高中数学选修2-1主要内容
新北师大选修2-1高中数学 直线与平面的夹角

§5夹角的计算第二课时 直线与平面的夹角[对应学生用书P37]在上节研究的山体滑坡问题中,A ,B 两点到直线l (水平地面与山坡的交线)的距离分别为AC 和BD ,直线BD 与地面ACD 的夹角为φ.问题1:φ与〈CA ,DB 〉有什么关系? 提示:φ=π-〈CA ,DB 〉.问题2:φ与〈BD ,n 〉有何关系?(n 为地面法向量)提示:φ=π2-〈BD ,n 〉或φ=〈BD ,n 〉-π2,即sin φ=|cos 〈BD ,n 〉|.直线与平面的夹角(1)平面外一条直线与它在该平面内的投影的夹角叫作该直线与此平面的夹角. (2)如果一条直线与一个平面垂直,这条直线与平面的夹角为π2.(3)如果一条直线与一个平面平行或在平面内,这条直线与平面的夹角为0. (4)设直线l 的方向向量为a ,平面α的法向量为n ,l 与α的夹角为θ,则, 当〈a ,n 〉≤π2时,θ=π2-〈a ,n 〉;当〈a ,n 〉>π2时,θ=〈a ,n 〉-π2.即sin 〈a ,n 〉=|cos 〈a ,n 〉|.(1)直线与平面夹角范围是⎣⎡⎦⎤0,π2; (2)求直线与平面夹角θ时,可用定义求解;也可用直线的方向向量s 、平面的法向量n 的夹角进行求解,但要注意sin θ=|cos 〈s ,n 〉|.[对应学生用书P37][例1] 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 的夹角的正弦值. [思路点拔](1)先证明直线与平面垂直,再利用线面垂直的性质求证线线垂直;(2)建立空间直角坐标系,写出点与向量坐标,将线面角的大小用方向向量和法向量表示,但要注意线面角的范围.[精解详析] (1)如图,取AB 的中点O ,连接OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C 平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB ,又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0),则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0,即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1), 故n ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 的夹角的正弦值为105. [一点通]设直线l 的方向向量为a ,平面α的法向量为u ,直线l 与平面α所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|=|a ·u ||a ||u |或cos θ=sin φ,其中θ与φ满足:①当φ是锐角时,θ=π2-φ;②当φ为钝角时,则θ=φ-π2.1.正方体ABCD -A 1B 1C 1D 1中,AC 81与平面ABCD 夹角的余弦值为( ) A.33 B.36 C.62D.63解析:如图所示建系,设正方体棱长为1,则A (1,0,0),C 1(0,1,1),C (0,1,0),而CC 1⊥面ABCD ,∴AC 1在底面ABCD 的射影为AC . 又1AC =(-1,1,1),AC =(-1,1,0), ∴AC 1与平面ABCD 夹角的余弦值cos θ=|cos 〈1AC ,AC 〉|=63. 答案:D2.如图,正三棱柱ABC -A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 夹角的正弦值为________.解析:取B 1C 1中点O ,建立如图所示的空间直角坐标系. 设AB =BB 1=2,则A 1(-3,0,0),C 1(0,1,0),A (-3,0,2),O (0,0,0),1A O =(3,0,0),1A O 为面BB 1C 1C 的法向量,1AC =(3,1,-2),∴sin θ=|cos 〈1A O ,1AC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1A O ·1AC |1A O ||1AC | =33·3+1+4=64.答案:643.如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥BD .(1)求证:PB =PD ;(2)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求直线PB 与平面PCD 所成角的大小.解:(1)证明:如图所示,连接AC ,BD 交于点O ,连接PO ,∵底面ABCD 是正方形, ∴AC ⊥BD ,且O 为BD 的中点. 又PA ⊥BD ,PA ∩AC =A , ∴BD ⊥平面PAC ,由于PO ⊂平面PAC ,故BD ⊥PO . 又BO =DO ,故PB =PD .(2)如图所示,连接AC ,BD , 设PD 的中点为Q ,连接AQ ,EQ ,则EQ 綊12CD ,∴四边形AFEQ 为平行四边形,EF ∥AQ ,∵EF ⊥平面PCD , ∴AQ ⊥平面PCD ,∴AQ ⊥PD ,Q 为PD 的中点,∴AP =AD = 2. 由AQ ⊥平面PCD ,可得AQ ⊥CD . 又DA ⊥CD ,QA ∩AD =A , ∴CD ⊥平面PAD ,∴CD ⊥PA . 又BD ⊥PA ,∴PA ⊥平面ABCD .∴AB ,AP ,AD 两两垂直,以A 为坐标原点,分别以向量AB ―→,AD ―→,AP ―→的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),Q ⎝⎛⎭⎫0,22,22,D (0,2,0),P (0,0,2),∴AQ ―→=⎝⎛⎭⎫0,22,22,PB ―→=(2,0,-2).易知AQ ―→为平面PCD 的一个法向量, 设直线PB 与平面PCD 所成的角为θ, 则sin θ=cos 〈PB ―→,AQ ―→〉=|PB ―→·AQ ―→||PB ―→|·|AQ ―→|=12,∴直线PB 与平面PCD 所成的角为π6.3.已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 的夹角.解:设PA =1,以A 为原点,射线AB ,AC ,AP 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系如图.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝⎛⎭⎫1,0,12,N ⎝⎛⎭⎫12,0,0, S ⎝⎛⎭⎫1,12,0. (1)证明:CM =⎝⎛⎭⎫1,-1,12,SN =⎝⎛⎭⎫-12,-12,0,因为CM ·SN =-12+12+0=0,所以CM ⊥SN . (2) NC =⎝⎛⎭⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量,则a ·CM =0,a ·NC =0,即⎩⎨⎧x -y +12z =0,-12x +y =0.令x =2,得a =(2,1,-2).因为|cos 〈a ,SN 〉|=⎪⎪⎪⎪⎪⎪-1-123×22=22,所以SN 与平面CMN 的夹角为45°.[例2] 如图,在三棱锥A -BCD 中,侧面ABD ,ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1.另一个侧面ABC 是等边三角形.点A 在底面BCD 上的射影为H .(1)以D 点为原点建立空间直角坐标系,并求A ,B ,C 的坐标; (2)求平面BAC 与平面DAC 的夹角的余弦值.(3)在线段AC 上是否存在一点E ,使ED 与面BCD 的夹角为30°?若存在,确定点E 的位置;若不存在,说明理由.[思路点拨] (1)建立坐标系,证明AD ·BC =0. (2)求两平面法向量的夹角.(3)先假设存在点E 满足条件,再建立关于点E 的坐标的方程,判断方程是否有符合题意的解,即可得出结论.[精解详析] (1)由题意AB =AC =2,∴BC = 2.则△BDC 为等腰直角三角形. 连接BH ,CH ,∴DB ⊥BH ,CH ⊥BH .∴四边形BHCD 为正方形,以DC 为y 轴,DB 为x 轴建立空间直角坐标系如图所示,则A (1,1,1),B (1,0,0),C (0,1,0).(2)设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC 知:n 1·BC =-x +y =0.同理,由n 1⊥CA 知:n 1·CA =x +z =0. 可取n 1=(1,1,-1).同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1+0+13·2=63, 即所求平面BAC 与平面DAC 的夹角的余弦值为63. (3)假设存在E 满足条件,设CE =x CA =(x,0,x )(0≤x ≤1),则DE =DC +CE =(0,1,0)+(x,0,x )=(x,1,x ),平面BCD 的一个法向量为n =(0,0,1),∵ED 与平面BCD 的夹角为30°, 由图可知DE 与n 的夹角为60°,所以cos 〈DE ,n 〉=DE ·n | DE ||n |=x 1+2x 2=cos60°=12.则2x =1+2x 2,解得x =22,即E ⎝⎛⎭⎫22,1,22, |AC |=2,|CE |=1.故线段AC 上存在点E (与C 的距离为1),使ED 与平面BCD 的夹角为30°. [一点通]解决存在性探究问题,一般先假设存在,然后进行推理计算,推出的结果若符合题意,则说明假设正确.若出现矛盾或得出相反的结论,则否定假设,说明不存在.4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD 与平面PAC 的夹角为90°?若存在,确定P 点位置;若不存在,说明理由.解:如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎫1,1,12, 假设存在P (0,0,x )(0≤x ≤1)满足条件,经检验,当x =0时不满足要求, 当0<x ≤1时,则PA =(1,0,-x ),AC =(-1,1,0),MD =(-1,-1,-12).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎨⎧PA ·n =0, AC ·n =0,得⎩⎪⎨⎪⎧x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =(1,1,1x ). 由题意MD ∥n ,由MD =⎝⎛⎭⎫-1,-1,-12=-⎝⎛⎭⎫1,1,12=-n , 得x =2.又0<x ≤1,故不满足要求,综上所述,棱DD 1上不存在点P ,使MD 与平面PAC 的夹角为90°.5.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求平面A 1BC 1与平面B 1BC 1的夹角的余弦值; (3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值. 解:(1)证明:因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面B 1BC 1的法向量为m =(3,4,0). 所以cos 〈 n ,m 〉=n ·m |n ||m |=1625.所以平面A 1BC 1与平面B 1BC 1的夹角的余弦值为1625.(3)证明:设D (x 1,y 1,z 1)是线段BC 1上一点,且BD =λ1BC . 所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ.所以AD=(4λ,3-3λ,4λ).