江南十校数学(文)答案(word版)

合集下载

2017江南十校文数试题(带答案)

2017江南十校文数试题(带答案)

2017年安徽省“江南十校”度高三联考数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}220A x x x =--≥,{}03B x x =<<,则AB ( )A .(0,2]B .[-1,3)C .[2,3)D .[-1,0) 2. 若复数z 满足1zi i=+,其中i 是虚数单位,则复数z 的共轭复数为z =( ) A .1i + B .1i -+ C .1i - D .1i -- 3.已知数列{}n a 是等差数列,35220,2a a a +==-,则15a =( ) A .20 B .24 C .28 D .344.若圆锥曲线222:15x y m Γ+=(0m ≠且5m ≠)的一个焦点与抛物线28y x =的焦点重合,则实数m =( )A .9B .7 C.1 D. -15.已知函数cos y x =与sin(2)(0)y x ϕϕπ=+≤≤,它们的图像有一个横坐标为3π的焦点,则 ( ) A .6π B .3πC. 23π D .56π6.中国的计量单位可以追溯到4000多年前的氏族社会末期,公元前221年,秦王统一中国后,颁布同一度量衡的诏书并制发了成套的权衡和容量标准器.下图是古代的一种度量工具“斗”(无盖,不计量厚度)的三视图(其正视图和侧视图为等腰梯形),则此“斗”的体积为(单位:立方厘米)( )A .2000B .2800 C.3000 D.60007.已知3211log 222,(2)a b -==,cos50cos10cos140sin170c =︒︒+︒︒,则实数,,a b c 的大小关系是( )A .a c b >>B .b a c >> C. a b c >> D .c b a >> 8.若函数2()()xf x ax bx e =+的图像如图所示,则实数,a b 的值可能为( )A .1,2a b ==B .1,2a b ==- C. 1,2a b =-= D .1,2a b =-=- 9.三棱锥P ABC -中,侧棱2,6PA PB PC ===,则当三棱锥P ABC -的三个侧面的面积和最大时,经过点,,,P A B C 的球的表面积是( )A .4πB .8π C. 12π D .16π10.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、,焦距为2c ,直线3()y x c =+与双曲线的一个交点P 满足2112PF F PF F ∠∠=2,则该双曲线的离心率为( ) A .2 B .3 C.231+ D .31+11.已知MOD 函数是一个求余函数,其格式为(,)MOD n m ,其结果为n 除以m 的余数,例如(8,3)2MOD =.右面是一个算法的程序框图,当输入n 的值为12时,则输出的结果为( )A .2B .3 C.4 D .5 12.已知数列{}n a 满足1(1)cos(2,)2n n n a a n n n N π*++=+•≥∈,n S 是数列{}n a 的前n 项和,若20171010S m +=,且10a m •>,则111a m+的最小值为( ) A .2 BC..2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量(1,),(2,5),(,3)a m b c m ===,且()//()a c a b +-,则m = . 14.已知θ是第四象限,且5sin()413πθ+=,则tan()4πθ-= . 15.过定点(2,1)P -作动圆222:220C x y ay a +-+-=的一条切线,切点为T ,则线段PT 长的最小值是 . 16.已知实,x y 数满足ln 230y xx y ≤⎧⎨--≤⎩,则4y z x+=的取值范围为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知,,a b c 分别为ABC ∆中角,,A B C的对边,函数2()3cos 2cos f x x x x =++且()5f A =.(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC ∆面积的最大值.18. 某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;合计附:22()()()()()n ad bc K a b c d a c b d -=++++(Ⅱ)若采用分层抽样的方式从18-64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18-24岁的概率.19. 如图,四边形ABCD 是边长为2的正方形,CG ⊥平面ABCD ,////DE BF CG ,35DE BF CG ==. P 为线段EF 的中点,AP 与平面ABCD 所成角为60°.在线段CG 上取一点H ,使得35GH CG =.(Ⅰ)求证:PH ⊥平面AEF ; (Ⅱ)求多面体ABDEFH 的体积.20. 