高中数学 第一章 常用逻辑用语章末综合检测 苏教版选修1-1

合集下载

高中数学 第一章 常用逻辑用语 1.1.1 四种命题作业 苏教版选修1-1

高中数学 第一章 常用逻辑用语 1.1.1 四种命题作业 苏教版选修1-1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题1.1.1 四种命题[基础达标]1.下列语句:①2是无限循环小数;②x2-3x+2=0;③当x=4时,2x>0;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上.其中不是命题的是________.解析:①是命题,能判断真假.②不是命题,因为语句中含有变量x,在没给变量x赋值前,我们无法判断语句的真假.③是命题,能作出真假判断的语句,是一个真命题.④不是命题,因为并没有对垂直于同一条直线的两条直线是否平行作出判断.⑤是命题,是假命题,因为1既不是合数也不是质数.⑥不是命题,没有作出判断.答案:②④⑥2.命题“若a>b,则2a>2b-1”的否命题为________.解析:∵“a>b”的否定是“a≤b”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a≤b,则2a≤2b-1”.答案:若a≤b,则2a≤2b-13.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四个命题中真命题的个数为________.解析:原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1”是真命题.答案:44.给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.解析:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为:“如果△ABC为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则3a>3b>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若方程mx2-2(m+1)x+(m-3)>0的解集为R,则m>1”,不妨取m=2验证,当m=2时,有2x2-6x-1>0,Δ=62-4×2×(-1)>0,其解集不为R,故为假命题.答案:①②③5.命题“若α=π4,则tan α=1”的逆否命题是________. 解析:逆否命题是以原命题的结论的否定作条件,条件的否定作结论.因此逆否命题为:若tan α≠1,则α≠π4. 答案:若tan α≠1,则α≠π46.命题“若A =60°,则△ABC 是等边三角形”的否命题为“若A ≠60°,则△ABC 不是等边三角形”为________命题.(填“真”或“假”)解析:“若A =60°,则△ABC 是等边三角形”的逆命题为“若△ABC 是等边三角形,则A =60°”,逆命题为真命题,所以否命题为真命题.答案:真7.写出下列命题的逆命题、否命题和逆否命题.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y =ax 2+bx +c 中,b 2-4ac <0,则该函数图象与x 轴有公共点.解:(1)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补;否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形;逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.(2)逆命题:若二次函数y =ax 2+bx +c 的图象与x 轴有公共点,则b 2-4ac <0;否命题:若在二次函数y =ax 2+bx +c 中,b 2-4ac ≥0,则该函数图象与x 轴无公共点;逆否命题:若二次函数y =ax 2+bx +c 的图象与x 轴无公共点,则b 2-4ac ≥0.8.已知命题p :lg(x 2-2x -2)≥0;命题q :|1-x 2|<1.若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解:∵lg(x 2-2x -2)≥0,∴x 2-2x -2≥1,∴x ≤-1或x ≥3,设集合P ={x |x ≤-1或x ≥3}.∵|1-x 2|<1,∴-1<x 2-1<1,∴0<x <4. 设Q ={x |0<x <4},∵p 是真命题,q 为假命题,∴P ∩(∁ R Q )={x |x ≤-1或x ≥4},∴实数x 的取值范围为(-∞,-1]∪[4,+∞).[能力提升]1.已知命题p :x 2-x ≥6或x 2-x ≤-6,q :x ∈Z ,且p 假q 真,则x 的值为________. 解析:因为p 假q 真,所以⎩⎪⎨⎪⎧ x 2-x <6x 2-x >-6x ∈Z⇒⎩⎪⎨⎪⎧ x 2-x -6<0x 2-x +6>0x ∈Z ⇒⎩⎪⎨⎪⎧ -2<x <3x ∈R x ∈Z .故x 的取值为-1,0,1,2.答案:-1,0,1,22.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧ a <0Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0.答案:[-3,0]3.命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0.逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.4.(创新题)已知命题p :函数f (x )=1-x 3,实数m 满足不等式f (m )<2,命题q :实数m 使方程2x +m =0(x ∈R )有实根.若命题p 、q 中有且只有一个真命题,求实数m 的范围.解:f (x )=1-x 3,又f (m )<2, ∴1-m 3<2,∴-5<m ,∴p :m >-5. 因为方程2x +m =0(x ∈R )有实根,且2x >0,∴m <0,∴q :m <0.若命题p 、q 中有且只有一个真命题,存在两种情况:(1)当p 为真命题,q 为假命题时,⎩⎪⎨⎪⎧ m >-5m ≥0,∴m ≥0, (2)当q 为真命题,p 为假命题时,⎩⎪⎨⎪⎧ m ≤-5m <0,∴m ≤-5.综上,当命题p 、q 中有且只有一个真命题时,m ≤-5或m ≥0.。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

高二数学第一章 常用逻辑用语测试题及答案

高二数学第一章 常用逻辑用语测试题及答案

高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。

( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。

高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。

高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章  常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。