由AD·1A B=0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC1上存在点D,使得AD⊥A1B.此时,BDBC1=λ=9 25.计算直线l与平面α的夹角为θ.(1)利用法向量计算θ的步骤如下:(2)利用定义计算θ的步骤如下:[对应课时跟踪训练(十二)]1.已知直线l的一个方向向量为a=(1,1,0),平面α的一个法向量为μ=(1,2,-2),则直线l与平面α夹角的余弦值为()A.22B.-22C.±22 D.12解析:cos〈a,μ〉=a·μ|a||μ|=32·3=22,则直线l与平面α的夹角θ的正弦值sin θ=|cos〈a ,μ〉|=22,cos θ=22. 答案:A2.已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 是边长为4的正方形,长方体的高为AA 1=3,则BC 1与对角面BB 1D 1D 夹角的正弦值等于( )A.45 B.35 C.225D.325解析:建立如图所示的空间直角坐标系,∵底面是边长为4的正方形,AA 1=3,∴A 1(4,0,0),B (4,4,3),C 1(0,4,0).而面BB 1D 1D 的法向量为AC =11A C =(-4,4,0),∴BC 1与对角面BB 1D 1D 所成角的正弦值即为|cos 〈1BC ,11A C 〉|=|(-4,0,-3)·(-4,4,0)|42+32×42+42=165×42=225.答案:C3.如图所示,点P 是△ABC 所在平面外的一点,若PA ,PB ,PC 与平面α的夹角均相等,则点P 在平面α上的投影P ′是△ABC 的( )A .内心B .外心C .重心D .垂心解析:由于PA ,PB ,PC 与平面α的夹角均相等,所以这三条由点P出发的平面ABC 的斜线段相等,故它们在平面ABC 内的投影P ′A ,P ′B ,P ′C 也都相等,故点P ′是△ABC 的外心.答案:B4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33 C.23 D.13解析:建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2),故DB ―→=(1,1,0),DC 1―→=(0,1,2),DC ―→=(0,1,0).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DC 1―→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC ―→〉|=|n ·DC ―→||n |·|DC ―→|=23,故选A.答案:A5.四棱锥P -ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DA =2,F ,E 分别为AD ,PC 的中点.(1)求证:DE ∥平面PFB ; (2)求点E 到平面PFB 的距离.解:(1)证明:以D 为原点, 建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1).FP ―→=(-1,0,2),FB ―→=(1,2,0),DE ―→=(0,1,1),∴DE ―→=12FP ―→+12FB ―→,∴DE ―→∥平面PFB . 又∵DE ⊄平面PFB , ∴DE ∥平面PFB . (2)∵DE ∥平面PFB ,∴点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·FB ―→=0,n ·FP ―→=0⇒⎩⎪⎨⎪⎧x +2y =0,-x +2z =0,令x =2,得y =-1,z =1.∴n =(2,-1,1),又∵FD ―→=(-1,0,0), ∴点D 到平面PFB 的距离 d =|FD ―→·n ||n |=26=63.∴点E 到平面PFB 的距离为63. 6.如图所示,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 夹角的正弦值为________.解析:不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2,则CD =(32,-12,2),1CB =(3,1,2), 设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD =0,n ·1CB =0,解得n =(-3,1,1). 又∵DA =⎝⎛⎭⎫32,-12,-2, ∴sin θ=|cos 〈DA ,n 〉|=45.答案:457.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点. 求直线AD 和平面ABC 1夹角的正弦值.解:如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D⎝⎛⎭⎫32,-12,2.易知AB =(3,1,0),1AC =(0,2,2),AD =⎝⎛⎭⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AB =3x +y =0,n ·1AC =2y +2z =0,解得x =-33y ,z =-2y . 故可取n =(1,-3,6).所以cos 〈n ,AD 〉=n ·AD |n ||AD |=2310×3=105.即直线AD 和平面ABC 1夹角的正弦值为105. 8.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 夹角的正弦值为67,求k 的值.解:(1)证明:取CD 的中点E ,连接BE ,如图.∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2, ∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD 平面ABCD , ∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), ∴AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC ·n =0, 1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 的夹角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.。
高中数学选修2-1抛物线知识点与典例精析

高中数学选修2-1抛物线知识点与典例精析知识点一抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________.知识点二抛物线的标准方程与几何性质O(0,0)规律与方法:解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为()A.172B.3C.5D.92例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于()A.2B.4C.23D.43例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________.例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________.例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________.例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且|AB|=52p,求AB所在直线的方程.例7 过抛物线y 2=2x 的顶点作互相垂直的两条弦OA ,OB . (1)求AB 的中点的轨迹方程; (2)求证:直线AB 过定点.一、选择题1.抛物线y =2x 2的焦点坐标是( ) A .(12,0) B .(14,0) C .(0,18)D .(0,14)2.已知抛物线y =4x 2上一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716B .1516C .78D .03.已知抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A .-18B .18C .8D .-84.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为( ) A .5B .10C .20D.155.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A .18B .24C .36D .486.若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0)B .(12,1)C .(1,2)D .(2,2)7.已知抛物线C 的顶点在坐标原点,准线方程为x =-1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y =2x -3 B .y =-2x +5 C .y =-x +3D .y =x -18.设抛物线C :y 2=16x ,斜率为m 的直线l 与C 交于A ,B 两点,且OA ⊥OB ,O 为坐标原点,则直线l 恒过定点( ) A .(8,0) B .(4,0) C .(16,0) D .(6,0)二、填空题9.若点P 到点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是__________.10.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 11.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 12.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________. 三、解答题13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.答案精析知识条目排查知识点一相等焦点准线题型分类示例例1A如图,由抛物线定义知|P A|+|PQ|=|P A|+|PF|,则所求距离之和的最小值转化为求|P A|+|PF|的最小值,则当A、P、F三点共线时,|P A|+|PF|取得最小值.又A(0,2),F(12,0),∴(|P A|+|PF|)min=|AF|=(0-12)2+(2-0)2=172.]例2B由抛物线y2=2px(p>0)的焦点为F(p2,0).F到直线y=3x的距离为3,可得|3p2|(3)2+(-1)2=3,解得p=4,故选B.]例32x=-1例4y2=2x解析由题意可知抛物线的焦点在x轴上,设方程为y2=2px(p>0)或y2=-2px(p>0).若方程为y 2=2px (p >0),则8=2p ×4,得p =1,故方程为y 2=2x ;若方程为y 2=-2px (p >0),则8=-2p ×4,得p =-1,不符合条件,故不成立. 所以抛物线的标准方程为y 2=2x . 例5 x 2=-12y解析 设动圆圆心M (x ,y ),半径为r ,根据题意可得⎩⎨⎧y <2,r =|y -2|,x 2+(y +3)2=1+r ,解得x 2=-12y .例6 解 方法一 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox , 则|AB |=2p <52p ,∴直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1k 2)·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2). 