微分在近似计算中的应用教案

微分在近似计算中的应用教案
微分在近似计算中的应用教案

微分在近似计算中的应用

教学目的:1、理解微分的几何意义

2、掌握微分在近似计算的应用

3、掌握微分在误差估算的应用

教学重点:1、微分在近似计算的应用

2、微分在误差估算的应用

教学难点:1、微分在近似计算的应用

2、微分在误差估算的应用

教学过程:1、回顾函数微分内容,微分的概念,定义,以及微分的运算

2、导入新课

3、讲授新课

(1)1、理解微分的几何意义

(2)微分在近似计算的应用

(3)微分在误差估算的应用

4、例题分析

5、课堂小结

6、布置作业

微分在近似计算中的应用

在工程问题中,经常会遇到一些复杂的计算公式,如果直接用这些公式进行计算是很费力的,利用微分往往可以把一些复杂的计算公式改用简单的近似公式来代替。

1.函数增量的近似计算

如果()y f x =在0x 点可微,则函数的增量 0()()()y f x x o x dy o x '?=?+?=+?, 当||x ?很小时,有 0()y f x x '?≈?

例1 半径10厘米的金属原片加热后半径伸长了0.05厘米,问面积增大了多少? 解:设2A r π=,10r =厘米,0.05r ?=厘米,则

22100.05A dA r r πππ?≈=??=??=(2厘米)

例2 有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0.01cm ,估计一下每只球需用铜多少g (铜的密度是8.9g/cm 3)? 解: 先求出镀层的体积,再求相应的质量。

因为镀层的体积等于两个球体体积之差V ?,所以它就是球体体积34

3

V R π=

当R 自0R 取得增量R ?时的增量,我们求V 对R 的导数:

3204

()4,3R R R R V R R ππ==''==204.V R R π?≈??

将0 1, 0.01 R R =?=带入上式,得 234 3.1410.010.13().V cm ?≈???= 于是镀每只球需用的铜约为0.138.9 1.16().g ?= 2.函数值的近似计算

由00()()y f x x f x ?=+?-,00()()dy f x dx f x x ''==?,y dy ?≈得 000()()()f x x f x f x x '+?≈+?, 令0x x x =+?, 有

000()()()()f x f x f x x x '≈+-(用导数作近似计算公式). 若00x =,则 ()(0)(0).f x f f x '≈+ 说明:

(1)要计算()f x 在x 点的数值,直接计算()f x 比较困难,而在x 点附近一点0x 处的函数值0()f x 和它的导数0()f x '却都比较容易求出,于是可以利用

000()()()f x f x x x '+-作为()f x 的近似值, x 与0x 越接近越精确。 (2)常用的近似公式(假定|x |是较小的数值):

①x n

x n 111+≈+; ②1x e x ≈+, ③ ln(1)x x +≈

④sin x x ≈ ( x 用弧度作单位来表达); ⑤tan x x ≈ ( x 用弧度作单位来表达); 证明:

① 取n x x f +=1)(, 则(0)1f =,n

x n

f x n 1)1(1)0(01

1

=+='=-, 代入()(0)(0)f x f f x '≈+ ,便得 x n

x n 111+≈+. ④ 取()sin f x x =,则(0)0f =,0(0)cos |1x f x ='==,

代入()(0)(0)f x f f x '≈+ ,便得 sin x x ≈

如:

(11

10.05 1.0252≈+?=(直接开方的结果是02470.105.1=.)

(21

10.00012 1.000043≈+?=

(3)0.021310.0213 1.0213e ≈+= (4)ln1.004150.00415≈ (5)sin 0.0210.021≈

例3 计算arctan1.01的近似值。

解:设()arctan f x x =,则00()arctan()f x x x x +?=+?,2

1

()1f x x '=+ 由000()()+()f x x f x f x x '+?≈?,取01,0.01x x =?=,得

2

1arctan1.01arctan(10.01)arctan10.010.79011=+≈+≈+g .

例4 的近似值。

解:令()f x =

3.误差估计

在生产实践中, 经常要测量各种数据,但是有的数据不易直接测量, 这时我们就通过测量其它有关数据后, 根据某种公式算出所要的数据。由于测量仪器的精度、测量的条件和测量的方法等各种因素的影响,测得的数据往往带有误差,而根据带有误差的数据计算所得的结果也会有误差,我们把它叫做间接测量误差。 下面就讨论怎样用微分来估计间接测量误差。

(1)绝对误差:如果某个量的精确值为A ,它的近似值为a ,那么||A a δ=-叫做a 的绝对误差。

(2)相对误差:绝对误差δ与||a 的比值

||

a δ

叫做a 的相对误差。 在实际工作中,某个量的精确值往往是无法知道的,于是绝对误差和相对误差也就无法求得。但是根据测量仪器的精度等因素,有时能确定误差在某一个范围内。如果某个量的精确值为A ,测得它的近似值为a ,又知道它的误差不超过A δ,则

