ANSYS接触刚度
关于接触刚度的讨论

关于接触刚度的讨论(转载)2008-09-11 10:11 阅读65 评论0字号:大中小BBS 锦城驿站我最近在做接触分析,老觉得不合理。
接触刚度应该是与接触面等材料属性有关,为什么还要自己定义这个刚度?我仿照《使用ANSYS6。
1进行结构力学分析》里面的接触例子,求解时出现real constant2 ha s been referenced by element types element types1 and 2 one of which is contact element.书上说的是通过共享实常数来判别接触对,为什么又出现这样的错误提示呢?请大家帮忙。
决定接触刚度所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。
程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。
为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。
1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过高的接触刚度导致的收敛性困难,要容易解决。
2、对前几个子步进行计算3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。
4、按需要调查FKN或FTOLN的值,重新分析。
ANSYS-接触非线性应用技巧

NLGEOM,ON NSUB,10,100,1
案例:高压油管折弯
项目背景
– 本计算主要对油管工件由直管折弯为 弯管过程中,各部位材料的塑性应变 进行仿真,计算材料延伸率,并考察 ANSYS结构非线性能力。
高压油管结构示意图
Contact pair-1
Single contact pair
Contact pair-1
A Pera Global Company © 2012 PERA China
2.接触刚度不合适
缺省的接触刚度不再适用
ANSYS求解接触问题时,接触刚度对收敛性影响显著。大多数情况下缺省设置 有效,但不适于弯曲为主的接触问题。 不好收敛的信号是,收敛曲线平行于收敛准则,如下图。选择小的罚刚度值( FKN),可以使接触容易收敛。
A Pera Global Company © 2012 PERA China
1.遗漏接触对
• 如果有些区域接触了(如自接触),但是没有定义接触对,单元会扭曲。
Phase 1
Phase 2
Phase 3
A Pera Global Company © 2012 PERA China
1.遗漏接触对
For symmetric contact or additional CP/CE, and boundary conditions, the equation system is over-constrained
Tip:
If the Lagrange multiplier method is used:
• Always use asymmetric contact.
Ansys WB官方培训教程_1.5_Contact接触设置模块

第三章接触简介Workbench –Mechanical 结构非线性章节概述Training Manual •本章介绍实体接触:–假定用户在这章前已掌握第2章非线性结构.•介绍的具体课题是:A.接触基本概念B B.接触公式C.刚度和渗透D.作业3AE.Pinball 区域F.对称与反对称G.接触结果后处理H.作业3B•本章描述的性能通常适用于ANSYS Structural或以上的licenseA. 基本概念Training Manual 接触:•两独立表面相互接触并相切,则称之为接触.•一般物理意义上, 接触的表面包含如下特性:–不会渗透.–可传递法向压缩力和切向摩擦力.–通常不传递法向拉伸力.•可自由分离和互相移动.•接触是状态改变非线性. 也就是说, 系统刚度取决于接触状态, 即part之间是接触或分离.... 基本概念Training Manual 接触区域如何计算:•物理上,接触体间不相互渗透. 因此, 程序必须建立两表面间的相互关系以阻止分析中的相互穿透.分析中的相穿透–程序阻止渗透, 称为强制接触协调性.Workbench Mechanical提供几种不同接触公式来在接触界面强制协调性.–Workbench MechanicalF当接触协调性不被强制时会发生渗透.FTargetContactTraining ManualB. 接触公式•对非线性实体表接触, 可使用罚函数或增强拉格朗日公式:–两种方法都是基于罚函数方程:这里对于个有限的接触力存在个接触刚度的的概念接触刚npenetratio normal normal x k F =–这里对于一个有限的接触力F normal , 存在一个接触刚度的k normal 的概念,接触刚度越高,穿透量x penetration 越小,如下图所示–对于理想无限大的k , 零穿透. 但对于罚函数法,这在数值计算中是不可能normal ,零,但是只要x penetration 足够小或可忽略,求解的结果就是精确的。
ansys 14.0深沟球轴承接触分析