方法二如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1),B (x 2,y 2), 设A ,B 到准线的距离分别为d A ,d B ,由抛物线的定义知, |AF |=d A =x 1+p 2,|BF |=d B =x 2+p2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,|AB |=2p <52p , ∴直线AB 与Ox 不垂直. 设直线AB 的方程为y =k (x -p2). 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,∴直线AB 的方程为y =2(x -p 2)或y =-2(x -p2).例7 (1)解 设直线OA 的方程为y =kx ,则直线OB 的方程为y =-1k x . 联立直线OA 与抛物线的方程知,点A 的坐标为(2k 2,2k ), 联立直线OB 与抛物线的方程知,点B 的坐标为(2k 2,-2k ),则AB 的中点M 的坐标为(1k 2+k 2,1k -k ),故点M 的轨迹方程为x =y 2+2.(2)证明 由(1)可知k AB =-k -1kk 2-1k 2=-1k -1k=-k k 2-1,则直线AB 的方程为y -(1k -k ) =-k k 2-1x -(1k 2+k 2)],整理,得y =-kk 2-1(x -2).所以直线经过定点(2,0). 考点专项训练1.C 抛物线y =2x 2的标准形式为x 2=12y , ∴p =14,则p 2=18, ∴焦点坐标是(0,18).]2.B 抛物线y =4x 2的标准形式为x 2=14y , ∴其准线方程为y =-116, 设点M 的纵坐标是y 0,由抛物线的定义,得y 0+116=1, ∴y 0=1516.] 3.A4.B 设P (x 0,y 0),依题意可知抛物线准线方程为x =-1, ∴x 0=5-1=4,∴|y 0|=4×4=4, ∴△MPF 的面积为12×5×4=10.]5.C 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F (p2,0), ∵当x =p2时,|y |=p ,∴|AB |=2p =12,∴p =6, 又点P 到直线AB 的距离为p 2+p2=p =6, 故S △ABP =12|AB |·p =12×12×6=36.]6.D 由题意得F (12,0),准线方程为x =-12. 设点M 在准线x =-12上的射影为P , 则M 到准线的距离为d =|PM |,则由抛物线的定义得|MA |+|MF |=|MA |+|PM |,故当P 、A 、M 三点共线时,|MF |+|MA |取得最小值为|AP |=3-(-12)=72. 把y =2代入抛物线y 2=2x ,得x =2,故点M 的坐标是(2,2).] 7.A ∵抛物线C 的顶点在坐标原点,准线方程为x =-1, ∴-p2=-1,∴p =2, ∴抛物线的方程为y 2=4x . 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线AB 的斜率k =y 1-y 2x 1-x 2=4y 1+y 2=42=2,从而直线AB 的方程为y -1=2(x -2),即y =2x -3.]8.C 设直线l :x =my +b (b ≠0),代入抛物线y 2=16x ,可得y 2-16my -16b =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=16m ,y 1y 2=-16b , ∴x 1x 2=(my 1+b )(my 2+b )=b 2, ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0, 可得b 2-16b =0,∵b ≠0,∴b =16,∴直线l :x =my +16, ∴直线l 过定点(16,0).] 9.y 2=16x解析 点P 到点F 的距离与到x =-4的距离相等,由抛物线定义,知点P 轨迹为抛物线,设y 2=2px ,由p2=4,知p =8.10.1或0解析 由⎩⎨⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.因此若直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1. 11.(18,±24)解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18, ∴此点坐标为(18,±24). 12.8 解析如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8.13.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)因为y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。
高中数学新湘教版选修2-1 空间中向量的概念和运算

3.1空间中向量的概念和运算第一课时 空间中向量的概念和线性运算[读教材·填要点]1.向量的概念既有大小又有方向的量称为向量. 2.用有向线段表示向量要表示向量a ,可以从任意一点A 出发作有向量线段AB ,使AB 的方向与a 相同,长度|AB |等于a 的模,则有向线段AB 表示向量a ,记为a =AB ―→.3.空间向量加法的运算律 (1)a +b =b +a .(加法交换律)(2)(a +b )+c =a +(b +c ).(加法结合律) 4.向量与实数相乘(1)向量与实数相乘:任何一个向量a 都可以看作某个平面上的向量,它与实数λ相乘可以按照平面向量与实数相乘的法则进行.(2)①λ(a +b )=λa +λb .(对向量加法的分配律) ②(λ1+λ2)a =λ1a +λ2a .(对实数加法的分配律)[小问题·大思维]1.空间向量的定义及表示方法,同平面向量的定义及表示方法有区别吗? 提示:空间向量与平面向量没有本质区别,定义及表示方法都一样. 2.在空间中,所有单位向量平移到同一起点后,终点轨迹是什么图形?提示:因为单位向量的模均等于1,那么当所有向量移到同一起点后,终点轨迹是一个球面.3.空间两向量的加减法与平面内两向量的加减法完全相同吗?提示:因为空间中任意两个向量均可平移到同一平面内,所以空间向量与平面向量均可用三角形或平行四边形法则,是相同的.4.两个向量a ,b 共线是两个向量共面的什么条件?提示:a ,b 共线时, 这两个向量一定共面;若a 与b 共面,a 与b 所在的直线可能相交,所以a 与b 共线是a 与b 共面的充分不必要条件.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O .Q 是CD 的中点,求下列各式中x ,y 的值:(1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [自主解答]如图,(1)∵O Q ―→=P Q ―→-PO ―→ =P Q ―→-12(PA ―→+PC ―→)=P Q ―→-12PA ―→-12PC ―→,∴x =y =-12.(2)∵PA ―→+PC ―→=2PO ―→,∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→.从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→. ∴x =2,y =-2.本例中,若P Q ―→=x BA ―→+y BC ―→+z BP ―→,则x ,y ,z 为何值?解:∵P Q ―→=PB ―→+BC ―→+C Q ―→=-BP ―→+BC ―→+12CD ―→=-BP ―→+BC ―→+12BA ―→=12BA ―→+BC ―→-BP ―→,∴x =12,y =1,z =-1.利用多边形法则是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的,但无论哪一种途径,结果应是唯一的.应用向量的加减法法则和数乘运算表示向量是向量在几何中应用的前提,一定要熟练掌握.1.如图所示,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点,化简下列各式,并在图中标出化简得到的向量:(1) CB ―→+BA 1―→; (2) AC ―→+CB ―→+12AA 1―→;(3)AA 1―→-AC ―→-CB ―→. 解:(1)CB ―→+BA 1―→=CA 1―→.(2)因为M 是BB 1的中点, 所以BM ―→=12BB 1―→.又AA 1―→=BB 1―→,所以AC ―→+CB ―→+12AA 1―→=AB ―→+BM ―→=AM ―→.(3)AA 1―→-AC ―→-CB ―→=CA 1―→-CB ―→=BA 1―→. 向量CA 1―→,AM ―→,BA 1―→如图所示.空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别在边CB ,CD 上,且CF ―→=23CB ―→, CG ―→=23CD ―→.判断EH ―→与FG ―→是否共线?若共线,并判断四边形EFGH 的形状.[自主解答] 根据题意,∵EH ―→=AH ―→-AE ―→, BD ―→=AD ―→-AB ―→, 又∵AH ―→=12AD ―→,∴AE ―→=12AB ―→.∴EH ―→=12BD ―→.①∵FG ―→=CG ―→-CF ―→,BD ―→=CD ―→-CB ―→, 又∵CG ―→=23CD ―→,CF ―→=23CB ―→,∴FG ―→=23(CD ―→-CB ―→)=23BD ―→.②由①②得,EH ―→=34FG ―→.∴EH ―→与FG ―→共线.∴EH ∥FG ―→,且|EH ―→|≠|FG ―→|. 又∵点F 不在直线EH 上, ∴EH ∥FG 且|EH |≠|FG |. ∴四边形EFGH 为梯形.判断空间图形中两个向量共线的步骤为: (1)作出空间图形;(2)结合空间图形,充分利用空间向量运算法则,用空间中的向量表示a 与b ; (3)化简得出a =xb ,从而得出a ∥b ,即a 与b 共线.本例中,如果F ,G 分别是边CB ,CD 的中点,你能判断出EFGH 是什么四边形吗? 解:若F ,G 分别是边BC ,CD 的中点, ∵EH ―→=AH ―→-AE ―→,BD ―→=AD ―→-AB ―→, AH ―→=12AD ―→,AE ―→=12AB ―→,∴EH ―→=12BD ―→.①∵FG ―→=CG ―→-CF ―→,BD ―→=CD ―→-CB ―→, 又∵CG ―→=12CD ―→,CF ―→=12CB ―→,∴FG ―→=12(CD ―→-CB ―→)=12BD ―→.②由①②,得EH ―→=FG ―→, ∴EH ―→∥FG ―→且|EH ―→|=|FG ―→|. 又∵点F 不在直线EH 上, ∴EH ∥FG 且|EH |=|FG |. ∴四边形EFGH 是平行四边形.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且 A 1E ―→=2ED 1―→,F 在对角线A 1C 上,且A 1F ―→=23FC ―→.求证:E ,F ,B 三点共线.证明:设AB ―→=a ,AD ―→=b ,AA 1―→=c . ∵A 1E ―→=2ED 1―→,A 1F ―→=23FC ―→,∴A 1E ―→=23A 1D 1―→,A 1F ―→=25A 1C ―→.∴A 1E ―→=23AD ―→=23b ,A 1F ―→=25(AC ―→-AA 1―→)=25(AB ―→+AD ―→-AA 1―→) =25a +25b -25c . ∴EF ―→=A 1F ―→-A 1E ―→ =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB ―→=EA 1―→+A 1A ―→+AB ―→=-23b -c +a=a -23b -c ,∴EF ―→=25EB ―→.所以E ,F ,B 三点共线.已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM ―→=13OA ―→+13OB ―→+13OC ―→.(1)判断MA ―→, MB ―→, MC ―→三个向量是否共面; (2)判断M 是否在平面ABC 内.[自主解答] (1)∵OA ―→+OB ―→+OC ―→=3OM ―→,∴OA ―→-OM ―→=(OM ―→-OB ―→)+(OM ―→-OC ―→)=BM ―→+CM ―→. ∴MA ―→=BM ―→+CM ―→=-MB ―→-MC ―→. ∴向量MA ―→,MB ―→,MC ―→共面.(2)由(1)向量MA ―→,MB ―→,MC ―→共面,而它们有共同的起点M ,且A ,B ,C 三点不共线, ∴M ,A ,B ,C 共面,即M 在平面ABC 内.利用向量法解决向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.向量共面的充要条件的实质是:共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值.3.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH . 证明:如图,连接EG ,BG .(1)因为EG ―→=EB ―→+BG ―→=EB ―→+12(BC ―→+BD ―→)=EB ―→+BF ―→+EH ―→=EF ―→+EH ―→,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH ―→=AH ―→-AE ―→=12AD ―→-12AB ―→=12BD ―→,所以EH ∥BD .又EH⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路如图,已知斜三棱柱ABC -A ′B ′C ′中,点M ,N 分别在面对角线AC ′,棱BC 上,且AM =kAC ′,BN =kBC (0<k ≤1).求证:MN ∥平面ABB ′A ′.[巧思] 要证明MN ∥平面ABB ′A ′,只要证明向量MN ―→可以用平面ABB ′A ′内的两个不共线的向量线性表示即可,但要注意指明MN 不在平面ABB ′A ′内.[妙解] 因为M 在AC ′上,且AM =kAC ′, 所以AM ―→=kAC ′―→=k AC ―→+kAA ′―→,又AN ―→=AB ―→+BN ―→=AB ―→+k BC ―→=AB ―→+k (AC ―→-AB ―→)=(1-k )AB ―→+k AC ―→, 所以MN ―→=AN ―→-AM ―→=(1-k )AB ―→+k AC ―→-k AC ―→-kAA ′―→=(1-k )AB ―→-kAA ′―→. 因为AB ―→与AA ′―→不共线,由共面向量定理,可知MN ―→,AB ―→,AA ′―→共面. 因为0<k ≤1,所以MN ⊄平面ABB ′A ′, 所以MN ∥平面ABB ′A ′.1.设有四边形ABCD ,O 为空间任意一点,且AO ―→+OB ―→=DO ―→+OC ―→,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形解析:∵AO ―→+OB ―→=DO ―→+OC ―→, ∴AB ―→=DC ―→.∴AB ―→∥DC ―→且|AB ―→|=|DC ―→|. ∴四边形ABCD 为平行四边形. 答案:A2.已知向量AB ―→,AC ―→,BC ―→满足|AB ―→|=|AC ―→|+|BC ―→|,则( ) A .AB ―→=AC ―→+BC ―→ B .AB ―→=-AC ―→-BC ―→ C .AC ―→与BC ―→同向D .AC ―→与CB ―→同向 解析:由条件可知,C 在线段AB 上,故D 正确. 答案:D3.在正方体ABCD -A 1B 1C 1D 1中,下列各式: ①(AB ―→+BC ―→)+CC 1―→;②(AA 1―→+A 1D 1―→)+D 1C 1―→; ③(AB ―→+BB 1―→)+B 1C 1―→;④(AA 1―→+A 1B 1―→)+B 1C 1―→中,运算结果为向量AC 1―→的共有( ) A .1个 B .2个 C .3个D .4个解析:①(AB ―→+BC ―→)+CC 1―→=AC ―→+CC 1―→=AC 1―→; ②(AA 1―→+A 1D 1―→)+D 1C 1―→=AD 1―→+D 1C 1―→=AC 1―→; ③(AB ―→+BB 1―→)+B 1C 1―→=AB 1―→+B 1C 1―→=AC 1―→; ④(AA 1―→+A 1B 1―→)+B 1C 1―→=AB 1―→+B 1C 1―→=AC 1―→. 答案:D4.对于空间中任意四点A ,B ,C ,D 都有DA ―→+CD ―→-CB ―→等于________. 解析:由向量加(减)法的三角形法则可知DA ―→+CD ―→-CB ―→=DA ―→+BD ―→=BA ―→. 答案:BA ―→5.已知正方体ABCD -A ′B ′C ′D ′,则下列三个式子中: ①AB ―→-CB ―→=AC ―→; ②AA ′―→=CC ′―→;③AB ―→+BB ′―→+BC ―→+C ′C ―→=AC ′―→. 其中正确的有________.解析:①AB ―→-CB ―→=AB ―→+BC ―→=AC ―→,正确;②显然正确;③AB ―→+BB ′―→+BC ―→+C ′C ―→=(AB ―→+BC ―→)+(BB ′―→+C ′C ―→)=AC ―→+0≠AC ′―→,错误.答案:①②6.如图,在直四棱柱ABCD -A1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,CD =2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.证明:直线EE 1∥平面FCC 1.证明:由题意知AB ―→=2DC ―→,∵F 是AB 的中点, ∴AF ―→=12AB ―→=DC ―→,∴四边形AFCD 是平行四边形,∴AD ―→=FC ―→.∵E ,E 1分别是AD ,AA 1的中点,∴EE 1―→=AE 1―→-AE ―→=12AA 1―→-12AD ―→=12CC 1―→-12FC ―→,又CC 1―→与FC ―→不共线,根据共面向量定理可知EE 1―→,CC 1―→,FC ―→共面. ∵EE 1不在平面FCC 1内, ∴直线EE 1∥平面FCC 1.一、选择题1.已知空间四边形ABCD 中,G 为CD 的中点,则AB ―→+12(BD ―→+BC ―→)等于( )A . AG ―→B .CG ―→C .BC ―→D.12BC ―→ 解析:AB ―→+12(BD ―→+BC ―→)=AB ―→+12×(2BG ―→)=AB ―→+BG ―→=AG ―→.答案:A2.如图所示空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG ―→-AB ―→+AD ―→等于( )A.32 DB ―→ B .3MG ―→ C .3GM ―→D .2MG ―→解析:MG ―→-AB ―→+AD ―→=MG ―→-(AB ―→-AD ―→) =MG ―→-DB ―→=MG ―→+BD ―→ =MG ―→+2MG ―→=3MG ―→. 答案:B3.给出下列命题:①若A ,B ,C ,D 是空间任意四点,则有AB ―→+BC ―→+CD ―→+DA ―→=0; ②|a |-|b |=|a +b |是a ,b 共线的充要条件; ③若AB ―→,CD ―→共线,则AB ∥CD ;④对空间任意一点O 与不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(其中x ,y ,z ∈R),则P ,A ,B ,C 四点共面.其中不正确命题的个数是( ) A .1 B .2 C .3D .4解析:显然①正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a |-|b ||,故②错误;若AB ―→,CD ―→共线,则直线AB ,CD 可能重合,故③错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故④错误.故选C.答案:C4.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ2+μ2≠0),则( ) A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析:当λ=0,μ≠0时,a =μe 2,则a ∥e 2; 当λ≠0,μ=0时,a =λe 1,则a ∥e 1; 当λ≠0,μ≠0时,a 与e 1,e 2共面. 答案:D 二、填空题5.化简:AB ―→-AC ―→+BC ―→-BD ―→-DA ―→=________. 解析:原式=(AB ―→-AC ―→)+(BC ―→-BD ―→)-DA ―→=CB ―→+DC ―→-DA ―→=DB ―→-DA ―→=AB ―→. 答案:AB ―→6.设e 1,e 2是空间两个不共线的向量,已知AB ―→=e 1+ke 2,BC ―→=5e 1+4e 2,DC ―→=-e 1-2e 2,且A ,B ,D 三点共线,则实数k 的值是________.解析:∵BC ―→=5e 1+4e 2,DC ―→=-e 1-2e 2,∴BD ―→=BC ―→+CD ―→=(5e 1+4e 2)+(e 1+2e 2)=6e 1+6e 2, ∵A ,B ,D 三点共线,∴AB ―→=λBD ―→,∴e 1+ke 2=λ(6e 1+6e 2),∵e 1,e 2是不共线向量,∴⎩⎪⎨⎪⎧1=6λ,k =6λ,∴k =1.答案:17.如图,已知空间四边形ABCD 中,AB ―→=a -2c ,CD ―→=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF ―→=________(用向量a ,b ,c 表示).解析:设G 为BC 的中点, 连接EG ,FG ,则EF ―→=EG ―→+GF ―→ =12AB ―→+12CD ―→ =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c . 答案:3a +3b -5c8.在空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM =2MA ,N 为BC 的中点,给出以下向量:①3a -4b +3c ;②-4a +3b +3c ;③3a +3b -4c ; ④43a -b -c . 其中与MN ―→平行的向量是________(只填相应序号即可).解析:由已知得MN ―→=ON ―→-OM ―→=12(OB ―→+OC ―→)-23OA ―→=-23a +12b +12c .所以MN ―→=16(-4a +3b +3c )=-12⎝⎛⎭⎫43a -b -c ,故②④适合. 答案:②④ 三、解答题9.如图,H 为四棱锥P -ABCD 的棱PC 的三等分点,且PH =12HC ,点G 在AH 上,AG =mAH .四边形ABCD 为平行四边形.若G ,B ,P ,D 四点共面,求实数m 的值.解:连接BD ,BG ,∵AB ―→=PB ―→-PA ―→ 且 AB ―→=DC ―→, ∴DC ―→=PB ―→-PA ―→. ∵PC ―→=PD ―→+DC ―→, ∴PC ―→=PD ―→+PB ―→-PA ―→ =-PA ―→+PB ―→+PD ―→. ∵PH HC =12,∴PH ―→=13PC ―→=13(-PA ―→+PB ―→+PD ―→)=-13PA ―→+13PB ―→+13PD .又∵AH ―→=PH ―→-PA ―→, ∴AH ―→=-43PA ―→+13PB ―→+13PD ―→.∵AGAH =m ,∴AG ―→=m AH ―→=-4m 3PA ―→+m 3PB ―→+m 3PD ―→.∵BG ―→=-AB ―→+AG ―→=PA ―→-PB ―→+AG ―→, ∴BG ―→=⎝⎛⎭⎫1-4m 3PA ―→+⎝⎛⎭⎫m 3-1PB ―→+m 3PD ―→. 又∵B ,G ,P ,D 四点共面,∴1-4m 3=0,∴m =34.10.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.(1)证明:四边形AEC 1F 是平行四边形; (2)试判断A 1D 1是否平行于平面AEC 1F .解:(1)证明:∵E ,F 分别为DD 1和BB 1的中点, ∴AE ―→=AD ―→+DE ―→=AD ―→+12DD 1―→,FC 1―→=FB 1―→+B 1C 1―→=12BB 1―→+B 1C 1―→.又AD ―→=B 1C 1―→,DD 1―→=BB 1―→, ∴AE ―→=FC 1―→,即AE 綊FC 1, ∴四边形AEC 1F 是平行四边形.(2)设A 1D 1平行于平面AEC 1F ,则存在x ,y ,使得A 1D 1―→=x AE ―→+y AF ―→,又AE ―→=AD ―→+ 12DD 1―→,AF ―→=AB ―→+BF ―→=AB ―→+12BB 1―→, ∴A 1D 1―→=x (AD ―→+12DD 1―→)+y (AB ―→+12BB 1―→)即(x -1)A 1D 1―→+y AB ―→+12(x +y )BB 1―→=0.∵A 1D 1―→,AB ―→,BB 1―→不共面,∴不存在实数x ,y 使得上式成立,故不存在实数x ,y 可以使得A 1D 1―→=x AE ―→+y AF ―→,∴A1D1不平行于平面AEC1F.第二课时空间向量的数量积[读教材·填要点]空间向量的数量积(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫作a,b的数量积,记作a·b. 即a·b=|a||b|cos〈a,b〉.(2)运算律:①(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.(3)数量积的性质:[小问题·大思维]1.已知三个非空向量a,b,c,若a·b=a·c,那么b=c成立吗?提示:不一定有b=c.当a⊥b,a⊥c时,a·b=a·c=0,此时不一定有b=c.2.已知向量a,b,对于|a·b|=|a|·|b|成立吗?提示:|a·b|=|a||b||cos〈a,b〉|≤|a||b|.∴当a与b共线时,|a·b|=|a||b|,否则不成立.如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值:(1)EF ―→·BA ―→; (2)EF ―→·BD ―→; (3)EF ―→·DC ―→; (4)AB ―→·CD ―→.[自主解答] (1)EF ―→·BA ―→=12BD ―→·BA ―→=12|BD ―→||BA ―→|·cos 〈BD ―→,BA ―→〉 =12cos 60°=14. (2)EF ―→·BD ―→=12BD ―→·BD ―→=12|BD ―→|2=12.(3)EF ―→·DC ―→=12BD ―→·DC ―→=12|BD ―→|·|DC ―→|cos 〈BD ―→,DC ―→〉=12cos 120°=-14.(4)AB ―→·CD ―→=AB ―→·(AD ―→-AC ―→)=AB ―→·AD ―→-AB ―→·AC ―→=|AB ―→||AD ―→|cos 〈AB ―→,AD ―→〉-|AB ―→||AC ―→|cos 〈AB ―→,AC ―→〉=cos 60°-cos 60°=0.空间向量数量积的计算要充分利用向量所在的图形,巧妙地进行向量的分解与合成,分解时要充分利用图形的特点以及其含有的特殊向量,这里的特殊向量主要指具有特殊夹角或已知模的向量.1.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a ·b =( ) A .1 B .2 C .3D .4解析:∵p ⊥q 且|p |=|q |=1,∴a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3+0-2=1. 答案:A2.已知正四面体OABC 的棱长为1,求: (1)OA ―→·OB ―→;(2)(OA ―→+OB ―→)·(CA ―→+CB ―→).解:(1)OA ―→·OB ―→=|OA ―→||OB ―→|cos ∠AOB =1×1×cos 60°=12.(2)(OA +OB ―→)·(CA ―→+CB ―→)=(OA ―→+OB ―→)·(OA ―→-OC ―→+OB ―→-OC ―→) =(OA ―→+OB ―→)·(OA ―→+OB ―→-2OC ―→)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在α的同侧,若AB =BC =CD =2,求A ,D 两点间的距离.[自主解答] ∵AD ―→=AB ―→+BC ―→+CD ―→,∴|AD ―→|2=AD ―→·AD ―→=(AB ―→+BC ―→+CD ―→)·(AB ―→+BC ―→+CD ―→)=|AB ―→|2+|BC ―→|2+|CD ―→|2+2AB ―→·BC ―→+2BC ―→·CD ―→+2AB ―→·CD ―→.①∵AB =BC =CD =2,∴|AB ―→|=|BC ―→|=|CD ―→|=2.② 又∵AB ⊥α,BC ⊂α,∴AB ⊥BC .∴AB ―→·BC ―→=0.③ ∵CD ⊥BC ,∴CD ―→·BC ―→=0.④把②③④代入①可得|AD ―→|2=4+4+4+2AB ―→·CD ―→=12+2|AB ―→|·|CD ―→|cos 〈AB ―→,CD ―→〉 =12+8cos 〈AB ―→,CD ―→〉.⑤ ∵∠DCF =30°,从而∠CDF =60°. 又∵AB ⊥α,DF ⊥α,∴AB ∥DF . ∴〈AB ―→,DC ―→〉=〈DF ―→,DC ―→〉=60°. ∴〈AB ―→,CD ―→〉=120°.代入⑤式得到|AD ―→|2=12+8cos 120°=8, ∴|AD ―→|=2 2.即A ,D 两点间的距离为2 2.求两点间的距离或线段长度的方法如下: (1)将此线段用向量表示;(2)用其他已知夹角和模的向量表示该向量; (3)利用|a |=a 2,通过计算求出|a |,即得所求距离.3.如图所示,在▱ABCD 中,AD =4,CD =3,∠D =60°,PA ⊥平面ABCD ,PA =6,求线段PC 的长. 解:∴PC ―→=PA ―→+AD ―→+DC ―→, ∴|PC ―→|2=(PA ―→+AD ―→+DC ―→)2=|PA ―→|2+|AD ―→|2+|DC ―→|2+2PA ―→·AD ―→+2AD ―→·DC ―→+2DC ―→·PA ―→=62+42+32+2|AD ―→||DC ―→|cos 120°=61-12=49.∴|PC ―→|=7,即PC =7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .[自主解答] 设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c ,则a ·b =0,b ·c =0,a ·c =0,|a |=|b |=|c |.∵A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12a +12b ,BD ―→=AD ―→-AB ―→=b -a ,OG ―→=OC ―→+CG ―→=12(AB ―→+AD ―→)+12CC 1―→=12a +12b -12c . ∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·b -c ·a +12a ·b -12a 2+12b 2-12b ·a=12(b 2-a 2)=12(|b |2-|a |2)=0.于是A 1O ―→⊥BD ―→,即A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→,即A 1O ⊥OG . 于是有A 1O ⊥平面GBD .用向量法证明垂直关系的操作步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.4.如图,在空间四边形OABC 中,OB =OC ,AB =AC .求证:OA ⊥BC .证明:在△OAC 和△OAB 中, OB =OC ,AB =AC , ∴△OAC ≌△OAB . ∴∠AOC =∠AOB .∵OA ―→·BC ―→=OA ―→·(OC ―→-OB ―→) =OA ―→·OC ―→-OA ―→·OB ―→=|OA ―→|·|OC ―→|cos ∠AOC -|OA ―→|·|OB ―→|cos ∠AOB =0, ∴OA ⊥BC .解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[巧思] 求B ,D 间的距离可以转化为求向量BD ―→的模,但向量BD ―→的模无法直接求出,可以转化为其他向量,注意折起后AB 与AC ,CD 与AC 的垂直关系没有发生改变,可以充分利用这种关系.[妙解] ∵∠ACD =90°, ∴AC ―→·CD ―→=0.同理AC ―→·BA ―→=0. ∵AB 与CD 成60°角,∴〈BA ―→,CD ―→〉=60°或〈BA ―→,CD ―→〉=120°. 又BD ―→=BA ―→+AC ―→+CD ―→,∴|BD ―→|2=|BA ―→|2+|AC ―→|2+|CD ―→|2+2BA ―→·AC ―→+2BA ―→·CD ―→+2AC ―→·CD ―→ =3+2×1×1×cos 〈BA ―→,CD ―→〉. ∴当〈BA ―→,CD ―→〉=60°时,|BD ―→|2=4, 此时B ,D 间的距离为2;当〈BA ―→,CD ―→〉=120°时,|BD ―→|2=2, 此时B ,D 间的距离为 2.1.设a ,b 为空间的非零向量,下列各式:①a 2=|a |2;②a ·b a2=ba ;③(a ·b )2=a 2·b 2;④(a -b )2=a 2-2a ·b +b 2;⑤(a ·b )·c =b ·(a ·c )=(b ·c )·a ;⑥向量a 在向量b 的方向上的投影为|a |cos 〈a ,b 〉,其中正确的个数为( )A .1B .2C .3D .4解析:由向量数量积的性质可知①正确;向量的数量积不满足消去律,故②不正确;(a ·b )2=a 2·b 2·cos 2〈a ,b 〉≤a 2·b 2,故③不正确;由向量数量积的运算律知④正确;数量积不满足结合律,⑤不正确;|a |cos 〈a ,b 〉为向量a 在向量b 的方向上的投影,可正可负,⑥正确.答案:C2.已知正四面体A -BCD 中,AE =14AB ,CF =14CD ,则直线DE和BF 夹角的余弦值为( )A.413 B.313 C .-413D .-313解析:设正四面体的棱长为4.∵正四面体A -BCD 中,相邻两棱夹角为60°,对棱互相垂直.又ED ―→=EA ―→+AD ―→=14BA ―→+AD ―→,BF ―→=BC ―→+CF ―→=BC ―→+14CD ―→,∴ED ―→·BF ―→=14BA ―→·BC ―→+14AD ―→·CD ―→=4,|ED ―→|2=116BA ―→ 2+12BA ―→·AD ―→+AD ―→2=1-4+16=13.|ED ―→|=13,同理|BF ―→|=13. ∴cos 〈ED ―→,BF ―→〉=ED ―→·BF ―→| ED ―→||BF ―→|=413.答案:A3.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则a ·(b +c )的值为( )A .1B .0C .-1D .-2解析:a ·(b +c )=a ·b +a ·c =0. 答案:B4.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA ―→,BC ―→〉的值为________.解析:cos 〈OA ―→,BC ―→〉=OA ―→·BC ―→|OA ―→|·|BC ―→|=OA ―→·(OC ―→-OB ―→)|OA ―→|·|BC ―→|=|OA ―→||OC ―→|cos π3-|OA ―→||OB ―→|cosπ3|OA ―→|·|BC ―→|=0. 答案:05.已知向量a ,b ,c 两两夹角都是60°,且|a |=|b |=|c |=1,则|a -2b +c |=________. 解析:∵|a -2b +c |2=a 2+4b 2+c 2-4a ·b -4b ·c +2a ·c =1+4+1-4×cos 60°-4×cos 60°+2×cos 60°=3, ∴|a -2b +c |= 3.答案: 36.已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求:(1)BC ―→·ED 1―→; (2)BF ―→·AB 1―→.解:如图所示,设AB ―→=a ,AD ―→=b ,AA 1―→=c , 则|a |=|c |=2,|b |=4, a ·b =b ·c =c ·a =0. (1)BC ―→·ED 1―→=b ·⎣⎡⎦⎤12(c -a )+b =|b |2=42=16.(2)BF ―→·AB 1―→=⎝⎛⎭⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.一、选择题1.下列各命题中,不.正确的命题的个数为( ) ①a ·a =|a |;②m (λa )·b =(mλ)a ·b (m ,λ∈R); ③a ·(b +c )=(b +c )·a ; ④a 2b =b 2a .A .4B .3C .2D .1解析:∵a ·a =|a |2, ∴a ·a =|a |,故①正确.m (λa )·b =(mλa )·b =mλa ·b =(mλ)a ·b ,故②正确. a ·(b +c )=a ·b +a ·c ,(b +c )·a =b ·a +c ·a =a ·b +a ·c =a ·(b +c ),故③正确. a 2·b =|a |2·b ,b 2·a =|b |2·a , 故④不一定正确. 答案:D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角为( )A .30°B .45°C .60°D .以上都不对解析:由已知c =-(a +b ),所以|c |2=(a +b )2=|a |2+|b |2+2a ·b ,即a ·b =32. ∴cos 〈a ,b 〉=a ·b |a |·|b |=14. 答案:D3.已知PA ⊥平面ABC ,∠ABC =120°,PA =AB =BC =6,则PC等于( )A .62B .6C .12D .144 解析:∵PC ―→=PA ―→+AB ―→+BC ―→,∴PC ―→2=PA ―→2+AB ―→2+BC ―→2+2AB ―→·BC ―→=36+36+36+2×36cos 60°=144.∴|PC |=12.答案:C4.设A ,B ,C ,D 是空间不共面的四点,且满足AB ―→·AC ―→=0,AC ―→·AD ―→=0,AB ―→·AD―→=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 解析:∵BD ―→=AD ―→-AB ―→,BC ―→=AC ―→-AB ―→,∴BD ―→·BC ―→=(AD ―→-AB ―→)·(AC ―→-AB ―→)=AD ―→·AC ―→-AD ―→·AB ―→-AB ―→·AC ―→+|AB ―→|2=|AB ―→|2>0,∴cos ∠CBD =cos 〈BC ―→,BD ―→〉=BC ―→·BD ―→|BC ―→|·|BD ―→|>0,∴∠CBD 为锐角,同理,∠BCD 与∠BDC 均为锐角,∴△BCD 为锐角三角形.答案:B二、填空题5.在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AD ′―→·BC ′―→=________.解析:由正方体知BC ′∥AD ′,∴〈AD ′―→, BC ′―→〉=0,又|AD ′―→|=|BC ′―→|=2,所以AD ′―→·BC ′―→=2·2·1=2.答案:26.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G为△ABC 的重心,则OG ―→·(OA ―→+OB ―→+OC ―→)=________.解析:由已知OA ―→·OB ―→=OA ―→·OC ―→=OB ―→·OC ―→=0,且OG ―→=OA ―→+OB ―→+OC ―→3, 故OG ―→·(OA ―→+OB ―→+OC ―→)=13(OA ―→+OB ―→+OC ―→)2 =13(|OA ―→|2+|OB ―→|2+|OC ―→|2) =13(1+4+9)=143. 答案:1437.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是________.解析:AB ―→=AC ―→+CD ―→+DB ―→,∴AB ―→·CD ―→=(AC ―→+CD ―→+DB ―→)·CD ―→=AC ―→·CD ―→+CD ―→2+DB ―→·CD ―→=0+12+0=1,又|AB ―→|=2,|CD ―→|=1.∴cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→| AB ―→|·|CD ―→|=12×1=12. ∴a 与b 所成的角是60°.答案:60°8.如图所示,在▱ABCD 中,AD =4,CD =3,∠D =60°,PA ⊥平面ABCD ,PA =6,则线段PC 的长为________.解析:∵PC ―→=PA ―→+AD ―→+DC ―→.∴|PC ―→|2=(PA ―→+AD ―→+DC ―→)2=|PA ―→|2+|AD ―→|2+|DC ―→|2+2PA ―→·AD ―→+2AD ―→·DC ―→+2DC ―→·PA ―→=62+42+32+2|AD―→||DC ―→|cos 120°=61-12=49.∴|PC ―→|=7,即PC =7.答案:7三、解答题9.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2.BD ―→·AC ―→=(AD ―→-AB ―→)·AC ―→=AD ―→·AC ―→-AB ―→·AC ―→,由于AD ―→·AC ―→=AD ―→·(AD ―→+DC ―→)=AD ―→·AD ―→=1,AB ―→·AC ―→=|AB ―→|·|AC ―→|cos 60°=2×2×12=1. ∴BD ―→·AC ―→=0,即BD ⊥AC ,又已知BD ⊥AD ,AC ∩AD =A ,∴BD ⊥平面ADC .10.如图,正三棱柱ABC -A 1B 1C 1中,底面边长为 2.(1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1的夹角为π3,求侧棱的长. 解:(1)证明:AB 1―→=AB ―→+BB 1―→, BC 1―→=BB 1―→+BC ―→.∵BB 1⊥平面ABC ,∴BB 1―→·AB ―→=0,BB 1―→·BC ―→=0.又△ABC 为正三角形,∴〈AB ―→·BC ―→〉=π-〈BA ―→·BC ―→〉=π-π3=2π3. ∵AB 1―→·BC 1―→=(AB ―→+BB 1―→)·(BB 1―→+BC ―→)=AB ―→·BB 1―→+AB ―→·BC ―→+BB 1―→2+BB 1―→·BC ―→=|AB ―→|·|BC ―→|·cos 〈AB ―→,BC ―→〉+BB 1―→2=-1+1=0,∴AB 1⊥BC 1.(2)结合(1)知AB 1―→·BC 1―→=|AB ―→|·|BC ―→|·cos 〈AB ―→,BC ―→〉+BB 1―→2=BB 1―→2-1.又|AB 1―→|=AB ―→2+BB 1―→2=2+BB 1―→2=|BC 1―→|.∴cos 〈AB 1―→,BC 1―→〉=BB 1―→2-12+BB 1―→2=12,∴|BB 1―→|=2,即侧棱长为2.。
2020版高中数学人教B版选修2-1课件:3.1.2 空间向量的基本定理 (2)

第三章空间向量与立体几何3.1.2空间向量的基本定理高中数学选修2-1·精品课件引入课题平面向量中包含哪些基本定理形式?能否将平面向量的定理推广到空间向量?其形式又会有怎样的变化?知识点一:共线向量定理规定:零向量与任意向量共线.1.共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量叫做共线向量(或平行向量),记作 a ∥b .2.共线向量定理:对空间任意两个向量 a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使 a =λb .推论:如果l 为经过已知点A 且平行已知非零向量 a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP =OA +t a ,其中 a 叫做直线l 的方向向量.探究点:三点共线如何利用共线向量定理判定三点共线?AC BOAC=λABOC−OA=λ(OB−OA) OC=(1−λ)OA+λOBA、B、C三点共线⇔OC=xOA+yOB(其中O为空间中任意一点,且x+y=1)特别有:当B为线段AC的中点时OB=12(OA+OC)例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,F、G分别是CB、CD上的点,且CF=23CB,CG=23CD.利用向量法证明四边形EFGH是梯形.[思路探索]只需证EH∥FG,且EH≠FG即证EH∥FG,且|EH|≠|FG|利用BD构建EH与FG的关系∵E、H分别是边AB、AD的中点,∴AE=12AB,AH=12AD,EH=AH−AE=12AD−12AB=12(AD−AB)=12BD=12(CD−CB)=12(32CG−32CF)=34(CG−CF)=34FG,∴EH∥FG,且|EH|≠|FG|,又F不在EH上,∴四边形EFGH是梯形.证明:跟踪训练1.设两非零向量e1、e2不共线,AB=e1+e2,BC=2e1+8e2,CD=3(e1-e2).试问:A、B、D是否共线,请说明理由.解:∵BD=BC+CD=(2e1+8e2)+3(e1-e2)=5(e1+e2),∴BD=5AB又∵B为两向量的公共点,∴A、B、D三点共线.知识点二:共面向量共面向量:平行于同一平面的向量,叫做共面向量.想一想,为什么?说明:空间任意两个向量都是共面向量,但空间任意三个向量既可能是共面的,也可能是不共面的.探究点:共面向量定理1.若 a 与b 为不共线的两个向量, p 、 a 、b 共面,p 能被 a 、b 唯一表示吗?想一想,为什么?存在唯一有序实数对(x , y ) p =x a +y b2.若存在唯一有序实数对(x , y ),使 p =x a +yb ,则 p 、 a 、b 共面吗?ab xayb p 平行四边形的对角线三个向量共面共面向量定理如果两个向量a 、b 不共线,则向量p 与a 、b共面的充要条件是:存在唯一的有序实数对(x , y )使p =x a +y b .知识点四:四点共面类似于共线向量定理可以判定三点共线,利用共面向量定理怎样判定四点共面?AP =mAB +nAC系数和等于1APCBOOP −OA =m(OB −OA)+n(OC −OA )OP =1−m −n OA +mOB +nOCP 、A 、B 、C 四点共面⇔OP =xOA +yOB +zOC (其中O 为空间中任意一点,且x +y +z =1)例2 如图所示,P是平面四边形ABCD所在平面外一点,连结PA,PB,PC,PD,点E,F,G,H分别是△PAB,△PBC,△PCD,△PDA的重心,分别延长PE,PF,PG,PH,交对边于M,N,Q,R,并顺次连结MN,NQ,QR,RM.