第七章 抽样估计
第七章 抽样调查技术

13
一、简单随机抽样
(一)具体操作步骤:
第一,对总体的每个单位进行编号,总体单位数 为10,000的总体可编为00 001到期10,000号;
第二,在随机数码表(一般的数理统计书中都有 此表)中从任意一个编号数开始,向上、向下或 跳跃选取编号,在00 001和10,000之间选出200个 (样本单位数);
5
2015/12/22
(二)样本总体
概念: 也称抽样总体(sampled population)或者“子 样”、“样本”,是指从全及总体中抽取出来的 单位集合。 大样本与小样本: 样本总体通常是有限总体,它所包含的的总 体单位数目称为样本容量(通常用英文字母n来表 示)。一般来说,样本单位数达到或者超过30个 称为大样本,而在30个以下的称为小样本。
第二,等距抽样的效率取决于对总体进行 排列时所使用的标志值。在等距抽样中, 调研人员假设总体是有序的。
2015/12/22
23
三、分层抽样
(一)分层抽样的具体步骤 (二)分层抽样的方法 (三)分层指标的选择 (四)分层抽样的优缺点 (五)分层抽样适用的范围
2015/12/22
24
假如我们要进行北京市居民家用电器的拥 有状况调查,采用整群抽样方法,那么, 我们在北京市3,600个居民委员会中随机抽 取20个居委会,这20个居委会中的所有户都 成为我们的调查样本。
2015/12/22
32
(二)采用整群抽样的原因
原因一:当缺少基本单位的名单而难以 直接从总体中抽取所要调查的基本单位。 原因二:即使容易获得个体的抽样框, 但从费用上考虑,直接从个体抽样获得 的样本可能比较分散。 原因三:采用整群抽样是抽样调查本身 目的的需要。 原因四:如果某些总体的各个子总体之 间的差异不大。
(抽样检验)第七章整群抽样

第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。
《统计学原理》课件第七章抽样调查

第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序
研
究 原
总体分布 样本分布 抽样分布
理
一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析
第七章 抽样推断

x x X x x
第七章 抽样推断
p p P p p
合适统计量 的估计值 合理的允 许误差 可接受的 置信度水平
t
概率度
5-40
• 区间估计的三要素 估计区间覆盖 总体参数真值 的概率 F(t)
• 区间估计的特点: • 不指出参数的确定数值,而是在一定的概 率保证程度下指出参数的可能范围。 • 估计的可靠程度可知,即为概率保证程度
X
区间估计的两个基本要求: 置信度 精确度
• 希望置信度尽可能大,精确度尽可能高。 • 但在样本容量n一定时,两者矛盾。
一般在给定的概率保证程度下,尽可能 提高估计的精度(通过降低标准误)。
第七章 抽样推断
抽样极限误差(精度) 与概率保证程度(可靠程度) 99.73%
95.45% 68.27%
3 x 2x x
抽样推断包括三方面的内容:
1、抽样。按照随机原则从总体中抽取部分调查 单位(样本)。
2、 构造统计量 。对样本资料进行加工计算, 获得既能反映样本特征又能用于推断总体的样本数 据。 3、推断。运用概率估计方法,以一定的可靠 性推断总体指标数值。
二、抽样推断的特点 1、按随机原则抽取样本单位 2、用部分推断总体 3、抽样推断的误差可以事先计算并加以控 制 4、运用概率估计方法
实际上就是对估计量可允许取的最高值或最 低值进行了限制
ˆ ˆ Biblioteka 例子• 要估计某乡粮食亩产,从8000亩粮食作物中,用不 重复抽样抽取400亩,求得平均亩产为450公斤。如 果确定抽样极限误差为5公斤,这就要求某乡粮食 亩产为450〒5公斤,即在445公斤到455公斤之间。
x
i 1 n
(标准抽样检验)第七章整群抽样

(标准抽样检验)第七章整群抽样第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。
确切地说,这种抽样组织形式应称为单级整群抽样。
如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。
本章只讨论单级整群抽样。
设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。
当诸Mi都相等时,称为等群;否则,称为不等群。
采用整群抽样的两个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。
整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。
如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。
或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。
群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。
二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。
同分层抽样一样,整群抽样的前提是先要对总体进行分群。
关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。
分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。
这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。
而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。
第七章 抽样推断 (《统计学》PPT课件)