元素特点:互异性、无序性、确定性。

关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。

四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。

互为逆否的命题等价。

逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。

必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。

类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。

类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。

类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。

存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。

一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。

数学选修1-1第一章 常用逻辑用语测试题

数学选修1-1第一章  常用逻辑用语测试题

第一章 常用逻辑用语一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是b a 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真4.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。

其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个7.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题8.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假10.下列命题中的真命题是( )11.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题; 其中真命题为( )A .①②B .②③C .①③D .③④12.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件13.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( )A.若0(,)a b a b R ≠≠∈,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D.若0,0(,)a b a b R ≠≠∈或,则220a b +≠二、填空题14.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

苏教版数学高二-数学苏教版选修1-1练测 第1章常用逻辑用语 本章练测

第1章常用逻辑用语(苏教版选修1-1)建议用时实际用时满分实际得分120分钟160分一、填空题(本大题共14小题,每小题5分,共70分)1.下列说法中,不正确的是_________.①“若则”与“若则”是互逆的命题;②“若则”与“若则”是互否的命题;③“若则”与“若则”是互否的命题;④“若则”与“若则”互为逆否命题.2.若命题“”是假命题,则实数的取值范围是_____.3.集合,,则“”是“”的____条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4.设,若是的必要不充分条件,则实数的取值范围是___.5.命题将函数的图象向右平移个单位长度得到函数的图象;命题函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是______.6.已知命题,命题,若命题“”是真命题,则实数的取值范围是__.7.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.8.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是___.9.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题是____.10.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“”是假命题;③命题“”是真命题;④命题“”是假命题,其中正确的是____.11.若为定义在D上的函数,则“存在D,使得”是“函数为非奇非偶函数”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)12.命题:“如果+=0,则x=2且y=-1”的逆否命题为.13.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的范围是____________.14.下列命题:①“若,则互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若则”的逆命题,其中真命题是(填序号).二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.16.(本小题满分14分)已知命题:任意,,如果命题是真命题,求实数的取值范围.17.(本小题满分14分)求证:方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<.18.(本小题满分16分)若函数的图象和轴恒有公共点,求实数的取值范围.19.(本小题满分16分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖. 问P,Q,R,S分别获得几等奖?20.(本小题满分16分)设设p :实数x 满足-4ax +3<0,其中a >0;q :实数x 满足(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.第1章 常用逻辑用语(苏教版选修1-1)答题纸得分:___一、填空题1.2. 3. 4. 5.6.7. 8. 9.10.11. 12. 13. 14.二、解答题15.解:16.解:17.解:18.解:19.解:20.解:第1章常用逻辑用语(苏教版选修1-1)参考答案1.②解析:“若则”与“若则”是互为逆否的命题,②不正确,故选②.2.[- 1,3] 解析:已知命题是假命题,则它的否定为真命题,命题的否定为的判别式3.必要不充分解析:集合集合,故,,所以“”是“”的必要不充分条件.4.解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以所以.5.2解析:将函数y=的图象向右平移个单位长度得到函数y==的图象,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个.6.解析:若p成立,对.因为若q成立,则方程因为命题“”是真命题,所以p真q真,故7.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.8.①③解析:对于命题①,若==成立,,所以命题①是假命题;对于函数f,当=时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.9.①②解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.10.②③解析:因为,所以命题p是假命题,是真命题;由函数y=的图象可得,命题q是真命题,是假命题.所以命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题.所以②③正确.11.充分不必要解析:存在D,使得;若函数为非奇非偶函数,可能定义域不关于原点对称,所以“存在D,使得”是“函数为非奇非偶函数”的充分不必要条件.12.如果x≠2或y≠-1,则+≠0 解析:“x=2且y=-1”的否定为“x≠2或y≠-1”,“+=0”的否定为+≠0,故原命题的逆否命题为“如果x≠2或y≠-1,则+≠0”.13.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则解得.14.①②③解析:“若,则互为倒数”的逆命题为“若互为倒数,则”,是真命题;“四边相等的四边形是正方形”的逆命题为“正方形是四边相等的四边形”,是真命题,所以否命题也是真命题;“梯形不是平行四边形”是真命题,所以其逆否命题是真命题;“若则”的逆命题为“若则”,当不成立,是假命题.所以真命题为①②③.15.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.16.解:因为命题是真命题,所以是假命题.又当是真命题,即恒成立时,应有,所以当是假命题时,.所以实数的取值范围是.17.证明:(1)充分性:∵0<m<,∴方程m-2x+3=0根的判别式Δ=4-12m>0,且>0,∴方程m-2x+3=0有两个同号且不相等的实根.(2)必要性:若方程m-2x+3=0有两个同号且不相等的实根,则有解得0<m<.综合(1)(2)可知,方程m-2x+3=0有两个同号且不相等的实根的充要条件是0<m<.18.解:(1)当时,=的图象与轴恒相交;(2)当时,二次函数=的图象和轴恒有公共点的充要条件是恒成立,即恒成立,又是一个关于的二次不等式,恒成立的充要条件是解得.综上,当时,;当时,.19.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.20.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若是q的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.。