13 深沟球轴承接触分析13.1 实践任务和目的滚动轴承的刚度、接触应力及寿命是工程应用中关心的热点问题。
滚动轴承接触分析的困难在于滚动体与圈体的接触,滚动体在载荷为0的情况下与圈体接触为一点,随着载荷的增大,点接触变为面接触。
接触区域的位置、大小、形状、接触面压力及摩擦力分布等接触参数在分析前未知,它们随外载荷变,是典型的边界非线性问题。
深沟球轴承结构简单、使用方便,是生产批量最大、应用范围最广的一类轴承。
本实验以618/5深沟球轴承为代表,利用ansys软件的建立深沟球轴承的三维有限元模型。
通过加载边界条件,进行面-面接触分析,得出轴承的接触应力分布。
轴承弹性模量E=210GPa,泊松比0.3,作用在轴承上的力P=3.472Mpa。
13.2 实验环境Ansys14.0及其以上版本软件,win7以上版本操作系统13.3 实践准备接触问题是一种高度非线性行为,需要较大的计算资源,为了进行有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题分为两种基本类型:刚体─柔体的接触,柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
1)接触分析的基本概念①接触协调因为实际接触体相互不穿透,Ansys在这两个接触面间建立一种关系,防止它们在有限元分析中相互穿过。
将程序防止接触面间相互穿透作用称为强制接触协调。
如果没有强制接触协调,接触面间会发生穿透。
②罚函数法罚函数法用一个接触“弹簧”在两个接触面间建立关系实现接触协调的方法,弹簧刚度称为惩罚参数(也可叫接触刚度)。
当接触面分开时(开状态),弹簧不起作用;当面开始穿透时(闭合),弹簧起作用,弹簧偏移量满足平衡方程:F = k△;式中k是接触刚度,△为穿透量,如图13.1所示。
ANSYS接触分析实例

ANSYS接触分析实例接触分析是指在模拟两个物体在接触过程中的力学行为。
在工程设计中,接触分析能够解决各种复杂的机械接触问题,例如轴承、齿轮传动、接头连接等。
ANSYS通过它的接触分析功能,能够模拟物体间的精确接触行为,包括接触压力、接触区域、接触力和摩擦力等,并提供准确的力学分析结果。
举一个实际的例子,假设我们需要分析一个摩擦力的问题。
一辆汽车正在上坡行驶,车轮与路面之间的接触处产生了摩擦力。
我们希望通过ANSYS来模拟并计算摩擦力的大小。
首先,我们需要建立一个三维模型,包括车轮和路面。
可以使用ANSYS提供的建模工具进行绘制,也可以导入其他CAD软件中的模型。
在建模过程中,我们需要设置适当的边界条件和材料属性,例如路面的摩擦系数和车轮的材料参数。
接下来,我们需要定义接触边界条件。
在这个例子中,车轮与路面之间发生接触的区域称为接触区域。
可以在ANSYS中使用接触探测器来自动识别接触区域,或者手动定义接触区域。
在定义接触区域后,需要设置接触界面的行为,包括摩擦系数、接触刚度和接触阻尼等。
这些参数将影响接触力和摩擦力的计算结果。
完成模型和边界条件的设置后,我们可以进行接触力的计算。
首先,需要进行非线性静力分析,通过施加一个外力或位移来激活接触区域。
ANSYS将自动求解力学平衡方程并计算出接触力。
我们可以通过结果后处理功能来可视化和分析接触力的分布情况。
得到接触力的结果后,我们可以根据需要进一步分析摩擦力。
ANSYS提供了丰富的后处理工具,例如力矩计算和摩擦力分析工具,可以帮助我们准确地计算和分析摩擦力的大小和方向。
通过以上的步骤,我们可以使用ANSYS进行接触分析,并得到准确的接触力和摩擦力结果。
这个例子只是接触分析的一个简单示例,实际应用中的接触分析可能涉及更复杂的几何形状、材料特性和接触行为等,并需要更深入的分析和验证。
但是通过ANSYS强大的功能和易用性,工程师们可以更高效地解决接触分析问题,提高产品设计的质量和性能。
ANSYS收敛性问题-接触单元

ANSYS收敛性问题-接触单元
ANSYS在计算过程中偶尔存在收敛性问题,往往问题出现时,无法判断具体原因,另分析人员十分困惑和无奈。
这种收敛性问题在计算混凝土极限承载力或桩基承载力时出现的概率比较多。
笔者最近在求解桩土相互作用时,遇到了收敛性问题,下面仅讲述我调试过程中的一些思路,供大家参考。
桩土分析模型主要特点是含有很大的接触面积,需要考虑桩土摩擦力,同时土壤材料使用DP材料。
桩和土体使用接触单元处理彼此间力的相互作用。
在计算初期,计算需要很长时间的迭代无法收敛。
我想可能是来自于以下几方面原因:
(1)上层土体强度太低,变形程度太大,网格发生畸变;
(2)接触区域太长,属于那种细长比很大的情况,接触关系无法较好的模拟;
(3)网格不够细密,桩深度方向无法较好的模拟摩擦。
通过对以上几个原因进行反复测试,偶尔会出现收敛的情况,但方案变了还是会存在不收敛的情况。
最后,笔者采用变量的方式设置所有接触对的接触刚度和渗透容差,将接触刚度设置为0.5,渗透容差因子设置为2,结果模型在求解任何方案时均具有良好的收敛性。
这也表明,接触刚度和渗透容差是影响收敛性的关键问题。
ansys高级接触分析第6章-高级选项设置

Training Manual
小的强制性位移
May 16, 2005 Inventory #002256
6-14
Advanced Contact & Fasteners
接触属性高级选项设置
...处理刚体运动
• 位移控制
Training Manual
– Load Step 1 • 施加一个小的强制性位移.
接触属性高级选项设置
A. 初始穿透
Training Manual
• ANSYS中提供了几种模拟接触初始穿透的技术,它们需要初始几 何穿透值或/和指定的偏移值.
• 指定偏移值:
May 16, 2005 Inventory #002256
6-4
接触属性高级选项设置
…初始穿透
• 实常数 CNOF表示接触面偏 移.
May 16, 2005 Inventory #002256
6-25
接触属性高级选项设置
...处理刚体运动4
Training Manual
• 使用接触管理器时,点击Check Contact Status按钮会出现四个 选项,第三个选项Move contact nodes to target可执行 CNCHECK命令
接触属性高级选项设置
...处理刚体运动
Training Manual
• 尽管这些都是有效技巧,但较难使用
– “即将接触法” -由于分网时的取整处理,物体间可能存在小的间隙或 穿透,这可能导致不收敛.
– 动力学方法 -系统在分析结束后没有完全进入静态,仍存在动态效应
– 位移控制法 -在一个复杂加载的情况下,需要强加的位移不好确定.
Training Manual
非线性_接触分析ANSYS