如图所示,在直角坐标系xOy 中,抛物线2:4,(1,0)C y x Q =-,设点P 是第一象限内抛物线C 上一点,且PQ 为抛物线C 的切线. (Ⅰ)求点P 的坐标;(Ⅱ)圆1C 、2C 均与直线OP 相切于点P ,且均与x 轴相切,求圆1C 、2C 的半径之和.21. 已知函数2(2)()(2)ln 2a f x a x ax x-=++--. (Ⅰ)当02a <<时,求函数()f x 的单调区间; (Ⅱ)已知1a =,函数21()44g x x bx =--.若对任意1(0,]x e ∈,都存在2(0,2]x ∈,使得12()()f x g x ≥成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知P 为曲线221:1124x y C +=上的动点,直线2C的参数方程为312x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)求点P 到直线2C 距离的最大值,并求出点P 的坐标. 23.选修4-5:不等式选讲已知关于x 的方程22log (25)210x x a -+--=在[0,3]x ∈上有解. (Ⅰ)求正实数a 取值所组成的集合A ;(Ⅱ)若230t at --≥对任意a A ∈恒成立,求实数t 的取值范围.试卷答案一、选择题1.CA ={1x x ≤-或2x ≥},{}|23AB x x ∴=≤<2.D 1,1z i z i =-+∴=--3.B 31388210a a a a +=⇒=又2413222152=+=⇒=∴-=d a a d a4.A2,54,9c m m =∴-=∴=5.A 21sin()=32πϕ+,2=236k ππϕπ++ 或526k k Z ππ+∈ =22k πϕπ-或2,6k k Z ππ+∈,又因为0ϕπ<<,所以6πϕ=6.B 1(100400200)1228003V =++⨯= 7.C 113212,3,2a b c --===,所以a b c >> 8.B 2()[(2)]xf x ax a b x b e '=+++•,由图像可知,所以选B9.D 当,,PA PB PC 两两垂直时,三棱锥P ABC -的三个侧面的面积和最大226644416R S R ππ=++=∴==10.D 1221122130,6090,3PF F PF F F PF PF c PF c ∠=︒∠=︒∴∠=︒∴== 由双曲线定义知:122(31),31a PF PF c e =-=-∴=+ 11. C12.A 2017120171008,1010S a S m -=+=,所以12a m +=11111111111()2222a m a m a m a m m a ⎛⎫⎛⎫+=+•+=++≥ ⎪ ⎪⎝⎭⎝⎭ 二、填空题13.3172± (1,3),(1,5)a c m m a b m +=++-=--由条件:23173202m m m ±--=⇒=14.512-5cos 413πθ⎛⎫-= ⎪⎝⎭因为θ为第四象限角且cos 04πθ⎛⎫-> ⎪⎝⎭,故12sin 413πθ⎛⎫-=- ⎪⎝⎭12tan 45πθ⎛⎫∴-=- ⎪⎝⎭15.2 222(1)2PT PC r a =-=++,当1a =-时PT 长最小为216.]1,0[三、解答题17.解:(1)由题意可得:2()323sin cos 2cos 5f A A A A =++=,()()()223sin cos 21cos sin 3cos sin 00,sin 0A A A AA A A A π∴=-∴-=∈∴≠∴sin 3cos A A =,即tan 3A =,3A π=. (2)由余弦定理可得:2242cos3b c bc π=+-,224b c bc b =+-≥(当且仅当2b c ==时“=”成立).∴133sin 43244ABC S bc A bc ∆==≤⨯=, 故ABC ∆面积的最大值是3. 18.解:(1)年龄低于50岁的人数年龄不低于50岁的人数合计 支持“脱欧”人数 20 30 50 不支持“脱欧”人数35 15 50 合计554510022100(20153035)9.091 6.63555455050K ⨯⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为以50岁为分界点对是否支持脱离欧盟的态度有差异. (2)18-24岁2人,25-49岁2人,50-64岁3人 .记18-24岁的两人为,A B ;25-49岁的两人为,C D ;50-64岁的三人为,,E F G ,则,,,,,,,,,,,,,,,,,,AB AC AD AE AF AG BC BD BE BF BG CD CE CF CG DE DF DG ,,,EF EG FG 共21种,其中含有A 或B 的有11种.1121P =. 19.解:(1)连接,AC BD 交于点O ,连接OP ,则O 为BD 中点,OP DE ∴⊥OP ∴⊥平面ABCD ,PAO ∴∠为AP 与平面ABCD 所成角,60PAO ∴∠=. AOP Rt ∆中,1,3,2AO OP AP ===5323,33CG CH ∴==. Rt AHC ∆中,2243AH AC CH =+=. 