苏教版高中数学选修11高二第一章常用逻辑用语测试题1

高中数学学习资料金戈铁骑整理制作高二数学选修1-1 第一章常用逻辑用语测试题 1班别:姓名:一、选择题(每道题只有一个答案,每道题 5 分,共 60 分)1234567891011121、一个命题与他们的抗命题、否命题、逆否命题这 4 个命题中()A 、真命题与假命题的个数同样B 真命题的个数必定是奇数C 真命题的个数必定是偶数D 真命题的个数可能是奇数,也可能是偶数2、以下命题中正确的选项是()①“若 x2+ y2≠0,则 x, y 不全为零”的否命题②“正多边形都相像”的抗命题③“若 m>0,则 x2+x-m=0 有实根”的逆否命题1④“若 x-32是有理数,则 x 是无理数”的逆否命题A 、①②③④B、①③④C、②③④D、①④113、“用反证法证明命题“假如x<y ,那么x5 < y5”时,假定的内容应当是()111111111111A 、x5=y5B、x5 < y5C、x5=y5且x5 < y5D、x5=y5或x5 > y54、“ a≠ 1 或 b≠2”是“ a+ b≠ 3”的()A 、充足不用要条件B、必需不充足条件C、充要条件D、既不充足也不用要5、设甲是乙的充足不用要条件,乙是丙的充要条件,丁是丙的必需非充足条件,则甲是丁的()A 、充足不用要条件B、必需不充足条件C、充要条件D、既不充足也不用要6、函数 f( x)= x|x+a|+b 是奇函数的充要条件是()A 、ab=0B、a+b=0C、a=b D、a2+b2=07、“若 x≠a 且 x≠b,则 x2-( a+b)x+ab≠ 0”的否命题()A、若 x= a 且 x=b,则 x2-( a+b)x+ab=0B、 B、若 x= a 或 x=b,则 x2-( a+b)x+ab≠0C、若 x= a 且 x=b,则 x2-( a+b)x+ab≠0D、 D、若 x= a 或 x=b,则 x2-( a+b)x+ab=08、“1与直线(m+2)x+(m-2)y-3=0互相垂直”的()m”是“直线 (m+2)x+3my+1=0 2A 、充足不用要条件B 、必需不充足条件C 、充要条件D 、既不充足也不用要9、命题 p :存在实数 m ,使方程 x 2+mx + 1= 0 有实数根,则“非 p ”形式的命题是( )A 、 存在实数 m ,使得方程 x 2+mx +1=0 无实根B 、不存在实数 m ,使得方程 x 2+ mx +1=0 有实根 2210. 若 " a b c d " 和 " a b e f " 都是真命题 , 其抗命题都是假命题,则 " c d " 是" ef " 的( ) A. 必需非充足条件 B. 充足非必需条件 C.充足必需条件 D. 既非充足也非必需条件11. 在以下结论中,正确的选项是( )① " p q" 为真是 " p q" 为真的充足不用要条件② " p q" 为假是 " p q" 为真的充足不用要条件③ " p q" 为真是 " p" 为假的必需不充足条件④ " p" 为真是 " pq" 为假的必需不充足条件A. ①② 12. 设会合uB. ①③ x, y xR, yC. ②④R , AD. ③④x, y 2xy m0 , Bx, y x y n 0 ,那么点 P (2,3)AC u B 的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5二、填空题(每道题4 分,共 16 分)、判断以下命题的真假性 :①、若 m>0 ,则方程x 2- x + m =0 有实根13②、若 x>1,y>1,则 x+y>2 的抗命题 ③、对随意的 x ∈{x|-2<x<4},|x-2|<3 的否认形式④、△ >0 是一元二次方程 ax 2+bx +c = 0 有一正根和一负根的充要条件 14、“末位数字是 0 或 5 的整数能被 5 整除”的 否认形式是 否命题是15、若把命题“ A B ”当作一个复合命题,那么这个复合命题的形式是 __________,此中组成它的两个简单命题分 别 是。

(易错题)高中数学选修1-1第一章《常用逻辑用语》测试(含答案解析)(3)