接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和成立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然转变的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种大体类型:刚体-柔体的接触,和柔体-柔体的接触,在刚体-柔体的接触问题中,接触面的一个或多个被看成刚体,(与它接触的变形体相较,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体-柔体的接触,许多金属成形问题归为此类接触,另一类,柔体-柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点-点,点-面,和面-面,每种接触方式利用的接触单元适用于某类问题。
为了给接触问题建模,首先必需熟悉到模型中的哪些部份可能会彼此接触,若是彼此作用的其中之一是一点,模型的对应组元是一个结点。
若是彼此作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS 利用的接触单元和利用它们的进程,下面分类详述。
点-点接触单元点-点接触单元主要用于模拟点-点的接触行为,为了利用点-点的接触单元,你需要预先知道接触位置,这种接触问题只能适用于接触面之间有较小相对滑动的情况(即便在几何非线性情况下)若是两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)维持小量,那么可以用点-点的接触单元来求解面-面的接触问题,过盈装配问题是一个用点-点的接触单元来模拟面-面的接触问题的典型例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决定接触刚度
所有的接触问题都需要定义接触刚度,两个表面之间渗 量的大小取决了接触刚度,过
大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的
接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚
矩阵的病态问题而保证收敛性。
程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN
来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当
避免过多的迭代次数时,应该尽量使渗透到达极小值。
为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。
1、 开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的
渗透问题要比 过高的接触刚度导致的收敛性困难,要容易解决。
2、 对前几个子步进行计算
3、 检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的
(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取
得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,
而不是由于过大的渗透量,那么FKN的值可能被高估。
4、 按需要调查FKN或FTOLN的值,重新分析。
在有限元分析中,接触单元通常用来描述两物体相互接触或滑动的界面。近年来,ANSYS开
发了一系列的接触单元。刚开始有节点对节点单元CONTAC12和CONTAC52,接着有节点对地
单元CONTAC26,然后有节点对面单元CONTAC48和CONTAC49。最近几年,我们引入一类面对
面接触单元CONTA169和CONTA174,同时还有一种新的节点对节点单元CONTA178。
虽然接触单元的参数具有多样性,但我们在使用他们时可谨记重要的一点,他们具有一个共
同的特点,即除了CONTA178的KEYOPT(2)=0或1外,所有的接触单元都有接触刚度。在
现实中实际上相邻结构之间只是一种空隙,但在有限元分析中,这种空隙是一带有刚度的接
触单元,这是因为通过刚度矩阵来实现接触算法的。一些接触单元要求使用者输入刚度值,
同时另外的接触单元若没有输入则使用缺省值。分析工程师所面对的问题就是针对给定的条
件确定一个合理的刚度值。如果过高,问题将会不收敛,如果过低,可能得到错误的结果。
那么我们所面对的问题是怎样才能找到一个正确的刚度值?
我认为唯一的方法就是我们必须试用不同的值直到找到正确的值。也就是刚开始我们应该使
用一个较小的值,然后稳步的增加直到分析的结果不再有什么变化。那么对于我们这一特定
分析的问题,这一点就是我们所想要的合适值。
我们可举例说明,如图1所示,平行放置两个悬臂梁,并有少许的交迭,下面的左边固支,
上面的右边固支,当在上面梁的自由端施加一个向下位移时,梁变形弯曲并接触下面的梁,
然后一起向下运动。用SOLID45单元划分梁,用TARGE170和CONTA174面面接触单元来描述
相互作用。在此基础上,把CONTA174单元的刚度从非常低变到非常高,从而来观察它对结
果的影响和收敛的迭代次数。图2说明了下梁自由端的偏移随接触单元刚度的变化情况,当
刚度增加时,偏移量接近一个常数值(我们可以假定它是一个"正确"的结果。)图3说明求
解所需的迭代次数,当接触单元刚度增加时,求解所需的迭代次数也是增加的,并服从指数
关系。如果刚度过高,问题很有可能根本就不收敛。图4说明在上梁自由端接触单元的渗透
量,当刚度增加时,渗透量降低。
从这些图可知,当接触单元的刚度为10e6时,可获得合理精确的结果。任何大于该值的刚
度对下梁的偏移量没有什么影响,而求解所需的迭代数却显著的增加。对于这个题目,10e6
的刚度是很适合的。但是,如果改变边界条件、网格密度、两梁之间的相对位置、材料特性
或梁的几何形状,能获得满意结果的接触刚度值将是不同的。比如,如果网格密度增加,则
接触单元数将增加,每一个单元上的载荷将降低。如果接触单元数增加两倍,一个合适的接
触单元刚度值应为原来的一半。
由于每个题目都是不一样的,所以在求解之前并没有通用的方法来确定接触单元刚度的最佳
值。我们不得不试算一个我们认为合适的值然后查看计算结果。一个有经验的分析工程师可
能只查看一个计算结果来判定所取值的合适度,但对于大多数情况而言,最好用一个合理而
不过度精确的刚度值进行第一次求解,然后用10倍于该值的刚度进行第二次求解,如果两
者结果相差很小,而迭代数增加很多,那么我们则正好取得了曲线上的突变点,从而获得相
当好的结果。
接触单元刚度问题仅仅是一个例子,即对于分析工程师来说,总是置疑于分析结果的正确与
否是非常重要的,并要意识到数值仿真的局限性和潜在的假设及他们怎样影响所分析问题的
结果。
这是接触问题的计算方法。
接触问题的关键在于接触体间的相互关系(废话 ),此关系又可分为在接触前后的法
向关系与切向关系。
法向关系:
在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法
是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:
接触刚度*接触位移=法向接触力
对面面接触单元17*,接触刚度由实常数FKN来定义。 穿透值在程序中通过分离的接触体
上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可
以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能
为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变
总刚K的大小。这种罚函数法有以下几个问题必须解决:
1)接触刚度FKN应该取多大?
2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?
因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下
单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的
值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为
直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,
并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病
态问题。
穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值
大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以
先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加
FKN值进行一系列计算,最后得到一个满意的穿透值。
FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触
算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控
制。可以更快的实现一个需要的穿透极限。
2.拉格朗日乘子法与扩展拉格朗日乘子法
拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为
一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。
Kx=F+Fcontact
从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直
接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下
列注意事项:
1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前
法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。
2)由于增加了额外的自由度,刚度阵变大了。
3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到
接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制
这种chattering,是纯粹拉格朗日法所难以解决的。
因此,为控制chattering,ANSYS采用的是罚函数法与拉格朗日法混合的扩展拉格朗日乘子
法。在扩展拉格朗日法中,可以采用实常数TOLN来控制最大允许穿透值。还有最大允许拉
力FTOL。这两个参数只对扩展拉格朗日乘子法有效。
在扩展拉格朗日乘子法里,程序按照罚函数法开始,与纯粹拉格朗日法类似,用TOLN来控
制最大允许穿透值。如果迭代中发现穿透大于允许的TOLN值,(对178单元是TOLN,而对
面面接触单元171-174则是FTOLN)则将各个接触单元的接触刚度加上接触力乘以拉格朗日
乘子的数值。因此,这种扩展拉格朗日法是不停更新接触刚度的罚函数法,这种更新不断重
复,直到计算的穿透值小于允许值为止。
尽管与拉格朗日法相比,扩展拉格朗日法的穿透并不是零,与罚函数法相比,可能迭带次数
会更多。扩展拉格朗日法有下列优点:
1)较少病态,个接触单元的接触刚度取值可能更合理。
2)与罚函数法相比较少病态,与单纯的拉格朗日法相比,没有刚度阵零对角元。因此在选
择求解器上没有限制,PCG等迭代求解器都可以应用。
3)用户可以自由控制允许的穿透值TOLN。(如果输入了TOLN,而使用罚函数法,则程序忽
略它)