指数函数图像及其性质课件

合集下载

4.2.1指数函数及其性质(优质课件)

4.2.1指数函数及其性质(优质课件)

(x,y)和(x,-y)关 于x轴对称!
(1) y 2 x (2) y 2x (3) y 2 x
y y=2x
y y=2x
y y=2x
(0,1)
o
x
(0,1)
o
x
(0,1)
o
x
(1) y=f(x)与y=f(-x)的图象关于 y 轴 对称; (2) y=f(x)与y=-f(x)的图象关于 x 轴 对称; (3) y=f(x)与y=-f(-x)的图象关于 原 点 对称.
换元令 t=ax,利用二次函数和指数函数的单调性来研究函数 的单调性,构建方程获解. 解 令 t=ax (a>0 且 a≠1), 则原函数化为 y=(t+1)2-2 (t>0). ①当 0<a<1 时,x∈[-1,1],t=ax∈a,1a, 此时 f(t)在a,1a上为增函数.
所以 f(t)max=f1a=1a+12-2=14. 所以1a+12=16,所以 a=-15或 a=13. 又因为 a>0,所以 a=13. ②当 a>1 时,x∈[-1,1],t=ax∈1a,a, 此时 f(t)在1a,a上是增函数.
【3】方程 2x x2y 的解有___3__个.
o
x
【点评】当判断方程 f (x) = g (x)的实根个数时,
我们可转化为判断函数y = f (x) 与函数 y = g (x)的
图像的交点的个数.
【4】函数y=ax+2015+2015(a>0,且a≠1)的 图象恒过定点___________.
2022年11月16日星期三
课前自助餐: 1. 将下列各数值按从小到大的顺序排列
2: 求 下列函数的定义域
(1) y 22x1 ,

中职教育数学《指数函数及其图象、性质》课件

中职教育数学《指数函数及其图象、性质》课件

(25
)
(0.14
2
5
1
)4
22
1 22
0.11
1 14
10
0.1
3
3
(2)42 (22 )2 23 8
3
3
(4)164 (24 )4 23 8
主要错误:
(
3)0.0001
1 4
( 1 )4 10000 0.1
2
3. (1)a 9 9 a2
5
(2)a 3
1
3 a5
3
(3)a 2 a3
(4)
( 1 )3 4
<
( 1 )4 4
y ( 1 )x 在R上是减函数 3 4 4
2. 求函数 y ( 1 ) x 1 的定义域
2
解: 为使函数有意义,必须 (1)x 1 0 (1)x 1 (1)x (1)0
2
2
22
f ( x) ( 1 )x 在R上是减函数 x 0 ∴函数的定义域是(,0]
1 3
1
1
(2) 0.3 2 与0.3 3
解:y
0.3 x
在R上是减函数
1 2
1 3
1
1
32 33
1
1
0.32 0.33
例3.(补例)解不等式:
(1) 2 x 4 x1 解: 原不等式化为 2 x 22( x1)
y 2x 在R上是增函数 由2x 22( x1) x 2( x 1)
四、作业
1、教材 P 45习题4.2第1、2、3题 2、练习册P26~27 4.2全部
(3) 0 0.01 1 y (0.01)x 在R上是减函数
(4) 20 1 y 20x 在R上是增函数

指数函数的图像和性质-课件

指数函数的图像和性质-课件


0.80.2

(3)0.3 −0.3 ,, 0.2−0.3 ;
(4)1.70.3, 0.93.1 。
同底比较大小
不同底数幂比大小
,利用指数函数图像
与底的关系比较
利用函数图像
或中间变量进行
比较
不同底但同指数
底不同,指数也不同
小结: 比较两个幂的形式的数大小的方法:
(1)同底数指数幂比大小,构造指数函数,利用
2

指数函数的性质
通过研究对比不同底数的指数函数图像,
整理出了,指数函数与底数的关系以及
函数性质。
2
4
指数函数的图像
1
通过比较 = 2 , = 3 , = ( )
1
2
, = ( ) 的图像,我们归纳出了指数
3
函数 = 的一般像。

应用和检测
看指数函数图像比底数
比较两个幂的形式的数大小
1.75 , 41.75
(4) 3
1 −2 −3
(6) ( ) 3 , 2 5
3
当堂检测:
如图4.2-7.某城市人口呈指数增长.
(1)根据图象,估计该城市人口每翻一番所需的时间(倍增期);
(2)该城市人口从80万人开始,经过20年会增长到多少万人?
课堂小结
1
3
复习指数函数的概念
指数函数的定义
1
指数函数y = 2x ,y = ( )x 的图像与性


( >
1) 与 x轴
下面的指数
函数有无公
有无 公共点 ?
共点?
函数的 定义
讨论函数的
域是什么?
单调性?