一、选择题1.命题x R ∀∈,1x e x ≥+的否定是( )A .x R ∀∈,1x e x <+B .x R ∃∈,1x e x <+C .x R ∃∉,1x e x <+D .x R ∀∉,1x e x <+2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数3.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 4.命题“0x ∀>,1ln 1x x≥-”的否定是( ) A .0x ∃>,1ln 1x x<-B .0x ∃>,1ln 1x x ≥-C .0x ∃≤,1ln 1x x <-D .0x ∃≤,1ln 1x x ≥- 5.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+<B .x R ∀∉,2210x x -+>C .x R ∃∈,2210x x -+≥D .x R ∃∈,2210x x -+≤ 6.若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.设a ∈R ,则“1a >-”是“2log (23)1a ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .2aB .2aC .2a -D .2a - 9.命题:p “0,,sin cos 2x x x π⎛⎫∀∈< ⎪⎝⎭”的否定p ⌝为( ) A .0,,sin cos 2x x x π⎛⎫∀∈≥ ⎪⎝⎭ B .0,,sin cos 2x x x π⎛⎫∀∈> ⎪⎝⎭C .0000,,sin cos 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin cos 2x x x π⎛⎫∃∉≥ ⎪⎝⎭10.命题“,sin 0x x R x e ∃∈+>”的否定为( ) A .,sin 0x x R x e ∀∈+< B .,sin 0x x R x e ∀∈+≤C .,sin 0x x R x e ∃∈+<D .,sin 0x x R x e ∃∈+≤11.“2,6a k k Z ππ=+∈”是“cos 2a =”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.命题“1x ∃>,21x ≥”的否定是( )A .1x ∃≤,21x ≥B .1x ∃≤,21x <C .1x ∀≤,21x ≥D .1x ∀>,21x <二、填空题13.命题“若1x -,则ln()0x -”的逆否命题为__________.14.命题“若0x >,则220x y +≠”的逆否命题为___________.15.为迎接2022年北京冬奥会,短道速滑队组织甲、乙、丙等6名队员参加选拔赛,已知比赛结果没有并列名次记“甲得第一名”为p ,“乙得第一名”为q ,“丙得第一名”为r ,若p q ∨是真命题,()p r ⌝∨是真命题,则得第一名的是______________.16.已知命题p :x ∃∈R ,210mx +≤;命题q :x ∀∈R ,2104x mx -+>,若“p q ∨”假命题,则实数的取值范围是______________.17.设[]x 表示不大于x 的最大整数,则对任意实数x ,给出以下四个命题: ①[][]x x -=-; ②[]12x x ⎡⎤+=⎢⎥⎣⎦; ③[][]22x x =;④[][]122x x x ⎡⎤++=⎢⎥⎣⎦. 则假命题是______(填上所有假命题的序号).18.若“x R ∃∈,220x x a --=”是假命题,则实数a 的取值范围为______.19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________.20.由命题“存在x ∈R ,使x 2+4x +m ≤0”是假命题,则实数m 的取值范围为_____.三、解答题21.设p :实数x 满足2230x x --<,q :实数x 满足30x m +->.(1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.22.已知命题:p x R ∃∈,使2(1)10x a x +-+<;命题:[2,4]q x ∀∈,使2log 0x a -≥.(1)若命题p 为假命题,求实数a 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.23.设p :对任意的x ∈R 都有22x x a ->,q :存在0x R ∈,使200220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.24.已知命题P :[1,2]x ∀∈,20x a -≥;命题Q :0x R ∃∈,使得200(1)10x a x +-+<.若“P或Q ”为真,“P 且Q ”为假,求实数a 的取值范围.25.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221x y a+=的离心率e 满足23e ⎛⎫∈ ⎪ ⎪⎝⎭.(1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值.26.已知命题:p 实数x 满足2650x x -+≤,命题:q 实数x 满足11m x m -≤≤+ (1)当5m =时,若“p 且q ”为真,求实数x 的取值范围;(2)若q 是p 的充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据命题的否定的定义判断.【详解】命题x R ∀∈,1x e x ≥+的否定是x R ∃∈,1x e x <+.故选:B .2.A解析:A【分析】一一分析每个选项中,p q 的充分必要性即可.【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件;故选:A.3.B解析:B【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项.【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件.故选:B4.A解析:A【分析】利用全称命题的否定是特称命题,即可直接得解.【详解】因为全称命题的否定是特称命题,所以命题“0x ∀>,11lnx x ≥-”的否定为“0x ∃>,1ln 1x x<-”. 故选:A.【点睛】关键点点睛:本题考查了全称命题的否定,正确解题的关键是清楚全称命题的否定是特称命题,以及其形式. 5.D解析:D【分析】本题可根据全称命题的否定是特称命题得出结果.【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”,6.C解析:C【分析】构造函数()ln f x x x =+,根据,a b 的范围结合函数的单调性以及充分条件和必要条件的定义即可得正确答案.【详解】设()ln f x x x =+,则()f x 在()0,∞+上单调递增,因为a b >,所以()()f a f b >即ln ln a a b b +>+,可得ln ln a b b a ->-, 所以由“a b >”可以得出“ln ln a b b a ->-”若ln ln a b b a ->-则ln ln a a b b +>+,即()()f a f b >,因为()ln f x x x =+在()0,∞+上单调递增,所以a b >,所以由ln ln a b b a ->-可以得出a b >,所以若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的充要条件,故选:C【点睛】关键点点睛:本题解题的关键点是构造函数()ln f x x x =+,将ln ln a b b a ->-转化为ln ln a a b b +>+,利用函数的单调性比较大小.7.B解析:B【分析】先解不等式2log (23)1a ->,再用集合法判断.【详解】由2log (23)1a ->解得:52a >记()51,,,2A B ⎛⎫=-+∞=+∞ ⎪⎝⎭∵B A ⊆,∴“1a >-”是“2log (23)1a ->”的必要不充分条件.故选:B【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.8.A【分析】转化成两个集合之间的包含关系求解即可.【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a故选:A9.C解析:C【分析】根据命题否定的定义写出命题的否定,然后判断.【详解】根据命题否定的概念知,p ⌝为002x π⎛⎫∃∈ ⎪⎝⎭,,00sin cos x x ≥, 故选:C .10.B解析:B【分析】根据特称命题的否定变换形式即可得出结果.【详解】特称命题的否定为全称命题,故“,sin 0x x R x e ∃∈+>”的否定为“,sin 0x x R x e ∀∈+≤”,故选:B .11.A解析:A【分析】根据两者之间的推出关系可得条件关系.【详解】若2,6a k k Z ππ=+∈,则cos cos 6a π==,若cos 2a =,则2,6a k k Z ππ=+∈或2,6a k k Z ππ=-+∈,故“2,6a k k Z ππ=+∈”是“cos 2a =”的充分不必要条件, 故选:A.12.D解析:D【分析】直接利用特称命题的否定是全称命题写出结果即可.【详解】因为特称命题的否定是全称命题,所以,命题“1x ∃>,21x ≥”的否定是“1x ∀>,21x <”. 故选:D.二、填空题13.若则【分析】根据逆否命题的定义即可得结果【详解】依题意原命题的逆否命题为若则故答案为:若则解析:若ln()0x -<,则1x >-【分析】根据逆否命题的定义即可得结果.【详解】依题意,原命题的逆否命题为“若ln()0x -<,则1x >-”.故答案为:若ln()0x -<,则1x >-14.若则【分析】直接根据逆否命题的概念即可得结果【详解】依题意原命题的逆否命题为若则故答案为:若则解析:若220x y +=,则0x ≤【分析】直接根据逆否命题的概念即可得结果.【详解】依题意,原命题的逆否命题为“若220x y +=,则0x ≤”,故答案为:若220x y +=,则0x ≤. 15.乙【分析】直接利用复合命题的真假判断推理得到答案【详解】由是真命题可知pq 中至少有一个是真命题因为比赛结果没有并列名次说明第一名要么是甲要么是乙;且r 是假命题;又是真命题则是真命题即p 是假命题故得第 解析:乙【分析】直接利用复合命题的真假判断推理得到答案.【详解】由p q ∨是真命题,,可知p 、q 中至少有一个是真命题,因为比赛结果没有并列名次,说明第一名要么是甲,要么是乙;且r 是假命题;又()p r ⌝∨是真命题,则p ⌝是真命题,即p 是假命题.故得第一名的是乙.故答案为:乙.【点睛】复合命题真假的判定:(1) 判断简单命题的真假;(2) 根据真值表判断复合命题的真假.16.【分析】命题:分和利用判别式法求得命题:利用判别式法求得然后根据假命题则均为假命题求解【详解】命题:当时不成立;当时解得命题:解得若假命题则均为假命题所以且或解得所以实数的取值范围是故答案为: 解析:1m ≥【分析】命题p :分0m =和0m ≠,利用判别式法求得0m <.命题q :利用判别式法求得11m -<<,然后根据“p q ∨”假命题,则p ,q 均为假命题求解.【详解】命题p :x ∃∈R ,210mx +≤,当0m =时,不成立;当0m ≠时,040m m <⎧⎨∆=-≤⎩, 解得0m <.命题q :x ∀∈R ,2104x mx -+>, 210m ∆=-<,解得11m -<<,若“p q ∨”假命题,则p ,q 均为假命题所以0m ≥,且1m ≥或1m ≤-解得1m ≥所以实数的取值范围是1m ≥,故答案为:1m ≥17.①②③【分析】举出反例可判断①②③按照分类即可判断④即可得解【详解】对于①由可得故①为假命题;对于②由可得故②为假命题;对于③由可得故③为假命题;对于④当时此时满足;当时此时满足;故④为真命题;故答解析:①②③【分析】举出反例可判断①②③,按照[]102x x ≤-<、[]112x x ≤-<分类,即可判断④,即可得解.【详解】对于①,由[]2.33-=-,[]2.32-=-可得[][]2.3 2.3-≠-,故①为假命题; 对于②,由31222⎡⎤+=⎢⎥⎣⎦,312⎡⎤=⎢⎥⎣⎦可得313222⎡⎤⎡⎤+≠⎢⎥⎢⎥⎣⎦⎣⎦,故②为假命题; 对于③,由3232⎡⎤⨯=⎢⎥⎣⎦,3222⎡⎤⨯=⎢⎥⎣⎦可得332222⎡⎤⎡⎤⨯≠⨯⎢⎥⎢⎥⎣⎦⎣⎦,故③为假命题; 对于④,当[]102x x ≤-<时,[]12x x ⎡⎤+=⎢⎥⎣⎦,[][]22x x =, 此时满足[][]122x x x ⎡⎤++=⎢⎥⎣⎦; 当[]112x x ≤-<时,[]112x x ⎡⎤+=+⎢⎥⎣⎦,[][]221x x =+, 此时满足[][]122x x x ⎡⎤++=⎢⎥⎣⎦;故④为真命题; 故答案为:①②③.【点睛】解决本题的关键是准确理解题目中的概念,举出合理反例、合理分类.18.【分析】写出命题的否定根据的否定为真命题由即可求出的范围【详解】若是假命题则其否定若是真命题所以解得故实数a 的取值范围为故答案为:【点睛】本题主要考查命题的否定及根据命题的真假求参数值属于基础题 解析:(,1)-∞-【分析】写出命题p 的否定,根据p 的否定为真命题,由∆<0即可求出a 的范围.【详解】若“x R ∃∈,220x x a --=”是假命题,则其否定若“x R ∀∈,220x x a --≠”是真命题,所以2(2)41()440a a ∆=--⨯⨯-=+<,解得1a <-,故实数a 的取值范围为(,1)-∞-. 故答案为:(,1)-∞-.【点睛】本题主要考查命题的否定及根据命题的真假求参数值,属于基础题. 19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命 解析:1【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题; 其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.故答案为: 1【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【分析】先求得否命题为真再根据恒成立问题求解即可【详解】由命题存在x ∈R 使x2+4x+m≤0是假命题知对于任意的故判别式故实数m 的取值范围为故答案为:【点睛】本题主要考查了特称命题的否定与恒成立问题解析:(4,)+∞【分析】先求得否命题为真,再根据恒成立问题求解即可.【详解】由命题“存在x ∈R ,使x 2+4x +m ≤0”是假命题知“对于任意的x ∈R ,240x x m ++>”,故判别式16404m m -<⇒>.故实数m 的取值范围为(4,)+∞.故答案为:(4,)+∞【点睛】本题主要考查了特称命题的否定与恒成立问题,属于基础题型.三、解答题21.(1)13x;(2)4m ≥. 【分析】(1)解不等式2230x x --<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的子集,利用数轴即可求解.【详解】(1)由2230x x --<得13x .(2)p :13x ,q :3x m >-,∵p 是q 的充分条件,(1,3)(3,)m ∴-⊆-+∞∴31m -≤-,∴4m ≥22.(1)[]1,3-(2)[1,1](3,)-⋃+∞【分析】(1)若p 为假命题,2(1)40a ∆=--≤,可直接解得a 的取值范围;(2)由题干可知p,q 一真一假,分“p 真q 假”和“p 假q 真”两种情况讨论,即可得a 的范围.【详解】解:(1)由命题P 为假命题可得:2(1)40a ∆=--≤,即2230a a --≤,所以实数a 的取值范围是[]1,3-.(2)p q ∨为真命题,p q ∧为假命题,则p q 、一真一假.若p 为真命题,则有1a <-或3a >,若q 为真命题,则有1a ≤.则当p 真q 假时,则有3a >当p 假q 真时,则有11a -≤≤所以实数a 的取值范围是[1,1](3,)-⋃+∞.【点睛】本题考查根据命题的真假来求变量的取值范围,属于基础题,判断为真的语句叫做真命题,判断为假的语句叫做假命题.23.[)(2,1)1,a ∈--+∞【解析】 试题分析:先根据恒成立得 22a x x <-最小值,得p ,再根据方程有解得q ,根据命题p q ∨为真,命题p q ∧为假,得,p q 一真一假,最后分类求实数a 的取值范围. 试题由题意:对于命题p ,∵对任意的2,2x R x x a ∈->,∴1440a ∆=+<,即:1p a <-;对于命题q ,∵存在x R ∈,使2220x ax a ++-=,∴()224420a a ∆=--≥,即:1q a ≥或2a ≤-. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假,①p 真q 假时,21a -<<-, ②p 假q 真时,1a ≥.综上,()[)2,11,a ∈--⋃+∞.24.3a >或11a -≤≤.【分析】分别判断出P ,Q 为真时的a 的范围,通过讨论P ,Q 的真假,得到关于a 的不等式组,解出即可.【详解】 11a -≤≤或3a >由条件知,2a x ≤对[]1,2x ∀∈成立,∴1a ≤;∵0x R ∃∈,使得()200110x a x +-+<成立.∴不等式()200110x a x +-+<有解,∴()2140a ∆=-->,解得3a >或1a <-; ∵P 或Q 为真,P 且Q 为假,∴P 与Q 一真一假.①P 真Q 假时,11a -≤≤;②P 假Q 真时,3a >.∴实数a 的取值范围是3a >或11a -≤≤.【点睛】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,解决此类问题应该先求出简单命题为真时参数的范围.25.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =. 【分析】(1)当1a >时,根据离心率e满足e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭ (2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意, 综上52m =. 26.(1) 45x ≤≤;(2) 24m ≤≤【分析】(1)先由题意得到:p 15x ≤≤,:q 46x ≤≤,再由“p 且q ”为真,即可得出结果;(2)根据q 是p 的充分条件,得到{}|11x m x m -≤≤+是{}x |15x ≤≤的子集,列出不等式求解,即可得出结果.【详解】解:()1由题意:p 15x ≤≤,:q 46x ≤≤,“p 且q ”为真,p ∴, q 都为真命题,得45x ≤≤()2又q 是p 的充分条件,则{}|11x m x m -≤≤+是{}x |15x ≤≤的子集, 1115m m -≥⎧∴⎨+≤⎩24m ∴≤≤【点睛】本题主要考查由命题的真假求参数的问题,熟记复合命题真假的判断即可,属于常考题型.。

高二数学选修1-1第一章常用逻辑用语

常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。

1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。

2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。

(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。

2. 推断下列语句是不是命题。

(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。

(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐玲 学 习 资 料 专 题 第一章 常用逻辑用语

(时间:120分钟;满分:160分) 一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________. 解析:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个. 答案:1 2.下列命题中,真命题是________. ①∃x0∈R,ex0≤0; ②∀x∈R,2x>x2;

③a+b=0的充要条件是ab=-1; ④a>1,b>1是ab>1的充分条件. 解析:因为∀x∈R,ex>0,故排除①;取x=2,则22=22,故排除②;a+b=0,取a

=b=0,则不能推出ab=-1,故排除③;应填④. 答案:④ 3.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是________. 解析:命题的条件为“x2≥1”,结论为“x≥1或x≤-1”,否定结论作条件,否定条件作结论,即为其逆否命题. 答案:若-14.下列命题: ①G=ab(G≠0)是a,G,b成等比数列的充分不必要条件; ②若角α,β满足cos αcos β=1,则sin(α+β)=0; ③若不等式|x-4|0; ④函数y=sin x+sin |x|的值域是[-2,2]. 其中正确命题的序号是________(把你认为正确的命题序号都填上). 解析:当G=ab(G≠0)时,有G2=ab,所以a,G,b成等比数列,但当a,G,b成等比数列时,还可以有G=-ab,所以G=ab(G≠0)是a,G,b成等比数列的充分不必要条件,故①正确; 当cos αcos β=1时,有cos α=cos β=-1或cos α=cos β=1,即α=2k1π+π(k1∈Z),β=2k2π+π(k2∈Z)或α=2k3π(k3∈Z),β=2k4π(k4∈Z),这时α+β=2(k1+k2)π+2π(k1,k2∈Z)或α+β=2(k3+k4)π(k3,k4∈Z),必有sin(α+β)=0,故②正确; 由于|x-4|的最小值等于0,所以当a≤0时,不等式|x-4|等式|x-4|0,故③正确;

函数y=sin x+sin |x|= 2sin x,x≥00, x<0,所以该函数的值域为[-2,2],故④正唐玲

确. 答案:①②③④ 5.给出命题:①∀x∈(-∞,1),使x3<1;②∃x∈Q,使x2=2;③∀x∈N,有x3>x2;④∀x∈R,有x2+4>0.其中的真命题是________(填序号). 解析:方程x2=2的解只有无理数x=±2,所以不存在有理数x使得方程x2=2成立,故②为假命题;比如存在x=0,使得03=02,故③为假命题,①④显然正确. 答案:①④ 6.若非空集合A,B,C满足A∪B=C,且B不是A的子集,则“x∈C”是“x∈A”的________条件. 解析:x∈A⇒x∈C,但是x∈C不能推出x∈A. 答案:必要不充分

7.“a=18”是“对任意的正数x,2x+ax≥1”的________条件.

解析:a=18⇒2x+ax=2x+18x≥22x×18x=1,另一方面对任意正数x,2x+ax≥1只要2x+ax≥22x×ax=22a≥1⇒a≥18. 答案:充分不必要 8.已知命题p:关于x的不等式x2+2ax+4>0对∀x∈R恒成立;命题q:函数y=-(4-2a)x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________. 解析:由x2+2ax+4>0对∀x∈R恒成立,得 Δ=(2a)2-4×4<0,解得-2所以p:-2由y=-(4-2a)x是R上的减函数,

得4-2a>1,解得a<32.

所以q:a<32. 由“p∨q”为真,“p∧q”为假知,p与q中必有一真一假,即p真q假或p假q真.

所以 -2从而得32≤a<2或a≤-2. 答案:[32,2)∪(-∞,-2] 9.已知函数f(x)、g(x)定义在R上,h(x)=f(x)·g(x),则“f(x)、g(x)均为奇函数”是“h(x)为偶函数”的________条件. 解析:由f(x)、g(x)均为奇函数可得h(x)=f(x)·g(x)为偶函数,反之则不成立,如

h(x)=x2是偶函数,而f(x)=x2x-1,g(x)=x-1都不是奇函数.

答案:充分不必要 10.a,b为向量,则“|a·b|=|a||b|”是“a∥b”的________条件. 解析:若|a·b|=|a||b|, 若a,b中有零向量,显然a∥b; 若a,b均不为零向量,则 |a·b|=|a||b||cos〈a,b〉|=|a||b|, ∴|cos〈a,b〉|=1, 唐玲

∴〈a,b〉=π或0, ∴a∥b,即|a·b|=|a||b|⇒a∥b. 若a∥b,则〈a,b〉=0或π, ∴|a·b|=||a||b|cos〈a,b〉|=|a||b|, 其中,若a,b有零向量也成立, 即a∥b⇒|a·b|=|a||b|. 综上知,“|a·b|=|a||b|”是“a∥b”的充分必要条件. 答案:充分必要 11.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是________. 解析:p:x2+2mx+1=0有两个不相等的正根,