(3)绝对误差限:若||A A a δ-≤,则称A δ为测量A 的绝对误差限。 (4)相对误差限:

| |

A

a δ为测量A 的相对误差限。

一般地,根据直接测量的x 值按公式()y f x =计算y 值时,如果已知测量x 的绝对误差限是x δ,即||x x δ?≤,则当0y '≠时,y 的绝对误差

||||||||||x y dy y x y δ''?≈=?≤g g

即y 的绝对误差限约为||y x y δδ'=g ,y 的相对误差限约为

||y

x y y y

δδ'

=g .

以后常把绝对误差限和相对误差限简称为绝对误差和相对误差。

例如.要求得圆的面积S,只能测出其直径d,后由S =f(d)=2

4d π算出面积S.

由于测量得到的直径d 有绝对误差d ?,于是由此计算出面积S 也相应地有绝对误差()()S f d d f d ?=+?-.在近似计算中知道,当d ?很小时,()S f d d '?≈?(=dy ).

于是可用()S f d d '?≈?算出S 的绝对误差,对于圆面积S =f(d)=2

4

d π有

()2

f D d π

'=

,所以有

2

S d d π

?≈

?(绝对误差)

; 2

S d

S d

??≈(相对误差) 进一步,若已知d d δ?≤时,则得绝对误差限和相对误差限分布为:

2

2

A S d d d π

π

δ?≈

?≤

?;

22A S d S d d

δ??≈≤ 一般地,若x 是由测量得到的,量y 是由函数y =f(x)计算得到的,在测量时,x 的近似值为0x ,00()y f x =.若已知测量值0x 的误差限为x δ,即0x x x x δ?=-≤,当x δ很小时,

000()()()()x

y f x f x f x x f x δ''?=-≈?≤;

00

0()

()

y

x f x y f x δδ'=

1.要给一个半径为r 的球表面涂上油漆,油漆的厚度为r ?,试计算这层油漆的体积。

解:3223320000044

[3()3()()]4()()33

V r r r r r r r r r o r πππ?=+?+?+?-=?+?

2.设测得圆钢截面的直径60.03mm D =,测量D 的绝对误差限0.05mm,D δ=欲用公式2

π4

A D =

计算圆钢截面积,试估计面积的误差。 解:A 的绝对误差限约为

2ππ

60.00.05 4.715(mm )22

A D D A D δδδ'=?=

?=??≈ A 的相对误差限约为

π

2

4

0.05

220.17%60.0D A

D D A

D D δδδ=

==?= 3.设测得一球体的直径为42cm ,测量工具的精度为0.05 cm ,试求以此直径计算球体体积时所引起的误差。

解:由直径d 计算球体体积的函数式是 31

6

V d π=.

取042,0.05d d δ==,求得33001

38792.39(cm )6

V d π=≈,

则球体体积的绝对误差限为 22301420.05138.54cm 22

V d d π

δπδ=

?=??≈()

相对误差限为2

0300

13

20.357%16

V d d d V d d πδδδπ=?=?≈.

4.设钟摆的周期是1 s ,在冬季摆长至多缩短0.01 cm ,试问此钟每天至多快几秒?

解:由物理学知道,单摆周期T 与摆长l 的关系为

2T =,其中g 是重力加速度。已知钟摆周期为1 s ,故此摆原长为02

(2)g l π=

.

当摆长最多缩短0.01 cm 时,摆长的增量0.01l ?=-,它引起单摆周期的增量

2222(-980l l dT T l l l dl

g ππ=?≈

??=

=?=≈0.01)-0.0002(s)

这就是说加快约0.0002 s ,因此每天大约加快

6060240.0002=17.28(s)???

数值微分的计算方法

数值微分的计算方法 内容摘要 求解数值微分问题,就是通过测量函数在一些离散点上的值,求得函数的近似导数。本文就所学知识,归纳性地介绍了几种常用的数值微分计算方法。并举例说明计算,实验结果表明了方法的有效性。 关键词 数值微分 Taylor 展开式 Lagrange 插值 三对角矩阵 引言:数值微分即根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。常见的可以用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值,由此也可导出多点数值微分计算公式。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。 1.Taylor 展开式方法 理论基础:Taylor 展开式 ()()()() ()() ()()()00000002 2! ! n n x x x x f x f x x x f x f x f x n --'''=+-+ ++ + 我们借助Taylor 展开式,可以构造函数()f x 在点0x x =的一阶导数和二阶导数的数值微分公式。取步长0h >则 ),() (2 )()()(0011' '20' 00h x x f h x hf x f h x f +∈++=+ξξ (1) 所以 ),() (2 )()()(0011' '000'h x x f h h x f h x f x f +∈--+= ξξ (2) 同理 ),() (2 )()()(0022' '20' 00x h x f h x hf x f h x f -∈+-=-ξξ (3) ),() (2 )()()(0022' '000'x h x f h h h x f x f x f -∈+--= ξξ (4) 式(2)和式(4)是计算()' 0f x 的数值微分公式,其截断误差为()O h ,为提高精度,将 Taylor 展开式多写几项 ),() (24 )(6)(2)()()(0011) 4(40'''30''20' 00h x x f h x f h x f h x hf x f h x f +∈++++=+ξξ ),() (24 )(6)(2)()()(0022) 4(40'''30''20' 00x h x f h x f h x f h x hf x f h x f -∈+-+-=-ξξ 两式相减得 )()(6 2)()()(40' ''2000' h O x f h h h x f h x f x f +---+= (5) 上式为计算)(0'x f 的微分公式,其截断误差为O(h 2 ),比式(2)和(4)精度高。 两式相加,如果],[)(00) 4(h x h x C x f +-∈,则有

拉格朗日中值定理教学设计

教学设计 第六章微分中值定理及其应用 §1 拉格朗日定理和函数的单调性 题目:罗尔定理与拉格朗日定理 一、教学目的: 1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推 论。 2.能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗 日定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格 朗日定理,培养学生分析、抽象、概括和迁移的学习能力。 3.情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养数形结合的 思想,以及严密的思维方法,从而亲近数学,爱上数学。 二、教学重点与难点: 1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢固,大厦才能建的 高。 2.难点:罗尔定理和拉格朗日定理的应用与推广,以及这两个定理之间的区别 与联系。 三、教学方法:教师启发讲授和学生探究学习的教学方法 四、教学手段:板书与课件相结合 五、教学基本流程:

六、教学 情境设计(1学时): 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)(0='x f 。它的几何意义在于:若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。 2、引出定理,探究案例 微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括 四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。 定理 6.1 (罗尔(Rolle )中值定理) 若函数f 满足如下条件: (i)f 在闭区间[]b a ,上连续; (ii)f 在开区间()b a ,内可导; (iii)()()b f a f =, 则在()b a ,内至少存在一点ξ,使得 ()0='ξf . ()1 罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图6—1).

微积分的基本运算

第4章微积分的基本运算 本章学习的主要目的: 1.复习高等数学中有关函数极限、导数、不定积分、定积分、二重积分、级数、方程近似求解、常微分方程求解的相关知识. 2.通过作图和计算加深对数学概念:极限、导数、积分的理解. 3.学会用MatLab软件进行有关函数极限、导数、不定积分、级数、常微分方程求解的符号运算; 4.了解数值积分理论,学会用MatLab软件进行数值积分;会用级数进行近似计算. 1 有关函数极限计算的MatLab命令 (1)limit(F,x,a) 执行后返回函数F在符号变量x趋于a的极限 (2)limit(F,a) 执行后返回函数F在符号变量findsym(F)趋于a的极限 (3)limit(F) 执行后返回函数F在符号变量findsym(F)趋于0的极限 52

53 (4)limit(F,x,a,’left’) 执行后返回函数F 在符号变量x 趋于a 的左极限 (5)limit(F,x,a,’right’) 执行后返回函数F 在符号变量x 趋于a 的右极限 注:使用命令limit 前,要用syms 做相应符号变量说明. 例7 求下列极限 (1)42 20 x cos lim x e x x -→- 在MatLab 的命令窗口输入: syms x limit((cos(x)-exp(-x^2/2))/x^4,x,0) 运行结果为 ans =-1/12 理论上用洛必达法则或泰勒公式计算该极限: 方法1 =-+-=---=-- - →- →-→2 2 222 20 x 3 22 x 4 2 20 x 12cos lim 4) (sin lim cos lim x x e e x x x e x x e x x x x x 12112112)2(2 lim 1211cos lim 222 220x 2 2 22220 x -=--+=--++-- →- - →x x x e x x x x x e e x 方法2 4 42 224420x 4 2 20 x ))(2) 2()2(1()(!421lim cos lim x x o x x x o x x x e x x +-+---++-=-→- →

微分中值定理教案

微分中值定理 【教学内容】 拉格朗日中值定理 【教学目的】 1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义; 2、能应用拉格朗日中值定理证明不等式。 3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】 1、拉格朗日中值定理,拉格朗日中值定理的应用 2、拉格朗日中值定理证明中辅助函数的引入。 3、利用导数证明不等式的技巧。 【教学过程】 一、背景及回顾 在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。 另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。 由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若 函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 ③)()(b f a f = 则在()b a ,内至少存在一点c ,使得0)(' =c f 二、新课讲解 1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理, 但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容: 2.1拉格朗日定理 若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 则在开区间()b a ,内至少存在一点c ,使 ()()a b a f b f c f --= )(' 注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。 b 、若加上)()(b f a f =,则()()00 )(' =-=--= a b a b a f b f c f 即:0)('=c f ,拉格朗日定理变为罗尔 定理,换句话说罗尔定理是拉格朗日定理的特例。 c 、形象认识(几何意义),易知()()a b a f b f --为过A 、B