应用向量共面定理证明:E、F、G、H四点共面.[思路探索]只需找到EF,EG,EH的线性关系证明:∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结M、N、Q、R,所得四边形为平行四边形,且有PE=23PM,PF=23PN,PG=23PQ,PH=23PR.∵MNQR为平行四边形,∴EG=PG−PE=23PQ-23PM=23MQ=23(MN+MR)=23(PN−PM)+23(PR−PM)=23(32PF−32PE)+23(32PH−32PE)=EF+EH.∴由共面向量定理得E、F、G、H四点共面.2.已知平行四边形ABCD,从平面AC外一点O引向量OE=k OA,OF=k OB,OG=k OC,OH=k OD=k,求证:(1)四点E、F、G、H共面;(2)平面EG∥平面AC.证明:(1)因为四边形ABCD是平行四边形,所以AC=AB+AD,EG=OG−OE=k OC-k OA=k AC=k(AB+AD)=k(OB−OA+OD−OA)=OF−OE+OH−OE=EF+EH.所以E、F、G、H共面.(2)EF=OF−OE=k(OB−OA)=k AB,且由第(1)问的证明中知EG=k AC,于是EF∥AB,EG∥AC.且EF∩EG=E,AB∩AC=A,所以平面EG∥平面AC.知识点五:空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在唯一有序实数组{x,y,z},使得p=x a+y b+z c.{a, b, c}为空间中的一个基底a, b, c叫做基向量.cabx ay bz c p(1)任意不共面的三个向量都可做为空间的一个基底.(2)基底不同,对于向量的分解形式不同.典例分析解:例3 若{a ,b , c }是空间的一个基底,判断{a +b ,b + c , c +a }能否作为该空间的一个基底.假设a +b ,b + c , c +a 共面,则存在实数λ,μ使得a +b =λ(b + c )+μ( c +a ),∴a +b =μa +λb +(λ+μ) c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面,∴a +b ,b + c , c +a 不共面.∴{a +b ,b + c , c +a }可以作为空间一个基底.∴λ=1,μ=1,λ+μ=0,此方程组无解.是否共面3.以下四个命题中正确的是________.①空间的任何一个向量都可用三个给定向量表示;②若{a,b,c}为空间的一个基底,则a,b,c全不是零向量;③如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;④任何三个不共线的向量都可构成空间的一个基底.【解析】因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故①不正确;②正确;由空间向量基本定理可知只有不共线的两向量才可以做基底,故③正确;空间向量基底是由三个不共面的向量组成的,故④不正确.【答案】②③例4空间四边形OABC 中,M ,N 是△ABC ,△OBC 的重心,设OA =a ,OB =b ,OC = c ,用向量a ,b , c 表示向量OM ,ON ,MN .AC BO PNMac b如图,取BC 中点P ,则A 、M 、P ,O 、N 、P 分别共线,连结AP ,OP .AM =OA +AM =a +23AP=a +23×12(AB +AC ),解:利用线性运算,结合图形,对向量进行分解=a+13(OB-OA)+13(OC-OA)=a+13b-13a+13c-13a=13a+13b+13c.ON=23OP=23×12(OB+OC)=13b+13c.MN=ON-OM=13b+13c-13b-13c-13a=-13a.A CBOPNMa cb4.如图,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC,设OA=a,OC=b,OP=c,E,F分别是PC和PB的中点,试用a,b,c表示BF,BE,AE,EF.解:连结BO,则BF=12BP=12(BO+OP)=12(c-b-a)=-12a-12b+12c.BE=BC+CE=-a+12CP=-a+12(CO+OP)=-a-12b+12c.AE=AP+PE=AO+OP+(PO+OC)=-a+c+12(-c+b)=-a+12b+12c.EF=12CB=12OA=12a.归纳小结1.用好已有的定理及推论:如共线向量定理、共面向量定理及推论等,并能运用它们证明空间向量的共线和共面的问题. 2.在解决空间向量问题时,结合图形,以图形为指导不但事半功倍,更是迅速解题的关键!D1.下列命题中正确的个数是()①若a与b共线,b与c共线,则a与c共线②向量a、b、c共面即它们所在的直线共面③若a∥b,则存在惟一的实数λ,使a=λb A.1B.2 C.3 D.02.已知三角形ABC中,AB|AB|+AC|AC|=AD|AD|则D点位于( )A.BC边的中线上B.BC边的高线上C.BC边的中垂线上D.∠BAC的平分线上D3.已知{a,b,c}是空间向量的一个基底,则可以与向量p=a+b,q=a-b构成基底的向量是()DA.a B.b C.a+2b D.a+2c4.设OABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若OG=x OA+y OB+z OC,则(x,y,z)为()A.(14,14,14) B.(34,34,34)C.(13,13,13) D.(23,23,23)A再见。
高中数学浅谈空间距离的几种计算方法-北师大版选修2-1

浅谈空间距离的几种计算方法【摘要】空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。
在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。
【关键词】空间距离点线距离点面距离异面直线距离公垂线段等体积法【正文】空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。
空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。
空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。
这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。
对学生来说是较难掌握的一种方法,难就难在“一作”上。
所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。
除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。
下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。
一、两点之间的距离两点间的距离的计算通常有两种方法:1、可以计算线段的长度。
把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。
2、可以用空间两点间距离公式。
如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。
二、点到直线的距离在求解点到直线的距离时,通常是寻找或构造一个三角形。
其中点是三角形的一个顶点,直线是此顶点所对的一条边,利用等面积法计算点线距离。
所寻找或构造的三角形有等腰三角形(或等边三角形)、直角三角形、一般三角形三类,最关键的步骤是算出三角形的面积,然后用等面积法计算即可。
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》教材梳理

疱丁巧解牛知识·巧学一、抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线.点F 叫抛物线的焦点,直线l 叫做抛物线的准线.(1)定义的“双向运用”,即:一方面,符合定义的条件的动点轨迹为抛物线;另一方面,抛物线上点有定义中条件的性质.(2)两个定义的综合运用是解决有些抛物线问题的捷径.(3)求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.2.抛物线的方程(1)抛物线的标准方程(a >b >0)①y 2=2px(p >0);②y 2=-2px(p >0);③x 2=2py(p >0);④x 2=-2py(p >0).抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p 等于焦点到抛物线顶点的距离.二次函数y=ax 2(a≠0)方程满足抛物线的定义,所以它的图象是抛物线,它的焦点坐标为(2a ,0),准线方程x=2p . (2)中心在(x 0,y 0)的抛物线方程(a >b >0)利用平面向量的平移可得到上述标准方程中对应的形式,如顶点在(x 0,y 0)有对称轴为y=y 0,开口向右的抛物线方程为(y-y 0)2=2p(x-x 0)(p >0).要点提示 在求抛物线的方程的时候一定要考虑焦点在哪个轴上,开口方向两个方面.此外,因为抛物线有四个标准方程,确定了焦点在哪个轴上和开口方向,这个抛物线的方程大致形状也就确定了.问题·探究问题1 抛物线在现实生活中有哪些应用?探究:抛物线在现实生活中的应用很广泛,我们熟悉的汽车前灯,太阳灶,有的大桥也设计成抛物线形状,抛物线最重要的应用还是在物理学上,根据抛物线的运行轨迹,人们把它运用到了军事上的大炮、导弹.问题2 学习抛物线方程,要注意些什么?探究:抛物线的标准方程有四个,在学习它们的时候一定要注意区分,焦点在x 轴上两个,焦点在y 轴上两个,焦点坐标与准线方程都于一次项的系数有关,抛物线的方程在确定了焦点位置和一次项的系数,抛物线的形状也就确定了下来.典题·热题例1 已知点M (3,2),F 为抛物线y 2=2x 的焦点,点p 在该抛物线上移动,当|PM|+|PF|取最小值时,点P 的坐标为______________________.思路分析:本题若建立目标函数来求|PM|+|PF|的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如右图所示,由定义知|PF|=|PE|,故|PM|+|PF|=|PF|+|PM|≥|ME|≥|MN|=213.取等号时,M,P,E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为(2,2).方法归纳 由抛物线的定义可知,抛物线上的点到焦点的距离等于它到准线的距离.要重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离的相互转换. 例2 求过点(-3,2)的抛物线的标准方程,并求对应抛物线的准线方程.思路分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论.解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0),∵过点(-3,2),∴4=-2p (-3)或9=2p·2.∴p=32或p=49. ∴所求的抛物线方程为y 2=x 34-或x 2=y 29.前者的准线方程是x=31,后者的准线方程是y=89-. 误区警示 这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切.思路分析:可设抛物线方程为y 2=2px(p >0).如右图所示,只须证明2||AB =|MM 1|,则以AB 为直径的圆,必与抛物线准线相切.证明:作AA 1⊥l 于A 1,BB 1⊥l 于B 1.M 为AB 中点,作MM 1⊥l 于M 1,则由抛物线的定义,可知|AA 1|=|AF|,|BB 1|=|BF|.