中职数学基础模块上册《指数函数的图像与性质》课件

中职数学基础模块上册《指数函数的图像与性质》课件

渐近线
当x趋于无穷大或无穷小时 ,y值会趋于一个常数,这 个常数就是指数函数的渐 近线。
04
指数函数的性质
指数函数的单调性
指数函数在其定义域内是单调的 ,单调性取决于底数a的取值范
围。
当a>1时,函数在定义域内是增 函数;当0<a<1时导数 来判断,导数大于0时,函数单 调递增;导数小于0时,函数单
指数函数具有连续性、可导性、可积性等性质, 这些性质在数学分析和实际应用中都有重要的意 义。
练习题与答案解析
• 练习题一:判断下列哪些是指数函数,哪些不是,并说明 理由。
练习题与答案解析
y = 2^x y = x^2
y = (1/2)^x
练习题与答案解析
• y = log_2(x)
练习题与答案解析
1 2 3
指数函数的概念
指数函数是函数的一种形式,其一般形式为 y = a^x (a > 0, a ≠ 1),其中 x 是自变量,y 是因变 量。
指数函数的图像
指数函数的图像是单调的,当 a > 1 时,函数在 x > 0 时单调递增,当 0 < a < 1 时,函数在 x > 0 时单调递减。
指数函数的性质
中职数学基础模块上 册《指数函数的图像 与性质》ppt课件
目 录
• 引言 • 指数函数的概念与定义 • 指数函数的图像 • 指数函数的性质 • 指数函数的应用 • 总结与回顾
01
引言
课程背景
知识背景
介绍指数函数的概念、定义和基 础知识,为学习指数函数的图像 与性质提供必要的前提。
应用背景
阐述指数函数在实际生活和科学 领域中的应用,如增长率、复利 计算等,强调学习指数函数的重 要性。

指数函数及其性质PPT课件

指数函数及其性质PPT课件

05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图

指数函数图像和性质_课件

指数函数图像和性质_课件

x 0, 则a 1
(4)自左向右看,y=ax(a>1)的图 像逐渐上升;y=ax(0<a<1)的图像 (4) a>1,y=ax是增函数 当0<a<1,y=ax是减函数 逐渐下降
比较下列各题中两个值的大小: ①
1 .7
2.5

1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
(5)在R上是增函数
(5)在R上是减函数
图象特征
(1)图象都位于x轴上方 (2)图象都过(0,1 )点
函数性质
(1)x取任何实数都有ax>0 (2)a为任何正数,总有a0 =1
x (3)y=ax(a>1)的图像在第一 x 0 , 则 a 1 x 象限内的纵坐标都大于1,在 3当a 1时, x 0 , 则 0 a 1 第二象限的纵坐标都小于1; x x 0 , 则 0 a 1 x y=a (0<a<1)的图像正好相反 当0 a 1时, x
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
补充练习
1.下图是①y=ax②y=bx③y=cx④y=dx的图像,则 a,b,c,d与1的大小关系是 (B) A.a<b<1<c<d C.1<a<b<c<d


y③
B.b<a<1<d<c D.a<b<1<d<c
当a>1时,a的值越大,图像越靠近y轴,递增速度越快. 当0<a<1时,a的值越大,图像越靠近x轴,递减的速度越快.

人教版高中数学必修一指数函数的性质与图像-课件牛老师


指数函数的图像
y
1
O1
x
指数函数的图像
y
y 2x
1
O1
x
指数函数的性质
y
1 2
x
指数函数的性质
x
2
1
1 2
0
y
42 2 1
y
1 2
x
1 21 2
21 1 22 4
指数函数的性质
(0, )
指数函数的图像
y
1
O1
x
指数函数的图像
y
1
y
1 2
x
O1
x
(x0 , y0 )
y
风来,千树万树梨花开。真好看呀! ►冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘在这广漠的荒
原上,闪着寒冷的银光。
►走进颐和园,眼前是繁华的苏州街,现在依稀可以想象到当年的热闹场 面,苏州街围着一片湖,沿着河岸有许多小绿盘子里装着美丽的荷花。这 里是仿照江南水乡--苏州而建的买卖街。当年有古玩店、绸缎店、点心铺 等,店铺中的店员都是太监、宫女妆扮的,皇帝游览的时候才营业。我正 享受着皇帝的待遇,店里的小贩都在卖力的吆喝着。 ►走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠 叠地挤在水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶 上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢 晶的。 它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!
北京市中小学空中课堂
指数函数的性质与图像
高一年级 数学
主讲人 韩露 北京师范大学附属中学
情境与问题
情境与问题
x
5730 5730 2 57303

高一数学必修一《指数函数及其性质》PPT课件


进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是

人教B版高一数学必修第一册指数函数的性质与图像-课件

得到的细胞个数 y 满足 y 2x .
指数函数的性质
y 2x
指数函数的性质
y 2x
x
2
1
1 2
0
1 21
2
y
1 4
12 22
1
22
4
指数函数的性质
(0, )
指数函数的图像
y
1
O1
x
指数函数的图像
y
y 2x
1
O1
x
指数函数的性质
y
1 2
x
指数函数的性质
y
1 2
x
x
2
1
1 2
1
O1
y
1 2
x
x
y
1 2
x
指数函数的性质与图像 y
y 2x y 3x y 5x
y
1 3
x
y
1 5xy1 5xy 5x
y
1 3
x
y 3x
y
1 2
x
1
y 2x
O1
x
函数
图像
性质
定义域 值域 奇偶性 单调性 定点
y ax (a 1) y ax (0 a 1)
0
1 21
2
y
4
2
2
1
21 22
1 4
指数函数的性质
(0, )
指数函数的图像
y
1
O1
x
指数函数的图像
y
1
y
1 2
x
O1
x
(x0 , y0 )
y
1 2
x
(x0 , y0 )
y 2x
(x0 , y0 )

课件6:4.1.2 指数函数的性质与图像

∴ =在[-1,1]上单调递增,

1
0< ≤≤.

由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],

2 −2−3

1
2
∴ y=

1 −4
=16.又∵
2
2 −2−3

1
2
2 −2−3

1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2

(2)


2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档