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。

一、引入新课: 通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌 握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什 么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数 的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第 六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.360docs.net/doc/dc16390244.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参 阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

微积分计算公式

§3-6 常用积分公式表·例题和点评 ⑴ d k x kx c =+? (k 为常数) ⑵1 1 d (1)1 x x x c μ μμμ+≠-= ++? 特别, 2 1 1d x c x x =- +?, 3 223 x x c = +? , x c =? ⑶ 1 d ln ||x x c x =+? ⑷d ln x x a a x c a = +?, 特别, e d e x x x c =+? ⑸sin d cos x x x c =-+? ⑹cos d sin x x x c =+? ⑺ 2 2 1 d csc d cot sin x x x x c x ==-+?? ⑻ 2 2 1 d sec d tan cos x x x x c x ==+?? ⑼arcsin (0)x x c a a =+>?,特别,arcsin x x c =+? ⑽2 2 1 1d arctan (0)x x c a a a a x = +>+?,特别, 21 d arctan 1x x c x =++? ⑾2 2 1 1d ln (0)2a x x c a a a x a x += +>--? 或 2 2 1 1d ln (0)2x a x c a a x a x a -= +>+-? ⑿ tan d ln cos x x x c =-+? ⒀cot d ln sin x x x c =+? ⒁ln csc cot 1csc d d ln tan sin 2x x c x x x x c x ?-+? = =?+?? ? ? ⒂πln sec tan 1 sec d d ln tan cos 24x x c x x x x c x ?++?= =?? ?++ ?????? ?

2-12微分在一元函数近似计算及误差计算中的应用

模块基本信息 一级模块名称 微分学 二级模块名称 应用模块 三级模块名称 微分在一元函数近似计算及误差计算中的应用 模块编号 2-12 先行知识 微分的概念 模块编号 2-11 知识内容 教学要求 掌握程度 1、微分的几何意义、误差的相 关定义 1、理解微分的几何意义、误差的相关定义 简单应用 2、简单函数的近似值和误差估计 2、会利用微分求简单函数的近似值和误差估计 能力目标 1、培养学生的理解能力 2、培养学生的对比类推能力 时间分配 45分钟 编撰 秦小娜 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:首先复习函数微分的相关知识,利用微分的几何意义,导出近似计算公式,给出误差估计。 特点:通过微分的几何意义,说明微分的近似计算公式,直观,更容易理解。 二、授课部分 (一)复习回顾 由微分的定义可知: 1、函数值得增量:0()y f x x x α'?=?+? 2、增量的主要部分:0()dy f x x '=? 3、近似相等:y dy ?≈ (二) 微分的几何意义 当?y 是曲线y =f(x)上的点的纵坐标的增量时, dy 就是曲线的切线上点纵坐标的相应增量. 当|?x |很小时, |?y -dy | 比 |?x |小得多. 因此在点M 的邻近,可以用切线段来近似代替曲线段.

由于0()tan dy f x x x α'=?=??,其中α为切线的倾斜角,而?y 是曲线y =f(x)上的点的纵坐标的增量,当|?x |很小时, |?y -d y |比|?x |小得多. 因此在点M 的邻近,可以用切线段来近似代替曲线段. (三)微分在近似计算中的应用 由0()y dy f x x '?≈=?有: f (x )≈ f (x 0)+f '(x 0)(x -x 0). (选讲)例1.利用微分计算sin 30?30'的近似值. 解: 已知30?30'360 6 ππ+=, 6 0π=x , 360 π=?x . sin 30?30'=sin(x 0+?x)≈sin x 0+?x cos x 0 360 6 cos 6 sin πππ?+= 5076.0360 232 1=?+=π. 即 sin 30?30'≈0. 5076. 例2.求05.1的近似值. 解: 已知 x n x n 111+≈+, 故 025.105.02 1105.0105.1=?+≈+=. 直接开方的结果是02470.105.1=. 例3.有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0. 01cm . 估计一了每只球需用铜多少g (铜的密度是8. 9g/cm 3)? 解: 已知球体体积为33 4R V π=, R 0=1cm , ?R =0. 01cm . 镀层的体积为 ?V =V (R 0+?R )-V (R 0)≈V '(R 0)?R =4πR 02?R =4?3. 14?12 ?0. 01=0. 13(cm 3). 于是镀每只球需用的铜约为 0. 13 ?8. 9 =1. 16(g ).

