解直角三角形及其应用(1)

合集下载

解直角三角形及其应用

解直角三角形及其应用

第25课时┃ 解直角三角形及其应用
方法模型 (1)若求边,一般用未知边比已知边,去寻找已知角 的某个三角函数值; (2)若求角,一般用已知边比已知边(斜边放在分母 上),去寻找未知角的某个三角函数值.
第25课时┃ 解直角三角形及其应用
热考2 解有关高度(宽度)的问题 例 2 如图 25-2,在一次户外研学活动中,老师带领学生去测 一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之 间的垂线段的长度).某同学在河南岸 A 处观测到河对岸水边有一 棵树 P,测得 P 在 A 北偏东 60°方向上,沿河岸向东前行 20 米到 达 B 处,测得 P 在 B 北偏东 45°方向上.求河宽(结果保留一位 小数 2≈1.414, 3≈1.732).
如果某人沿坡度 i=1∶3 的斜坡前进 10 m,那 么他所在的位置比原来的位置升高了___1_0____m.
图 25-3
第25课时┃ 解直角三角形及其应用
解:方案一: (1)示意图如图①所示:
选用工具:测角仪、皮尺. (2)①用测角仪测出∠ACE的角度; ②用皮尺测量DB的长;
③AE=DBtan∠ACE;
④AB=AE+1.5.
第25课时┃ 解直角三角形及其应用
方案二 (1)示意图如图②所示.
选用工具:长为2 m的标杆、皮尺. (2)①把2 m的标杆EF按如图所示的方式放置;
答:河宽约为27.3米.
第25课时┃ 解直角三角形及其应用
如图 25-3,为了测量某电线杆(底部可到达)的
高度,准备了如下的测量工具:①平面镜;②皮尺;③长为 2 m 的标杆;④高为 1.5 m 的测角仪(测量仰角、俯角的仪器).请
根据你所设计的测量方案,回答下列问题: (1)画出你的测量方案示意图,并根据你的测量方案写出你所 选用的测量工具; (2)结合你的示意图,写出求电线杆高度的思路.

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°

2020年浙江中考数学一轮课件:35第九章 第二节解直角三角形及其应用

2020年浙江中考数学一轮课件:35第九章 第二节解直角三角形及其应用

【分析】根据方向角的定义即可得到结论. 【自主解答】由图可得,目标A在南偏东75°方向5 km处,故选D.
例5 (2019·宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400 米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方 向的B处,则此时这艘船与哨所的距离OB约为________米.(精确到1米,参 考数据: ≈1.414, ≈1.732)
墙PM是否需要拆除?请说明理由.
解:(1)∵新坡面坡角为α,新坡面的坡度为
(2)该文化墙PM不需要拆除. 理由如下: 如图,作CD⊥AB于点D,则CD=6米.
易错易混点一 构造直角三角形解三角函数问题
例1 如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都 在格点上,则sin∠ACB的值为( )
解:(1)如图,过点C作CE⊥BD于点E,
则有∠DCE=18°,∠BCE=20°, ∴∠BCD=∠DCE+∠BCE=18°+20°=38°.
(2)由题意得,CE=AB=30(m), 在Rt△CBE中,BE=CE·tan 20°≈10.80(m), 在Rt△CDE中,DE=CE·tan 18°≈9.60(m), ∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m). 则教学楼的高BD约为20.4 m.
考点二 利用解直角三角形解决测量问题
【要点知识拓展】 已知角度及其三角函数值时,可以构造直角三角形,通过解直角三角形帮 助解决长度计算问题.
例2 (2019·金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简 易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°, 则此时观察楼顶的仰角度数是________.
解:如果渔船不改变航线继续向东航行,没有触礁的危险. 理由如下:如图,过点A作AD⊥BC,垂足为D, 根据题意可知∠ABC=30°,∠ACD=60°. ∵∠ACD=∠ABC+∠BAC,∴∠BAC=30°=∠ABC, ∴CB=CA=20. 在Rt△ACD中,∠ADC=90°,∠ACD=60°,