在直角梯形BB 1A 1A 中:|MM 1|=21(|AA 1|+|BB 1|)=21(|AF|+|BF|)=21|AB|. ∴|MM 1|=21|AB|.故以AB 为直径的圆,必与抛物线的准线相切. 方法归纳 类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.例4 如右图所示,直线l 1和l 2相交于点1M ,l 1⊥l 2,点N ∈l 1,以A 、B 为端点的曲线段C上任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=17,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C 的方程.思路分析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x 、y 的取值范围. 解:如图以直线l 1为x 轴,线段MN 的垂直平分线为y 轴,建立直角坐标系,由条件可知,曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段.其中A 、B 分别为曲线段C 的端点. 设曲线段C 的方程为y 2=2px (p>0)(x A ≤x≤x B ,y>0),其中x A 、x B 为A 、B 的横坐标,p=|MN|,所以M (2p -,0)、N (2p ,0). 由|AM|=17,|AN|=3,得(x A +2p )2+2px A =17, ① (x A -2p )2+2px A =9. ② ①②联立解得x A =p4,代入①式,并由p>0, 解得⎩⎨⎧==1,4A x p 或⎩⎨⎧==.2,2Ax p 因为△AMN 为锐角三角形,所以A x p >2. 故舍去⎩⎨⎧==.2,2A x p 所以⎩⎨⎧==.1,4Ax p 由点B 在曲线段C 上,得x B =|BN|-2p =4. 综上,曲线段C 的方程为y 2=8x (1≤x≤4,y>0).。
高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义
当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系
性
焦点
(c,0), (c,0)
质
焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4
高中数学选修2-1《圆锥曲线》教案
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
新课标高中数学人教A版选修2-1全套教案
(一)教学目标选修 2—1 教案第一章常用逻辑用语1.1命题及其关系1.1.1命题1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“ 若 p,则q” 的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假(三)教学过程1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线 a 与直线b 没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数 a 是素数,则是 a 奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)=-2.( 2)2(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
高中数学选修2-1教案(全套,78页)
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章常用逻辑用语 1.1命题及其关系
定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
命题的构成――条件和结论 定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者 “如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题. 假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
四种命题:定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题. 定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题. 定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
形式: 原命题:若P,则q.则: 逆命题:若q,则P. 否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p) 逆否命题:若¬q,则¬P.
四种命题间的相互关系: 由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
1.2 充分条件与必要条件 定义:如果命题“若p,则q”为真命题,即p q,那么我们就说p是q的充分条件;q是p必要条件.
一般地,如果既有pq ,又有qp 就记作 p q. 此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q,那么p 与 q互为充要条件.
一般地, 若pq ,但q p,则称p是q的充分但不必要条件; 若pq,但q p,则称p是q的必要但不充分条件; 若pq,且q p,则称p是q的既不充分也不必要条件.
1.3 简单的逻辑连接词 一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q 读作“p且q”。 一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。 一般地,我们规定: 当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。 一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”。 若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题; 命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定。
1.4全称量词与存在量词 所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“”表示,含有全称量词的命题,叫做全称命题。 “存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“”表示。含有存在量词的命题叫做特称命题(或存在命题)。 一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题P:
,()xMpx 它的否定¬P ¬P(x) 特称命题P: ,()xMpx 它的否定¬P: x∈M,¬P(x) 全称命题和否定是特称命题。特称命题的否定是全称命题。
第二章 圆锥曲线与方程 2.1曲线与方程
(二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵kOM·kAM=-1,
其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.
分析: ∵点P在AQ的垂直平分线上, ∴|PQ|=|PA|. 又P在半径OQ上. ∴|PO|+|PQ|=R,即|PO|+|PA|=R. 故P点到两定点距离之和是定值,可用椭圆定义 写出P点的轨迹方程. 解:连接PA ∵l⊥PQ,∴|PA|=|PQ|. 又P在半径OQ上. ∴|PO|+|PQ|=2.
由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.
3.相关点法 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法). 例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程. 分析: P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系. 解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB的内分点. 4.待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲
曲线方程. 分析: 因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方
ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根. ∴△=1664-4Q4b2=0,即a2=2b. (以下由学生完成)
由弦长公式得: 即a2b2=4b2-a2. 2.2 椭圆 把平面内与两个定点1F,2F的距离之和等于常数(大于12FF)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M时,椭圆即为点集P12|2MMFMFa.
焦点在x轴上,中心在原点的椭圆的标准方程)0(12222babyax. 焦点在y轴上,中心在原点的椭圆的标准方程222210yxabab. 椭圆的简单几何性质 ①范围:由椭圆的标准方程可得,222210yxba,进一步得:axa,同理可得:byb,即椭圆位于直线xa和yb所围成的矩形框图里; ②对称性:由以x代x,以y代y和x代x,且以y代y这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x轴和y轴为对称轴,原点为对称中心; ③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比ace叫做椭圆的离心率(10e),椭圆图形越扁时当01a,,b,ce;椭圆越接近于圆时当a,b,ce00 . 椭圆的第二定义 当点M与一个定点的距离和它到一条定直线的距离的比是常数)10(eace时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.
对于椭圆12222byax,相应于焦点)0,(cF的准线方程是cax2.根据对称性,相应于焦
点)0,(cF的准线方程是cax2.对于椭圆12222bxay的准线方程是cay2. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.
由椭圆的第二定义edMF||可得:右焦半径公式为
exacaxeedMF||||2右;左焦半径公式为exacaxeedMF|)(|||2左
定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。
性质一:已知椭圆方程为),0(12222babyax两焦点分别为,,21FF设焦点三角形
21FPF中,21PFF
则2tan221bSPFF。
cos2)2(2122212212PFPFPFPFFFc
)cos1(2)(21221PFPFPFPF
cos12)cos1(244)cos1(24)(222222121
bcacPFPFPFPF
1222121sinsintan21cos2FPFbSPFPFb
性质二:已知椭圆方程为),0(12222babyax左右两焦点分别为,,21FF设焦点三角形21FPF,若21PFF最大,则点P为椭圆短轴的端点。
证明:设),(ooyxP,由焦半径公式可知:oexaPF1,oexaPF1
在21PFF中,2122121212cosPFPFFFPFPF21221221242)(PFPFcPFPFPFPF