拉格朗日中值定理教案教案资料

拉格朗日中值定理教 案

拉格朗日中值定理教案 授课人:*** 一、教材分析 微积分学是高等数学的重要的部分,是近代数学的伟大成果之一。它为我 们研究函数和变量提供了重要的方法。微分中值定理(罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒定理等)是微分学的重要组成部分,在导数的应用中起着桥梁作用。 拉格朗日中值定理,建立了函数值和导数之间的定量联系,成为我们讨论 怎样由导数的已知性质推断函数所具有的性质的有效工具。 二、教学重点和难点 教学重点:学习罗尔定理,类比探求和理解拉格朗日中值定理。 教学难点:探求拉格朗日中值定理条件,运用定理研究函数单调性。 三、教学目标 1、通过学习罗尔定理,类比学习理解拉格朗日中值定理,培养学生分析,抽象,概括,迁移的学习能力。 2、通过学习定理,发现数学知识的融会贯通,培养数形结合的思想,以及严密的思维方法。 四、授课过程 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为 f 的极值点,则必有0)0 (='x f 。它的几何意义在于,若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。

2、新科讲授 首先看一个定理,可以看作是拉格朗日中值定理的引理。 (板书)罗尔定理:如果函数)(x f 满足 (1)在闭区间[]b a ,上连续; (2)在开区间()b a ,内可导; (3))()(b f a f = . 那么在()b a ,内至少存在一点ξ,使得函数在该点的导数等于零,即 0)(='ξf . 罗尔定理的几何意义在于:在每一点都可导的一段连续曲线上,如果曲线的两端高度相同,则至少存在一条水平切线。 如图,)(x f 的图像曲线弧AB ,点C 处的切线平行于x 轴,即0)(1='ξf 。 注 (1)点D 处也是符合定理结论的点 ,故应注意原定理中的至少存在一 点,而不是唯一存在的。 (2)定理的三个条件缺少任何一个,结论都会不一定成立; 接下来看下面三个函数的图像:

pflqbAAA微分中值定理教案

p f l q b A A A微分中值定 理教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

微分中值定理 【教学内容】 拉格朗日中值定理 【教学目的】 1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义; 2、能应用拉格朗日中值定理证明不等式。 3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】 1、拉格朗日中值定理,拉格朗日中值定理的应用 2、拉格朗日中值定理证明中辅助函数的引入。 3、利用导数证明不等式的技巧。 【教学过程】 一、背景及回顾 在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。 另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。 理的内容:若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 ③)()(b f a f = 则在()b a ,内至少存在一点c ,使得0)('=c f 二、新课讲解

1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容: 2.1拉格朗日定理 若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 则在开区间()b a ,内至少存在一点c ,使 ()()a b a f b f c f --= )(' 注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。 b 、若加上)()(b f a f =,则()()00 )('=-=--= a b a b a f b f c f 即:0)('=c f ,拉格朗日定理变 为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。 c 、形象认识(几何意义),易知()()a b a f b f --为过A 、 斜率,)('c f 为曲线)(x f 上过c 点的切线的斜率;若c f =)('切线的斜率。几何意义:若在闭区间[]b a ,则曲线上至少有一点))(,(c f c C ,使得过点C 的切线平行于割线AB 。它表明“一个可微函数的曲线段,必有一点的切线平行于曲线端点的弦。” 2.2 拉格朗日定理的证明 下面我们证明一下该定理。 分析:如何来证明该定理呢?由于罗尔定理为拉格朗日定理的特例,我们考虑是否可将拉格朗日定理的证明转化到罗尔定理上来,为此需要构造一个辅助函数)(x ?,使他满足罗尔定理的条件。注意罗尔定理的结果是0)('=c f ,对应拉格朗日定理的结果是

微积分计算方法

学号 1330101009 毕业论文 对概率积分解法的研究和讨论 院(系)名称:书信学院 专业名称:数学教育 学生姓名:李建鹏 指导教师:杜争光 二○一五年

摘要:文章给出了计算概率积分 2 x e dx ∞- -∞ ?的几种简便的计算方法;对以 后概率积分的研究和应用具有较好的帮助。 关键词:格林公式;奥高公式;重积分;含参变量 概率积分 2 x e dx ∞- -∞ ?是重要的积分之一,再数理方程、概率论等方面经 常用到,且有广泛的应用。而关于这个积分值的计算问题,有不少人讨论过,大多数方法要用到较深的预备知识,本文给出了几种所需预备知识而又简便的计算方法。

目录 方法一:二重积分法 (1) 方法二:三重积分法 (1) 方法三:线积分法 (2) 方法四:面积分法 (3) 方法五:含参变量的无穷积分法 (4) 方法六:二重积分证明法 (6) 参考文献: (8) 致谢: (9)

