侵蚀对土地资源造成了不可逆的破坏ꎮ 目前ꎬ 关于土壤侵蚀过程中土壤理化性质及水动力学特征的
影响机理研究尚不充分ꎬ 而且研究方法的不一致导致了研究结论存在一定差异ꎮ 本文通过分析各学者研究结果ꎬ
归纳总结目前土壤理化性质中重要因子对土壤侵蚀、 抗蚀性产生的影响以及在侵蚀过程中水动力学特征ꎬ 旨在为
收稿日期: 2021-02-01
作者简介: 刘争光 (1986-) ꎬ 男ꎬ 硕士ꎮ 研究方向: 含沙水流动机理ꎮ
实验得出在不同降雨强度情况下ꎬ 土壤侵蚀与土壤含
※资源环境
农业与技术 2021ꎬ Vol 41ꎬ No 04 9 3
土壤抗侵蚀能力ꎮ 谢贤健等 [29] 采用静水崩解法对内
土流失程度和强度则取决于土壤化学性质ꎮ 土壤中的
江市丘陵区测验得出ꎬ 土壤有机质分解后可以提高土
pH、 有机质和速效养分是土壤中重要组成元素ꎬ 三者
壤中速效养分的含量ꎬ 而速效养分对土壤结构起直接
含量的高低也是反应土壤养分的重要指标ꎮ
影响作用ꎬ 能有效提高土壤抗蚀性ꎮ 李渊等 [30] 通过
渐降低并且耕地和草地最容易受土壤侵蚀ꎬ 导致土壤
土壤大多数为<0 25mm 的土壤颗粒ꎬ 而这样的颗粒极
肥力下降ꎮ 王文正等 [27] 通过实地调查得出ꎬ 土壤有
易堵塞土壤孔隙ꎬ 造成水分难以下渗ꎬ 从而增加土壤
机质含量高ꎬ 水稳性指数越大ꎬ 土壤结构愈加稳定ꎬ
通过 Le Bissonais 方法得出ꎬ 黄
侵蚀力重要参数之一ꎮ 径流冲刷引起的土壤分离过程
研究成果不仅可以深化对土壤侵蚀过程的认识ꎬ 促进
主要通过土壤侵蚀阻力来定量表征 [42] ꎬ 受土壤理化
立侵蚀预报模型

第2章_土壤水动力学基本方程

第2章_土壤水动力学基本方程

2.3非饱和土壤水运动的达西定律
2.3.3非饱和导水率的数学表达
含水量为 s Δ ,最大半径为 R1的毛管排空。 2 2 Δ M 1Δ M 1 i 1,2,, M 1 对一般情况 K s iΔ K s Δ 2 w g j 2 w g j i 1 h2 2 h2 j j 2 M M M 又
K s iΔ K s i M2 K s i 1,M , M 1 2, 1 Ks Δ1 M 1 例题2.1 2 2 j 1 h 2 2 w g j 1 h j j j 1 h j
j i 1 h 2 j
Δ 1 1 1 g 2 j i 1 h2 2 i h j w j j
H h z h 1 J w K h K h K h z z z
2.3非饱和土壤水运动的达西定律
2.3.2 Buckingham-Darcy通量定律
Buckingham-Darcy通量定律也可写成: 符号相反, 向下为正
非饱和流与饱和流的比较: 共同之处:都服从热力学第二定律,都是从水势高的地 方向水势低的地方运动。 不同之处: ①土壤水流的驱动力不同。 饱和流的驱动力是重力势和压力势;
非饱和流的是重力势和基质势。
②导水率差异 非饱和导水率远低于饱和导水率;当基质势从0降低到 -100kpa时,导水率可降低几个数量级,只相当于饱和导 水率的十万分之一。 ③土壤空隙的影响土壤。在高吸力下,粘土的非饱和导 水率比砂土高。
16~40cm/d
〉100cm/d

很高
40~100cm/d

2.3非饱和土壤水运动的达西定律
绝大多数田间和植物根区的土壤水流过程都处 在非饱和状态。非饱和流研究为土壤物理学最 活跃的研究领域之一。 2.3.1 非饱和流与饱和流的比较

土壤动力学基础

土壤动力学基础

2 压实土壤所产生的阻力
压实土壤所产生的阻力 所消耗的功等于压出车辙所做的 功,即:
Z
RL BL pdz
0
式中:R—行走阻力
L— 行驶距离 B—车轮或履带宽度 p—接地压力
Z—下陷(车辙)深度
据 则:
(1)履带压实土壤所产生的阻力
P
(kc b
k )Z n
R
BZ (kc 0B
k )z ndz
• 塑限
WP
• 液限 WL
• 塑性指数 PI WL WP
(7)粘附极限
Wt
1.土壤土壤的主要力学参数及其测定
(1)土壤坚实度 又称土壤硬度,是指一定形状的几何体插入土壤时所
受的阻力。最常用的是锥体和平板。
(2)土壤外附力与内聚力
土壤外附力(系数):土壤着金属或其它材料表面的力,N/m2 土壞内聚力(系数):土壤颗粒间的粘结力, N/m2 这两个参数可用土壤外附力/内聚力测定仪测定。
tg
f
式中: C Wtg 为最大推进力,第一项是由土壤内聚性所发挥 出的推进力;第二项是由于土壤的内摩擦性所发挥的推进力 。 f为滚动阻力系数, f R
W
为提高牵引系数,一方面靠提高推力;再一方面就是减小阻 力。
(2)改进途径 ① 提高推进力的途径
从 是
Hmax Ac Wtg
可看出,要增加推进力,一个方法
式中: —剪切应力; —-土壤内摩擦角;p—正压(应)力;
d—剪切位移;c—土壤(切向)内聚力系数; k 、 k1、 k2—土壤剪切变形模数。
四、行走机构推力计算 1行走机构受力分析
牵引力T=H-R
滑转率(打滑率)
i
车辆理论速度 - 车辆实际速度 车辆理论速度

土壤水环境中污染物运移双点吸附解吸动力学模型

土壤水环境中污染物运移双点吸附解吸动力学模型

∂C ∂z
⎞ ⎠⎟

∂qC ∂z
⎪⎪⎪−kθρ[(1 − ⎨
f
)KdC

S2 )] − θλ1C

f
ρ Kdλ2C
(1)
⎪⎪S1 = fKdC
⎪ ⎪
∂S2
⎪⎩ ∂t
=
kθ[(1 −
f
)KdC

S2 )] − λ3S2
式中:C 为污染物在水相中的浓度;S1 和 S2 分 别为污染物在平衡和非平衡吸附相上的吸附浓度;
(1. 辽宁工程技术大学 力学与工程科学系, 阜新 123000; 2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071)
摘 要:在考虑对流弥散、平衡/非平衡双点吸附解吸、微生物降解等情况下,建立了土壤环境中有机污染物迁移转化的动
力学模型,并给出了有限差分解。在此模型的基础上,详细讨论了有机污染物在土壤中的分布规律,并对一阶吸附解吸速率
(7)
初始条件离散为
C
0 j
=
(
S1
)0 j
=
(
S2
)0 j
=
0
(8)
上边界条件离散为
⎧ ⎪


θD 4h
(C1τ

C
τ −1
+
C1τ
+1

C
τ +1 −1
)
+
⎪ ⎪⎪
vθ 2
(C
τ 0
+1
+
C
τ 0
)
=
vC0

⎪ ⎪− ⎪
θD 4h
(C1τ

土壤水动力学SWD7SPAC水分传输

土壤水动力学SWD7SPAC水分传输
未知量:冠层 Tb、eb;叶片Tv、 地表热通量G
地表以下土壤层:
土壤水动力学SWD7SPAC水分传输
7.4.2 模型求解
1) 冠层温度Tb:二分法求解
2) 冠层水汽压eb、叶面温度Tv、地表热通量G 3) 地表蒸发速率Es、蒸腾速率Ev、根系吸水速率s(z,t) 4) 土壤水热迁移方程:FDM
u 反映土壤水分胁迫对腾发的影响,与根系层土 壤含水率的大小及分布、最大腾发强度有关
u FAO方法:
u 经验公式:如
土壤水动力学SWD7SPAC水分传输
7.2.6 根据水量平衡模型估算腾发量
以上腾发量估算中,计算Ks需 要根系层含水量资料,可根据 水量平衡模型来推算:
ΔW=W2-W1=P+I-ET-Q-R
物需水量) u ET——实际腾发量
n 双作物系数法:…
土壤水动力学SWD7SPAC水分传输
n 参考作物腾发量(Reference ET)
u 概念:参照作物腾发量为一种假想的参照作 物冠层(作物高度为0.12m,固定的叶面阻 力为70s/m,反射率为0.23,非常类似于表面 开阔、高度一致、生长旺盛、完全遮盖地面 而不缺水的绿色草地)的腾发速率
土壤水动力学SWD7SPAC水分传输
Bowen比法(测定两个高度处的温、湿度)
测定两个高度处的温度和湿度。由:
土壤水动力学SWD7SPAC水分传输
7.2.3 估算腾发量的经验方法
n 主要用于土壤供水充分条件下作物最大腾 发量(作物需水量)或参考作物腾发量的 估算
n 利用蒸发皿资料估算腾发量
u ETmi=αi E0
土壤水动力学SWD7SPAC水分传输
7.2.4 估算腾发量的理论方法
n 紊流扩散法(空气动力学法) n 能量平衡法 n 综合法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水热扩散
R N RV RS RV CV EV
c p e 2 e b E S r rs
c s c p T2 Tb r2
能量平衡
R S C S E S
E EV E S
C CV C S
c p e1 eb Ev r1 rc
c I T T L I I t z z t
水热耦合方程
土壤中水和冰混合, 并伴随有相变。
θ
θ
t1
t0
z
T
1.3.2 SPAC水热传输
SPAC系统概念 SPAC——Soil Plant Atmosphere Continuum, 1965, Philip
定性→定量 经验→理论 单一→综合、交叉 传统→现代技术(GIS、遥感和计算机模拟)
学科研究方向的背景
教学背景——大学本科专业的主要专业基础 应用背景——水文学、水资源、农田水利、环境与生态
学科研究的应用背景
水文学——陆地水循环的关键环节:降雨径流及土壤水 水资源——地表水、地下水为主的水资源评价 农田灌溉——土壤水的转化与消耗、水资源的有效利用 生态水文学——陆生生态的生态需水和生态用水
SPAC水热传输模拟
Rn
大气
c
λE
Ta
ea ra r1 rC
大叶模型 三个介质 土壤 植物(叶) 大气 两个介面 土壤-植物 植物-大气
Rv
冠层
cv cs
λE v
T1
ra r1
Tb
eb
e1*
λE s G
Rs
r2
T2
r2 rs
e2
水汽压
土壤
显热 潜热
温度
1.3.2 SPAC水热传输
SPAC水热传输模拟模型
土壤水分特征曲线 --土壤水能量与数量的关系--
ψm
θ
1.2.2 非饱和土壤水流动基本方程
达西定律:
q kψ
基本方程
连续方程:
q t
k ψ t
k D D D z t x x y y z z
土壤组成 组成比例 比热容 热导率
固相 xs cs λs
气相 xa ca λa
土壤中的多相(水)流 液态水 气态水-水汽 水的相变-潜热-温度-相变 水汽的扩散与迁移
1.3.1 土壤中水热耦合迁移
冻结条件下土壤水热耦合迁移
k i i D t z z z w t
• 连续体 • 驱动力——水势
q = - △ψ1 /R1 = - △ψ2 /R2 = - △ψ3 /R3 = - △ψ4 /R4 阻抗 容抗
Transpiration 大气 -500 bar
叶 -15 bar Evaporation
根 -3 bar
土壤 -0.3~ -1.0 bar
1.3.2 SPAC水热传输
1.4 土壤中溶质的迁移与转化
1.4.1 土壤溶质迁移转化基本方程
土壤溶质迁移转化的研究背景
环境问题 —— 面源污染 (化肥、农药等) 土壤盐碱化
土壤溶质迁移基本方程
c cs c qc Dsh v. SC t z z z
c v c p T1 Tb r1
土壤 水热迁移
c
T T t z z
c p e b e a E ra
c c p Tb Ta ra
k D t z z z
Rechards,1931
1.3 SPAC 水热传输
1.3.1 土壤中水热耦合迁移
常温条件下土壤水热迁移 常温——土壤非冻结 简化——忽略水汽 、一维 水分
k D t z z z
温度
液相 xw cw λw
c
T T t z z
c m
c
m m m m k m k k k m m m t x x y y z z z
d d m D k c
对 流: q c 弥 散: Dsh c/ z 分子扩散+机械弥散→水动力弥散 源汇项:S c 液相以外的动态贮存:cs
1.4.2 土壤溶质迁移转化行为
土壤中溶质迁移转化的基本行为 (物理、化学、生物)
水环境——农业面源污染
1.2 土壤水势与土壤水分运动
1.2.1 土 壤 水的数量、形态和能量 土壤水的数量
土壤含水量(率)——重量、体积
W Mw M Ms 100% 100% Ms Ms
土壤水的形态
吸湿水-薄膜水-毛管水-重力水

Vw 100% V
土壤水的能量——势能——土水势
单位数量土壤水具有的势能——单位数量、标准参考状态 • 重力势Ψg • 压力势Ψp • 基质势Ψm • 溶质势ΨS • 温度势ΨT 总水势 Ψg = ± z
(Mgz:gz、ρwg z、z)
Ψp = h Ψm ~θ (土壤水分特征曲线) ΨS ~c 、T Ψ= Ψg + Ψp + Ψm+ Ψs + ΨT
1. 土壤水动力学的发展
1.1 概述 1.2 土壤水势与土壤水分运动
1.3 SPAC 水热传输
1.4 土壤中溶质的迁移与转化 1.5 土壤水问题应用研究
1.体→液体→水→土壤水
流体动力学→水动力学
→多孔介质水动力学→饱和流、非饱和流 →土壤水动力学(地下水动力学、土壤水动力学) Darcy’s Law, Richards equation 1856 1931 学科研究的发展
相关文档
最新文档