 Δ=4m2-4>0,-2m>0,即m<-1.

q:x2+2(m-2)x-3m+10=0无实根,

Δ=[2(m-2)]2-4(-3m+10)=4(m2-m-6)<0, 即-2<m<3. 分两种情况:①p真q假,m≤-2;②p假q真,-1≤m<3. 综上可知使p∨q为真,p∧q为假的实数m的取值范围是(-∞,-2]∪[-1,3). 答案:(-∞,-2]∪[-1,3) 12.给出下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则x2-2bx+b2+b=0有实数根”的逆否命题; ④若sin α+cos α>1,则α必定是锐角. 其中真命题的序号是________(请把所有真命题的序号都填上). 解析:①“若xy=1,则x,y互为倒数”的逆命题为“若x,y互为倒数,则xy=1”,是真命题; ②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题; ③∵b≤-1,∴Δ=4b2-4(b2+b)=-4b≥4>0,∴“若b≤-1,则x2-2bx+b2+b=0有实数根”为真命题,∴其逆否命题也是真命题;

④∵当α=7π3时,sin α+cos α>1成立,∴此命题是假命题. 答案:①③ 13.已知命题p:x2-x≥6,q:x∈Z,则使得x∈M时,“p且q”与“綈q”同时为假命题的x组成的集合M=________. 解析:x∈M时,“p且q”与“綈q”同时为假命题,即x∈M时,p假且q真.故令x2

-x<6,x∈Z,解得x=-1,0,1,2,从而所求的集合M={-1,0,1,2}. 答案:{-1,0,1,2}

14.已知“关于x的不等式x2-ax+2x2-x+1<3对于∀x∈R恒成立”的充要条件是“a∈(a1,a2)”,则a1+a2=________.

解析:∵x2-x+1>0,∴原不等式化为x2-ax+2<3x2-3x+3,即2x2+(a-3)x+1>0. ∵∀x∈R时,2x2+(a-3)x+1>0恒成立, ∴Δ=(a-3)2-8<0. ∴3-22∴a1+a2=6. 答案:6 二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)将命题“ab=0,则a,b中至少有一个为0”改写为“若p则q”唐玲

的形式,写出其逆命题、否命题、逆否命题,并判断真假. 解:原命题:若ab=0,则a,b中至少有一个为0.是真命题; 逆命题:若a,b中至少有一个为0,则ab=0.是真命题; 否命题:若ab≠0,则a,b都不为0.是真命题; 逆否命题:若a,b都不为0,则ab≠0.是真命题. 16.(本小题满分14分)写出下列命题的否定,并判断真假. (1)p:∀x∈R,都有|x|=x; (2)p:∀x∈R,x3>x2; (3)p:至少有一个二次函数没有零点; (4)p:存在一个角α∈R,使得sin2α+cos2α≠1. 解:(1)綈p:∃x∈R,有|x|≠x. 如x=-1,|-1|=1≠-1,所以綈p是真命题. (2)綈p:∃x∈R,x3≤x2. 如x0=-1时,(-1)3=-1×(-1)2=-1, 即(-1)3≤(-1)2,所以綈p是真命题. (3)綈p:所有二次函数都有零点. 如二次函数y=x2+2x+3=(x+1)2+2>0.∀x∈R, y=x2+2x+3≠0.因为p是真命题,所以綈p是假命题.

(4)綈p:∀α∈R,sin2α+cos2α=1. 设任意角α终边与单位圆的交点为P(x,y). 则sin α=y,cos α=x,显然有sin2α+cos2α=y2+x2=1, 所以綈p是真命题. 17.(本小题满分14分)已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对∀x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.

解:∵sin x+cos x=2sinx+π4≥-2, ∴当r(x)是真命题时,m<-2. 又∵对∀x∈R,s(x)为真命题,即x2+mx+1>0恒成立, 有Δ=m2-4<0,∴-2∴当r(x)为真,s(x)为假时,m<-2,同时m≤-2或m≥2,即m≤-2; 当r(x)为假,s(x)为真时,m≥-2且-2即-2≤m<2. 综上,实数m的取值范围是m≤-2或-2≤m<2.

18.(本小题满分16分)已知不等式|x-m|<1成立的充分不必要条件是13m的取值范围. 解:由不等式|x-m|<1得m-1

因为不等式|x-m|<1成立的充分不必要条件是13

 m-1≤

1

3

m+1≥

1

2

⇒-12

≤m≤43;经检验知,等号可以取得;所以-12≤m≤43. 19.(本小题满分16分)已知x,y∈R,求证|x+y|=|x|+|y|的成立的充要条件是xy≥0. 证明:充分性: 如果xy=0,那么x=0,y≠0或x≠0,y=0或x=0,y=0,于是|x+y|=|x|+|y|; 如果xy>0,即x>0,y>0或x<0,y<0, 当x>0,y>0时,|x+y|=x+y=|x|+|y|, 当x<0,y<0时,|x+y|=-x-y=(-x)+(-y)=|x|+|y|,

相关文档
最新文档