对概率积分2 x e dx ∞ --∞ ? 解法的研究和讨论 概率积分 2 x e dx ∞ --∞ ? 是重要的积分之一,再数理方程、概率论等方面经常用 到,且有广泛的应用。而关于这个积分值的计算问题,有不少人讨论过,大多数方法要用到较深的预备知识,本文给出了几种所需预备知识而又简便的计算方法。 方法一:二重积分法 现有连续函数 22() (,)x y f x y e -+=在正方形区域:(;)D a x a a y a -≤≤-≤≤; 圆域2 2 2 1:()R x y a +≤;圆域:2 222 :(2)R x y a +≤上的二重积分分别为12,,I I I , 即: 22 22 2 () () 2 ()a a a x y x y x a a a D I e d x d y d x e d y e d x -+-+----===????? 22 22 1 2() 10 .(1) a x y r a R I e d x d y d r e d r e πθπ-+--===-???? 2222 2 22() 220 .(1) a x y r a R I e dxdy d r e dr e πθπ-+--===-???? (用极坐标) 同时又因:1 2I I I ≤≤,故有 12 lim lim lim a a a I I I →∞ →∞ →∞ ≤≤,即有2 2 lim()a t a a e dt π--→∞ =? ,从而 2 x e dx π ∞ --∞ =? [] 4 方法二:三重积分法 首先我们把旋转体的体积概念推广到积分限无穷的情况。再设XOZ 平面上的曲线2 x Z e -=绕Z 轴旋转一周得到的曲面22() x y Z e -+=与平面XOY 围成 的体V 。显然,一方面,该体的体积 22() 2 2 () x y e x v V dxdydz dx dy dz e dx -+∞ ∞ ∞ --∞ -∞ -∞ ===?????? ? 另一方面,根据旋转体的体积公式有:

微分在近似计算中的应用教案

微分在近似计算中的应用 教学目的:1、理解微分的几何意义 2、掌握微分在近似计算的应用 3、掌握微分在误差估算的应用 教学重点:1、微分在近似计算的应用 2、微分在误差估算的应用 教学难点:1、微分在近似计算的应用 2、微分在误差估算的应用 教学过程:1、回顾函数微分内容,微分的概念,定义,以及微分的运算 2、导入新课 3、讲授新课 (1)1、理解微分的几何意义 (2)微分在近似计算的应用 (3)微分在误差估算的应用 4、例题分析 5、课堂小结 6、布置作业 微分在近似计算中的应用 在工程问题中,经常会遇到一些复杂的计算公式,如果直接用这些公式进行计算是很费力的,利用微分往往可以把一些复杂的计算公式改用简单的近似公式来代替。 1.函数增量的近似计算 如果()y f x =在0x 点可微,则函数的增量 0()()()y f x x o x dy o x '?=?+?=+?, 当||x ?很小时,有 0()y f x x '?≈? 例1 半径10厘米的金属原片加热后半径伸长了0.05厘米,问面积增大了多少? 解:设2A r π=,10r =厘米,0.05r ?=厘米,则 22100.05A dA r r πππ?≈=??=??=(2厘米) 例2 有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0.01cm ,估计一下每只球需用铜多少g (铜的密度是8.9g/cm 3)? 解: 先求出镀层的体积,再求相应的质量。 因为镀层的体积等于两个球体体积之差V ?,所以它就是球体体积343 V R π= 当R 自0R 取得增量R ?时的增量,我们求V 对R 的导数:

计算方法6_微分方程

习题6 6.1 试用三种方法导出线性二步方法 122+++=n n n hf y y 6.2 用Taylor 展开法求三步四阶方法类,并确定三步四阶显式方法. 6.3 形如 ∑=++=k i k n k j n j f h y 0βα 的k 阶方法称为Gear 方法,试确定一个三步Gear 方法,并给出其截断误差主项。 6.4 试用显式Euler 法及改进的Euler 法 )],(),([2 11n n n n n n n hf y t f y t f h y y +++=++ 6.5 给出线性多步法 ])13()3[(4 )1(212n n n n n f f h y y y +++=--++++αααα 为零稳定的条件,并证明该方法为零稳定时是二阶收敛的. 6.6 给出题(6.5)题中1=α时的公式的绝对稳定域. 6.7 指出Heun 方法 0 0 0 0 1/3 1/3 0 0 2/3 0 2/3 0 1/4 0 3/4 的相容阶,并给出由该方法以步长h 计算初值问题(6.45)的步骤. 6.8 试述刚性问题的基本特征,并给出s 级Runge-Kutta 方法为A -稳定的条件. 6.9 设有???=='00 )(),(y x y y x f y ,试构造形如 )()(11011--++++=n n n n n f f h y y y ββα 的二阶方法,并推导其局部截断误差首项。

6.10设有常微分方程初值问题???=='00 )(),(y x y y x f y 的单步法)],(2),([3 111+++++=n n n n n n y x f y x f h y y ,证明该方法是无条件稳定的。

微分中值定理教案

第二章一元函数微分学 §2.6 微分中值定理 【课程名称】《高等数学》 【授课题目】微分中值定理 【授课时间】2011年11月18日 【授课对象】2011级电子信息专业 【教学内容】本节课所将要学习的主要内容是微分中值定理中的核心定理——拉格朗日(Lagrange)中值定理,罗尔(Rolle)定理可以看成是拉格朗日中值定理的特殊情形,而柯西(Cauchy)中值定理则是拉格朗日中值定理推广。 微分中值定理揭示的是函数在某个区间的整体性质与该区间内某一点处的导数之间的关系,因而称为中值定理。它是几个定理的统称。 微分中值定理也是微分学的理论基础,微分学的很多重要的应用都是建立在这个基础之上,后面将要讨论的洛必达(L’hospital)法则、泰勒(Taylor)公式、函数的增减性与极值等都要用到微分中值定理。 【教学目标】 1、使学生掌握拉格朗日中值定理,熟练运用拉格朗日中值定理证明恒等式、不等式以及方程根的存在性等; 2、使学生在掌握拉格朗日中值定理的同时,能联系前后学习的内容进行层次归纳与总结,形成系统的知识层次与结构; 3、使学生经历拉格朗日中值定理的完整的研究过程,体会数学研究与数学应用的乐趣,发展应用意识和解决问题的能力。 【教学重点】微分中值定理中的拉格朗日中值定理及其应用。 【教学难点】微分中值定理中拉格朗日中值定理的证明。 【教学方法及手段】以启发式讲授为主,采用多媒体辅助演示。

§2.6.2 拉格朗日中值定理 一、内容回顾 定理1(Rolle )若函数()f x 满足条件 (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()()f a f b =。 则至少存在一点(,)a b ξ∈,使得()0f ξ'=。几何意义:在定理的条件下,区间(,)a b 内至少存在一点ξ,使得曲线在点((,())f ξξ处具有水平切线。 二、拉格朗日中值定理 定理2(Lagrange )设函数()f x 满足条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; 则在(,)a b 内至少存在一点ξ, 使得 ()()()f b f a f b a ξ-'= -。 或写成 ()()()()f b f a f b a ξ'-=-。 上述公式称为拉格朗日中值公式,且对于b a <也成立。 几何意义:如果连续曲线()y f x =上除端点外处处具有不垂直于x 轴的切线,则在曲线弧A B 上至少存在一点 ((,())f ξξ,在该点处曲线的切线平行于弦A B 。 (幻灯片1) 板书标题 (幻灯片2) 首先回顾前面所 学习的内容,然 后通过提问引入 新课的内容:微 分中值定理的核 心内容---拉格 朗日(Lagrange ) 中值定理。 (幻灯片3) 【本节重点】 板书定理内容 解释定理的条 件及结论,指出 定理条件的一 般性。 (幻灯片4为 Lagrange 生平简 介。) (幻灯片5) 借助于多媒体, 图文并茂地解释 定理几何意义。

高数微分公式

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-1/2[ cos(α-β)-cos(α+β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2 只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。 3诱导公式: 记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割 即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的) 1 ο45 2 1 ο45 1 2 ο30 ο60 3

常微分计算题及解答

常微分计算题及解答 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

计 算 题(每题10分) 1、求解微分方程2 '22x y xy xe -+=。 2、试用逐次逼近法求方程 2y x dx dy +=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解 4、求方程组d x d t y d y d t x y ==+?????2的通解 5、求解微分方程24y xy x '+= 6、试用逐次逼近法求方程 2y x dx dy -=通过点(1,0)的第二次近似解。 7、求解方程''+-=-y y y e x '22的通解 8、求方程组dx dt x y dy dt x y =+=+?????234的通解 9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程 2y x dx dy -=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解 12、求方程组dx dt x y dy dt x y =+=+?????2332的通解 13、求解微分方程()x x y y e '-= 14、试用逐次逼近法求方程 22x y dx dy +=通过点(0,0)的第三次逼近解. 15、求解方程22x y y y e -'''+-=-的通解 16、求解方程 x e y y y -=-+''32 的通解 17、求方程组?????-+=-+=y x dt dy dt dx x y dt dy dt dx 243452的通解18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程 2dy x y dx =-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ????.

拉格朗日中值定理教案

拉格朗日中值定理教案 授课人:*** 一、教材分析 微积分学是高等数学的重要的部分,是近代数学的伟大成果之一。它为我们研究函数和变量提供了重要的方法。微分中值定理(罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒定理等)是微分学的重要组成部分,在导数的应用中起着桥梁作用。 拉格朗日中值定理,建立了函数值和导数之间的定量联系,成为我们讨论怎样由导数的已知性质推断函数所具有的性质的有效工具。 二、教学重点和难点 教学重点:学习罗尔定理,类比探求和理解拉格朗日中值定理。 教学难点:探求拉格朗日中值定理条件,运用定理研究函数单调性。 三、教学目标 1、通过学习罗尔定理,类比学习理解拉格朗日中值定理,培养学生分析,抽象,概括,迁移的学习能力。 2、通过学习定理,发现数学知识的融会贯通,培养数形结合的思想,以及严密的思维方法。 四、授课过程 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)0(='x f 。它的几何意义在于,若函数)('x f 在=x 0x 可导, 那么在该点的切线平行于x 轴。 2、新科讲授

首先看一个定理,可以看作是拉格朗日中值定理的引理。 (板书)罗尔定理:如果函数)(x f 满足 (1)在闭区间[]b a ,上连续; (2)在开区间()b a ,内可导; (3))()(b f a f = . 那么在()b a ,内至少存在一点ξ,使得函数在该点的导数等于零,即0)(='ξf . 罗尔定理的几何意义在于:在每一点都可导的一段连续曲线上,如果曲线的两端高度相同,则至少存在一条水平切线。 如图,)(x f 的图像曲线弧AB ,点C 处的切线平行于x 轴,即0)(1='ξf 。 注 (1)点D 处也是符合定理结论的点 ,故应注意原定理中的至少存在一点,而不是唯一存在的。 (2)定理的三个条件缺少任何一个,结论都会不一定成立; 接下来看下面三个函数的图像: ()() [] 3,03 ) 3(]1,1[)2(0 11,00,1)1(2∈-=-∈=???? ?=∈=x x y x x y x x x y Y

微分概念及其运算

§2 微分概念及其运算 设()y f x =在x 点可导,即下面的极限存在: '()f x =0lim x y x ?→??=0lim x ?→()()f x x f x x +?-? 因此 y x ??='()f x +α,其中0α→(0x ?→), 于是 y ?='()f x x x α?+?='()()f x x o x ?+?,0x ?→ (函数的增量y ?=(x ?的线性函数)+)(x o ?) 物理意义:如果把()y f x =视为时间x 时所走过的路程, x ?时间内所走过的路程y ? =以匀速()f x '运动所走过的路程()f x 'x ? +因为加速度的作用而产生的附加路程)(x o ? 定义 4.2 设()y f x =在(,)a b 有定义,如果对给定的x ∈(,)a b ,有 y ?=()f x x +?-()f x =A x ?+()o x ?,(0x ?→) 其中A 与x ?无关,则称()f x 在x 点可微,并称A x ?为函数()f x 在x 点的微分,记为 dy =A x ? 或 ()df x =A x ? 由前面的讨论得 微分具有两大重要特征: 1) 微分是自变量的增量的线性函数; 2) 微分与函数增量y ?之差dy y -?,是比x ?高阶的无穷小量. 因此,称微分dy 为增量y ?的线性主要部分。 事实上当dy 0≠时 ()f x 在x 点可导?()f x 在x 点可微

0lim x y dy ?→?=0lim x ?→()dy o x dy +?=0lim x ?→()(1)o x A x ?+?=1 即y ?与dy 是等价无穷小量。 注1 系数A 是依赖于x 的,它是x 的函数, 注2 微分dy 既与x 有关,又与x ?有关,而x 和x ?是两个互相独立的 变量,但它对x ?的依赖是线性的. 例1 自由落体运动中,21()2 s t gt = s ?=()()s t t s t +?-=2211()22g t t gt = +?- 21(2())2g t t =+?=21()2 gt t g t ?+? 即s ?可表为t ?的线性函数和t ?的高阶无穷小量之和,由微分定义知,()s t 在t 点可微,且微分 ds gt t =? 它等于以匀速()s t '=gt 运动,在t ?时间内走过的路程. 例2 圆面积2y R π=, y ?=2()R R π+?一2R π=22()r R R ππ?+?. y ?可表示为R ?的线性函数与R ?的高阶无穷小之和,故函数在R 可微,且微分 2dy R R π=? 从几何上看,微分可以这样理解: R π2是圆周长,当半径R 变大即圆面积膨胀时,设想圆周长保持不变,半径增大R ?所引起的圆面积变化就是2R R π?。 这就是圆面积的微分,它与R ?成正比,与圆面积真正的变化之差是较R ?高阶的无穷小,当然圆不可能保持周长不变而膨胀,这只是一种设想而已,但当R ?很小时,两者之差就更小了。 例3 设正方形的边长为x ,则面积为 2 ()f x x =

相关文档
最新文档