2022中考数学第一轮考点系统复习第四章三角形第19讲解直角三角形及其应用讲本课件

2022中考数学第一轮考点系统复习第四章三角形第19讲解直角三角形及其应用讲本课件

AB=AC=10,BC=12,则tan∠OBD的值是( )A
1 A.
B.2
C. 6
D.
6
2
3
4
命题点2 解直角三角形的应用
5.(2021·十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆EC的高度
,已知他与旗杆之间的水平距离BC为15 m,AB为1.5 m(即小明的眼睛与地
面的距离),那么旗杆EC的高度是( D)
2 3
2 3.
CD 2 3 (2 3)(2 3)
类比这种方法,计算tan22.5°的值为( B )
A. 2+1 C. 2
B. 2-1
1 D. 2
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月12日星期六下午2时3分37秒14:03:3722.3.12 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午2时3分22.3.1214:03March 12, 2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月12日星期六2时3分37秒14:03:3712 March 2022
谢谢观赏
You made my day!
在Rt△BCE中,BE=CE·tan∠BCE=6×tan60°= 6 3(m) .
在Rt△AFD中,∠AFD=45°,∴AD=DF=(3 3 +6)m, ∴AB=AD+DE-BE=3 3+6+2 3-6 3=6- 3 ≈4.3(m).
答:宣传牌的高度AB约为4.3m.
命题点1 直角三角形的边角关系
△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为( D )

人教版初中数学九年级下册 28.2 解直角三角形课件1 【经典初中数学课件】

人教版初中数学九年级下册 28.2 解直角三角形课件1 【经典初中数学课件】

∠BCA=900, ∠CAB=300
∴BC=AB·sin∠CAB
=14·sin300=14×1/2=7
∴ ∠1=600
∠2=300

600
A
M C
1 2 150
B

在Rt⊿BCM中,BC=7 ∠CBM=∠2+150=450, ∴∠M=900- ∠CBM=450 ∴ CM=BC=7
B M C2 M B 2 C 7 2 7 2 72


C
A
(三)练一练
如图所示,一渔船上的渔民在A处看见灯塔M在北偏东
60°方向,这艘渔船以28海里/时的速度向正东航行,半
小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯
塔M与渔船的距离是 (
)
A7. 2海里 B. 1海4 里2 C.7海里 D.14海里
解:作BC⊥AM,垂足为C.
在Rt⊿ABC中,AB=28×1/2=14
答:船与灯塔的距离为:7 2 海里
(四)挑战自我
【 例 3】某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B处,经16小时的航行到达,到达后 必须立即卸货.此时,接到气象部门通知,一台风中心正 以40海里/时的速度由A向北偏西60°方向移动,距台风 中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货 物?(供选用数据:
回顾与思考
1.在Rt△ABC中,∠C=90°,BC= a,AC=b,AB=c,
则 sinA=
,sinB=
,cosA=

cosB=
, tanA=
, tanB=

华师版九年级上册数学作业课件 第24章解直角三角形 解直角三角形 第1课时 解直角三角形及其简单应用

华师版九年级上册数学作业课件 第24章解直角三角形 解直角三角形 第1课时 解直角三角形及其简单应用
夹角 ° ° ° ° A.甲 B.乙 C.丙 D.丁
16.(2018·齐齐哈尔)四边形 ABCD 中,BD 是对角线,∠ABC=90°,tan ∠ABD=43,AB=20,BC=10,AD=13,则线段 CD= 17 或 89 .
17.如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 3,求 AB 的长.
解:(1)sin2A1+cos2A1=(12)2+( 23)2=14+34=1,sin2A2+cos2A2=( 12)2+( 12)2=12+ 12=1,sin2A3+cos2A3=(35)2+(45)2=295+1265=1,故答案为:1,1,1 (2)1 (3)在图②中,∵sinA=ac,cosA=bc,且 a2+b2=c2,则 sin2A+cos2A=(ac)2+(bc)2 =ac22+bc22=a2+c2b2=cc22=1,即 sin2A+cos2A=1

Rt △ BCH



BC

12


B

30
°


CH

1 2
BC

6

BH
BC2-CH2 = 6
3,在
Rt △ ACH


tanA

3 4

CH AH


AH

8


AC
AH2+CH2=10,∴AB=AH+BH=8+6 3
知识点三:解直角三角形的简单应用 9.(2018·宜昌)如图,要测量小河两岸相对的两点 P,A 的距离,可以在小 河边取 PA 的垂线 PB 上的一点 C,测得 PC=100 米,∠PCA=35°,则小河宽 PA 等于( C ) A.100sin35° 米 B.100sin55° 米 C.100tan35° 米 D.100tan55° 米

28.2.1 解直角三角形 课件(共16张PPT) 2024-2025学年数学人教版九年级下册

2
1
x x 52.
3
2
C
A
合作探究
15 2
15 2
x1
, x2
(舍去)
.
4
4
B
∴ AB的长为 15 2 .
4
C
A
典例精析
例1 在 Rt△ABC 中,∠C = 90°,a,b,c 分别是∠A,∠B,∠C 的对边,
则下列各式正确的是( C )
A. b = a·tanA
<
>
m
<
>
/m
已知 = , = ,则 的值为____.
课堂总结
勾股定理
依据
两锐角互余
锐角的三角函数
解直角三角形
解法:只要知道五个元素中的两
个元素(至少有一个是边),就
可以求出余下的三个未知元素
/m
随堂练习
2.如图,在 △ 中, = , = , = ,则 的值为( C
2)
@

A. <
><
m
>
/m


B. <
><
m
>
/m


C. <
><
m
>
/m


D. <
></m
m
>

3.在 △ 中, ∠ = ∘ , ∠ , ∠ , ∠ 所对的边分别为 , , ,
sin B , c
sin B sin 35
c
a
C
合作探究

解直角三角形及其应用

(1)三角关系: <m></m> _____;
(2)三边关系: ;
(3)边角关系: <m></m> ; <m></m> ______; <m></m> __ <m></m> ;
(4)在 中,五个量 , , , , ,知道两个(其中含一边),即可根据三边关系、三角关系或边角关系公式求解出其他三个量.
(2013年考查)
求 长:
续表
1.在 中, , , ,则直角边 的长是( )A. B. C. D.
2.如图,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,则 ( )
第2题图
A. B. C. D.
第四章 三角形
命题点10 解直角三角形及其应用(必考)
2022版课标要求
1. 利用相似的直角三角形,探索并认识锐角三角函数 ,知道 , , 角的三角函数值;
2. 会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角;
3. 能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题;
求 长:
常见模型
关系式
(2015年考查) (2022年考查)
求 长:
续表
常见模型
关系式
(2016年考查) (2020年考查)
求 长:
续表
常见模型
关系式
.
求 长:


3.若锐角 满足 ,则 的度数是( )A. B. C. D.

4.如图,要测量小河两岸相对的两点 , 的距离,可以在小河边取 的垂线 上的一点 ,测得 , ,则小河宽 为( )

解直角三角形及其应用


l
α为坡角
h
α
l

α =tan
垂 线
仰角 俯角
水平线
视线
(3)方位角

A
30°
西
O

45°
B

二、题型探究:
问题导入1: 直接考查解直角三角形知识 例 1 如图 X3-1,在△ABC 中,∠A=30°,∠B=45°,
AC=2 3,求 AB 的长.
图 X3-1
例2: 如图,为了测出某塔CD的高度,在塔前的平地上选 择一点A,用测角仪测得塔顶D的仰角为30°;在A、C之间 选择一点B(A、B、C三点在同一直线上),用测角仪测得塔 顶D的仰角为75°,且A、B间的距离为40 m.求塔高CD(结 果用根号表示).
考点聚焦
归Hale Waihona Puke 探究回归教材三、综合运用
A
D
4
B
CQ E
总结:本节课你学到了那些知识?
作业:完成练习册P130-131(2,3,4, 5)
中考探究:
D A
B
C
专题复习 解直角三角形及应用
一、知识点回顾:
1.两锐角之间的关系:
∠A+∠B=900
解 2.三边之间的关系:
直 a2+b2=c2
角 三 角

sinA=
a c

3.边角之间
cosA=
b c
的关系
tanA=
a b

c a
bC
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
视线
h
(2)坡度 i =

2023年数学中考试题精选:解直角三角形应用(一)

1.(2023.营口21题)为了丰富学生的文化生活,学校利用假期组织学生到素质教育基地A和科技智能馆B参观学习,学生从学校出发,走到C处时,发现A位于C的北偏西25°方向上,B位于C的北偏西55°方向上,老师将学生分成甲乙两组,甲组前往A地,乙组前往B地,已知B地在A的南偏西20°方向上,且相距1000米,请求出甲组同学比乙组同学大约多走多远的路程。

(参考数据:√2≈1.41,√6≈2.45)2.(2023.本溪铁岭辽阳22题)暑假期间,小明与小亮相约到某旅游风景区登山.需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B,D,E,F 在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)3.(2023.大连21题)如图所示是消防员攀爬云梯到小明家的场景,已知AE⊥BE,BC⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?(结果保留整数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)4.(2023.贵州省22题)贵州旅游资源丰富,某景区为给游客提供更好的游览体验,拟在如图1景区内修建观光索道,设计示意图如图2所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m,索道AB与AF的夹角为15°,CD与水平线夹角为45°,A,B两处的水平距离AE为576m,DF⊥AF,垂足为点F. (图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档