接作为相应全及指标的估计值。
2.定义:设x_
表示总体平均数
__
X
的估计值,p^ 表示
总体成数P的估计值,则有:
__ _
X x
或
^
Pp
27
第四节 抽样估计
二、总体参数的点估计
3. 性质:
用抽样指标估计总体指标时,要求抽样指标
的平均数等于被估计的总体指标;E(
_
x)
__
X
_
E( p) P
用抽样指标估计总体指标时,要求当样本容 量n充分大时抽样指标充分靠近总体指标;
6
第一节 抽样推断概述
二、有关抽样的基本范畴
2.指标
:根据全及总体各个单位的标志值或标 志特征计算的,用来反映全及总体某种属性的综合 指标;
:由样本总体各单位标志值或标志特征 计算出的综合指标。
注:对于一个确定的问题,全及指标是唯一的, 样本指标不是唯一确定的,即样本指标的随机变量。
7
抽样推断
2.种类:
根据抽样资料计算样本指标,并以此直接作 为相应全及指标的估计值;
根据给定的概率保证程度的要求,利用实 际抽样资料,求出总体被估计值的上限和下限,即给 出总体参数可能存在的区间范围,而不是直接给出总 体参数的估计值。
26
第四节 抽样估计
二、总体参数的点估计
根据抽样资料计算样本指标,并以此直
n
N
22
第三节 抽样误差
三、抽样极限误差
在抽样推断中可允许的误差范围,等于样本指 标可允许变动的上限或下限与总体指标之差的绝对值。
2.计算公式:
_ __
_
__ _
抽样平均数极限误差: 或
_ x- X
第七章 抽样推断与检验
n Z 22 P ( 1 P ) 2 p
(三)总体方差的区间估计
▪ 总体均值已知时,总体方差的区间估计
2
( xi )2 2
2(n)
P (1 2 (n) 2 ) 1
P(
2 (n)
1 )
P(
2 (n)
2 )
2
1
2 1
(n), 2
一定误差的要求下选择费用最小。或者一定 费用开支条件下,选择误差最小。
二、抽样的组织设计
(一)简单随机抽样(Simple random sampling):直接从总体N个单位中抽取n
个单位作为样本,也称单纯随机抽样。
(二)类型抽样(Stratification sampling): 又称分层抽样,对总体单位按主要标志分 组,再从各组中按随机的原则按比例抽选 一定单位构成样本。不存在组间误差。
▪ 抽样推断(sampling inference)是在抽样调查的 基础上,利用样本的实际资料计算样本指标,并据 以推算总体相应数量特征的一种统计分析方法。
▪ 特点: 1. 抽样推断是建立在随机取样的基础上,坚持抽取的
随机原则,增强被抽中单位对总体的代表性。
2. 抽样推断是由部分推算整体的一种认识方法。 3. 抽样推断以概率论中的大数法则和中心极限定理为
2
(n)
2
2
P
(
2 1
(n)
2 (n)
2
(n))
1
2
2
P
(x 2 i( n))22
2
(1 2 x i2 (n ))2 1
▪ 总体均值未知时,总体方差的区间估计
2
第七章 抽样推断
不重复抽样样本平均数的抽样分布
❖ 1.样本平均数的平均 数(数学期望)等于总 体平均数。
xX
❖ 2.样本平均数的方差 等于总体方差的1/n乘 以修正因子。
2
2
Nn
x n N1
❖ 二、抽样推断的理论依据
❖ 1.大数定律(大数法则)
❖ 大数法则证明:如果随机变量总体存在着有限 的平均数和方差,则对于充分大的样本单位数n, 可以用几乎趋近于1的概率,来期望样本平均数 与总体平均数的绝对离差为任意小,即对于任意
❖ 样本可分为大样本和小样本。若n<30,则称为 小样本。否则称为大样本。一般,社会经济现象 都是大样本。自然实验多是小样本。
❖ 研究对象一经确定,则总体也就唯一确定了。 但作为观察对象的样本就不是这样的。从一个总 体中可以抽取很多个样本,每次可能抽到哪个样 本不是确定的,也不是唯一的。
❖ 三、随机原则和随机性
❖ 四、整群抽样
❖ 整群抽样是将总体分为若干群,并尽量使这些 群之间没有明显的类别差异,然后,以群为单位, 在这些群中随机地抽取一个或几个群作为样本, 样本包括被抽中群中的全部单位。
❖ 假定将总体分为m群,从中抽取k群,则每个个 体中选的概率为k/m。
❖ 整群抽样适用于总体容量很大的情况,一般多 用于居民家计调查,农产量调查和大量产品的质 量检验等等。
解:平均身高的抽样平均误差:
s 5 0.35c4m
x n 200
近视率的抽样平均误差 :
p=n1/n=156/200=78%
pp (1 n p )0 .7 2 8 (1 0 0 .70 )8 0 .02 2 9 .9% 3 3
❖ 若上例是从1000人中采用不重复抽样方式 抽取的200人,则其抽样平均误差为: