光通信:第07章光放大器PPT

合集下载

西电-光通信技术基础chap7

西电-光通信技术基础chap7

4F9 / 2 4I9 / 2 4I11 / 2 4I13 / 2 1.48 µm
0.65 µm 0.80 µm 3 0.98 µm 2 1.53 µm
- 损损损增增 /( dB·m 1)
10
- 截截 / (×10 25m2)
8 6 4 2 0 1.48
6
吸吸 增增
1.50 1.52 1.54 滤波 / µm (b) 1.56
LD PD
图7.5 (a)
光纤放大器的应用形式中继放大器 中继放大器 光纤放大器的应用形式中继放大器
后置放大器
前置放大器
LD
PD
光纤
图7.5 (b)
光纤放大器的应用形式前置放大器 前置放大器和 光纤放大器的应用形式前置放大器和后置放大器
7.2
的趋势。对通信的需求呈现加速增长
80
40 转转转误 92.6% 30 增增增光 6.3 dB / mW
滤输制制光功误 / mW
60 40 20 0 0
增增 / dB
20 10 0 0 5
20 40 60 80 滤输输输光功误 / mW (a)
10 (b)
15
20
滤输输输光功误 / mW
掺铒光纤放大器的特性 图7.2掺铒光纤放大器的特性 掺铒光纤放大器的特性 (a) 输出信号光功率与泵浦光功率的关系; (b) 小信号增益与泵浦光功率的关系 输出信号光功率与泵浦光功率的关系;
7.2.1
光波分复用原理 光波分复用原理
1. WDM的概念 的概念 的概念 光波分复用(WDM: Wavelength Division Multiplexing)技术 : 光波分复用 是在一根光纤中同时传输多个波长光信号的一项技术。 光波分复用(WDM)的基本原理是:在发送端将不同波长 光波分复用( )的基本原理是: 的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中 进行传输,在接收端又将组合波长的光信号分开(解复用),并作 进一步处理,恢复出原信号后送入不同的终端,因此将此项技术 称为光波长分割复用 简称光波分复用技术 光波长分割复用, 光波分复用技术。 光波长分割复用 光波分复用技术

光通信之光放大器

光通信之光放大器

02 光放大器的原理
光放大器的增益机制
受激发射放大
能量转移
光放大器利用增益介质中的粒子数反 转,通过受激发射机制将输入信号放 大。
放大过程中,高能级粒子将能量转移 至低能级,释放出光子,实现光的放 大。
粒子数反转
在光放大器中,增益介质中的粒子数 分布被调整至非平衡状态,使得介质 对特定波长的光具有放大作用。
光放大器的增益介质
01
02
03
稀土掺杂光纤
在石英光纤中掺入某些稀 土元素(如铒、镱等), 形成增益介质。
晶体
某些晶体(如蓝宝石、硅 酸盐等)可作为光放大器 的增益介质。
气体
某些气体(如氩气、氪气 等)也可作为光放大器的 增益介质。
光放大器的增益特性
增益带宽
光放大器的增益带宽决定 了其对不同波长光的放大 能力。
EDFA技术已经相当成熟,广泛 应用于长距离、大容量的光通信
系统。
RFA在最近几年开始受到关注, 其具有低噪声、宽频带等优点, 尤其适用于超长距离、超大容量
的光通信系统。
光放大器技术的发展趋势
新型光放大器技术的研究和开 发是未来的重要方向,如硅基 光放大器、氮化镓光放大器等。
探索更高效的光放大器技术, 提高光放大器的增益、带宽和 稳定性是关键。
光通信之光放大器
目 录
• 光放大器概述 • 光放大器的原理 • 光放大器的应用 • 光放大器的技术发展 • 光放大器的市场分析
01 光放大器概述
光放大器的定义
总结词
光放大器是一种能够将微弱的光信号进行放大的设备。
详细描述
光放大器是一种能够将微弱的光信号进行放大的设备,它通过特定的机制将输 入的光信号进行能量放大,以便在光通信系统中进行长距离传输或者进行光信 号处理。

《光放大技术》课件

《光放大技术》课件
详细描述
总结词
光放大技术在光纤通信、光学传感、激光雷达等领域有广泛应用。
总结词
光放大技术广泛应用于光纤通信领域,用于放大传输过程中的光信号,提高通信系统的传输距离和可靠性。在光学传感领域,光放大技术用于提高探测器的灵敏度和分辨率。在激光雷达领域,光放大技术可以提高激光雷达的探测距离和精度。
详细描述
光放大技术也可以应用于医疗领域,如光学成像、激光治疗和光学检测等。
总结词
在光学成像领域,光放大技术可以提高成像质量和分辨率,如荧光显微镜、光学相干断层扫描仪等医疗设备中都有广泛应用。在激光治疗领域,光放大技术可以提高激光能量密度和精度,实现高效、安全的治疗效果,如激光眼科手术、激光美容等。在光学检测领域,光放大技术可以用于检测生物分子、细胞和组织等的结构和功能,为医学研究和诊断提供有力支持。
分析实验结果,对比理论值与实际值,探讨误差原因。
结果分析
总结实验结论,提出改进意见和建议。
结论总结
THANKS
感谢观看
在多通道光放大系统中,通道间的交叉增益调制效应可能会导致信号质量的下降。
探索新型的光放大材料,提高光放大器的性能和稳定性,降低对温度和泵浦光源的依赖。
新型光放大材料研究
研究适用于更宽光谱范围的光放大技术,以实现对不同波长光信号的有效放大。
宽光谱光放大技术
将光放大器与其他光器件集成在一起,实现更紧凑、高效的光通信系统。
光放大器集成化
结合人工智能和机器学习等技术,实现对光放大器的智能控制和优化,提高光放大器的性能和稳定性。
智能化光放大技术
05
光放大技术的实验与实践
光放大器、光信号发生器、光功率计、光衰减器、光隔离器、光滤波器等。
实验设备

半导体光放大器PPT课件

半导体光放大器PPT课件

2019/11/4
.
11
2019/11/4
减小反射率的方法2
增透膜 光输入
透明区 有源区
光输出
有源区端面和解理面之间插入透明窗口区。 光束在到达半导体和空气界面前,在该窗口 区已发散,经界面反射的光束进一步发散, 只有极小部分光耦合进薄的有源层。
.
12
优 点
1 尺寸小,易制作成集成电路与集成光电路结合使用。 结构较为简单、功耗低、寿命长、成本低。 2
法布里珀罗放大器法布里珀罗放大器fpfpsoasoa行波放大器行波放大器twtwsoasoa根据光放大器端面根据光放大器端面反射率和工作偏置反射率和工作偏置条件将半导体光条件将半导体光放大器分为放大器分为其腔面反射率为其腔面反射率小于202019fpsoa的结构和原理半导体激光器由于在解理面存在反射当偏流低于阈值时是放大器
∙对光信号偏振态的敏感性
半导体光放大器的偏振特性主要是指放大器对输入信号光的偏振态敏感,对 不同的偏振态的增益不相同,没有经过特殊设计的半导体光放大器对TE模、 TM模的增益可相差5dB~8dB,而且会使增益的有效带宽减小,这当然是光纤 通信中不希望见到的。
2019/11/4
.
14
2019/11/4
半导体光放大器
2019/11/4
姓名: 班级: 学号:
光放大器的重要性
动机:解决电中继器设备复杂、维护难、成本高的问题
光放大器出现之前,光纤通信的中继器采用光-电-光(O-E-O)变换方式。 装置复杂、耗能多、不能同时放大多个波长信道
历史:以1989年诞生的掺铒光纤放大器(Erbium Doped Fiber Amplifier,
3 增益响应相当快速,适用于交换及信号处理等光网络应用中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲 线
g-λ
3. EDFA
EDFA的噪声系数Fn决定于自发辐射, 即噪声系数与粒子反转差ΔN有关。
7.2.4 掺铒光纤放大器的系统应用
1. EDFA
由于EDFA的低噪声特性,使它很适 于作接收机的前置放大器。
2. EDFA
功率放大器是将EDFA直接放在光发 射机之后用来提升输出功率。
3. EDFA
2.
放大器本身产生噪声,放大器噪声使 信号的信噪比(Signal-to-Noise Ratio,SNR) 下降,造成对传输距离的限制,是光放大 器的另一重要指标。
(1)
光纤放大器的噪声主要来自它的放大 自发辐射(Amplified Spontaneous Emission, ASE)。
(2)
由于放大器中产生自发辐射噪声,使 得放大后的信噪比下降。它定义为输入信 噪比与输出信噪比之比。
4.
(1) (2)
图7.5所示表示噪声指数与输出光功率之间 的关系。
(3)
同向泵浦式EDFA的饱和输出光功率最小。
图7.5 噪声指数与输出功率之间的关系
7.2.3EDFA
1. EDFA
增益系数g(z)与高能级和低能级的粒 子数目差及泵浦功率有关,对增益系数g(z) 在整个掺铒光纤长度上进行积分,就可求 出光纤放大器的增益G,所以,放大器的 增益应与泵浦强度及光纤的长度有关。
原理
第五章已经介绍过激光器的工作原理: 经泵浦源的作用,工作物质粒子由低能级 跃迁到高能级(一般通过另一辅助能级), 在一定泵浦强度下,得到了粒子数反转分 布而具有光放大作用。当工作频带范围内 的信号光输入时便得到放大。这也就是掺 铒光纤放大器的基本工作原理。
只是EDFA(及其他掺杂光纤放大器)细 长的纤形结构使得有源区能量密度很高, 光与物质的作用区很长,有利于降低对泵 浦源功率的要求。
(2)
人们希望放大器的增益在很宽的频带 内与波长无关。这样在应用这些放大器的 系统中,便可放宽单信道传输波长的容限, 也可在不降低系统性能的情况下,极大地 增加WDM系统的信道数目。
(3)
由于信号放大过程消耗了高能级上粒 子,因而使增益系数减小,当放大器增益 减小为峰值的一半时,所对应的输出功率 就叫饱和输出功率,这是放大器的一个重 要的参数,饱和功率用Pouts表示。
光放大器还将促进光孤子通信技术的 实用化。光孤子通信是利用光纤的非线性 来补偿光纤的色散作用的一种新型通信方 式。
7.1.2
光放大器的发展最早可追溯到1923年 A·斯梅卡尔预示的自发喇曼散射。1928年 印度加尔各答大学的喇曼观测到自发喇曼 效应。
7.1.3
光放大器按原理不同大体上有三种类 型。
EDFA用作线路放大器是它在光纤通 信系统的一个重要应用。
4. EDFA
EDFA可在宽带本地网,特别在电视 分配网中得到应用。
7.2.5 掺铒光纤放大器的优缺点
EDFA之所以得到迅速的发展,源于 它的一系列优点。
(1) 工作波长与光纤最小损耗窗口一 致,可在光纤通信中获得广泛应用。
(2) 耦合效率高。因为是光纤型放大 器,易于光纤耦合连接,也可用熔接技术 与传输光纤熔接在一起,损耗可降至0.1dB, 这样的熔接反射损耗也很小,不易自激。
泵浦效率Wp可以用来衡量泵浦的有效 性,其表达式如下:
Wp=放大器增益(dB)/泵浦功率(mW)
7.2.2 掺铒光纤放大器的结构
1.
在同向泵浦方案中,泵浦光与信号光 从同一端注入掺铒光纤。
2.
反向泵浦,泵浦光与信号光从不同的 方向输入掺杂光纤,两者在掺铒光纤中反 向传输。
3.
为了使掺铒光纤中的铒离子能够得到充分 的激励,必须提高泵浦功率。
(3) 半导体激光放大器。其结构大体 上与激光二极管(Laser Diode,LD)相同。
这几种类型的光放大器的工作原理和 激励方式各不相同。
7.1.4 光纤放大器的重要指标
1.
(1) 增益G与增益系数g
放大器的增益定义为
式 中 : Pout,Pin 分 别 为 放 大 器 输 出 端 与 输 入端的连续信号功率。
(3) 能量转换效率高。激光工作物质集 中在光纤芯子,且集中在光纤芯子中的近 轴部分,而信号光和泵浦光也是在近轴部
(1) 掺杂光纤放大器,就是利用稀土 金属离子作为激光工作物质的一种放大器。
(2) 传输光纤放大器,其中有受激喇 曼散射(Stimulated Raman Scattering, SRS)光纤放大器、受激布里渊散射 (Stimulated Brilliouin Scattering,SBS)光 纤放大器和利用四波混频效应(FWM)的光 放大器等。
(SNR)in和(SNR)out分别代表输入与输 出的信噪比。它们都是在接收机端将光信 号转换成光电流后的功率来计算的。
7.2 掺铒光纤放大器
掺铒光纤放大器是将掺铒光纤在泵浦 源的作用下而形成的光纤放大器。对这种 掺杂光纤放大器影响较大的工作可追溯到 1963年对玻璃激光器的研究。
7.2.1 掺铒光纤放大器的工作
以1989年诞生的掺铒光纤放大器 (Erbium Doped Fiber Amplifier,EDFA)代 表的光放大器技术可以说是光纤通信技术 上的一次革命。
光放大器在光纤通信系统目前最Байду номын сангаас要 的应用就是促使了波分复用技术 (Wavelength Division Multiplexing,WDM) 走向实用化。
第七章 光 放 大 器
7.1 光放大器概述 7.2 掺铒光纤放大器 7.3 光纤喇曼放大器 7.4 其他光放大器
7.1 光放大器概述
7.1.1 光放大器在现代光纤通
光纤通信中用光纤来传输光信号。光 纤的中继距离受限于光纤的损耗和色散。 就损耗而言,目前光纤损耗典型值在 1.31μm波段为0.35dB/km左右,在1.55μm 波段为0.25dB/km左右。
2. EDFA
图7.9所示是掺铒硅光纤的g-λ曲线, 从图中可以看出增益系数随着波长的不同 而不同。
EDFA实现宽频带和增益平坦度经过 了3个阶段,如表7.1所示。
光纤在1.55μm低损耗区具有200nm带 宽 , 而 目 前 使 用 的 E D FA 增 益 带 宽 仅 为 35nm左右。
.
图 7 9 掺 铒 离 子 硅 光 纤 的
相关文档
最新文档