梯形OPHC 中,23PH =. 222AP PH AH ∴+=AP PH ∴⊥.又EH FH =PH EF ∴⊥. 又APEF P =PH ∴⊥平面AEF .(2)由(1)知,OP ⊥平面ABCD OP AC ∴⊥. 又AC BD ⊥,BDOP O =AC ∴⊥平面BDEF .123||3A BFED BFED V S AO -∴=⨯⨯=//,CG BF BF ⊂平面BFED ,CG ⊄平面BFED ,//CG ∴平面BFED ∴点H 到平面BFED 的距离等于点C 到平面BFED 的距离,1||33H BFED BFED V S CO -∴=⨯⨯=. 3A BFED H EFBD V V V --=+=.20.解:(1)设直线PQ 的方程为:1x my =-2214404x my y my y x=-⎧⇒-+=⎨=⎩ 因为PQ 为抛物线C 的切线,所以2161601m m ∆=-=⇒=±.又因为点P 是第一象限内抛物线C 上一点,所以1m =, 此时点(1,2)P .(2)OP 直线方程为:2y x =,设圆12C C 、的圆心坐标分别为1122(,,)a b a ),(b ,其中120b >>0,b , 则圆12C C 、的半径分别为12b 、b ,因为圆1C 与直线OP 相切于点P,所以1121112112550b a b b b-⎧=⎪-⎪⇒-+==. 同理因为圆2C 与直线OP 相切于点P ,所以2222222112550b a b b b-⎧=-⎪-⎪⇒-+==. 即圆12C C 、的半径12b b 、是方程2550b b -+=的两根, 故125b b =+.21.解:(1)当02a <<时,222(2)2(2)(2)[(2)()ax a x a x ax a f x x x-++----'=-=-,当203a <<时,22()02,()022a a f x x f x x --''>⇒<<<⇒> 或02x <<,()f x 在2(2,)2a -上递增,在(0,2)和2(,)2a-+∞上递减;当223a <<时,2()02,()022a f x x f x x -''>⇒<<<⇒>或202a x -<<,()f x 在2(,2)2a -上递增,在2(0,)2a-和(2,)+∞上递减;222(2))3x f x x-'=-(,()f x 在()0,+∞上递减. (2)由(2)知1,()a f x =在(0,1)内单调递减,(1,2)内单调递增,(2,)e 内单调递减,又222(1)3(1)1,()1,()(1)20e f f e e f e f e e e e--=-=-+-=-+=->, ]1min (0,()|(1)1x e f x f ∴∈==-,故(][]120,,0,2x e x ∀∈∃∈有12()()f xg x ≥,只需()g x 在[0,2]上最小值小于等于-1即可.020x b =<即0b <时()g x 最小值1(0)14g =->-,不合题意,舍去; 02[0,2]x b =∈即01b ≤≤时()g x 最小值213(2)41144g b b b =--≤-⇒≤≤; 022x b =>即1b >时()g x 最小值1519(2)81,1432g b b b =--≤-⇒≥∴>; 综上所述:34b ≥. 22.解:由条件:23:36033y C x x =⇒-=-. 设点(23,2sin )P θθ,点P 到2C 之距离,23cos 23sin 66)34d θθπθ--==+-.max 63d =.此时点(6,2)P .23.解:(1)当[0,3]x ∈时[]2222log (25)log (1)42,3x x x ⎡⎤-+=-+∈⎣⎦.2213a ≤-≤且3302,|222a a A a a ⎧⎫>⇒≤≤∴=≤≤⎨⎬⎩⎭. (2)由(1)知:322a ≤≤,设2()3g a t a t =•+-,则3()02(2)913g t g t t ⎧⎧≥≥⎪⎪⇒⎨⎨⎪⎪≥≥≤-⎩⎩或或34t ≤34t ≤或3t ≥.。

2023年安徽省江南十校高考数学联考试卷+答案解析(附后)

2023年安徽省江南十校高考数学联考试卷+答案解析(附后)

2023年安徽省江南十校高考数学联考试卷1. 已知集合,,则( )A. B.C. D.2. 设i为虚数单位,复数,则z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知平面向量的夹角为,且,则( )A. B. C. D.4. 安徽徽州古城与四川阆中古城、山西平遥古城、云南丽江古城被称为中国四大古城.徽州古城中有一古建筑,其底层部分可近似看作一个正方体已知该正方体中,点E,F分别是棱,的中点,过,E,F三点的平面与平面ABCD的交线为l,则直线l与直线所成角为( )A. B. C. D.5. 为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.( )A. 40B. 24C. 20D. 126. 已知函数,则下列说法正确的是( )A. 点是曲线的对称中心B. 点是曲线的对称中心C. 直线是曲线的对称轴D. 直线是曲线的对称轴7. 在三棱锥中,底面ABC,,,则三棱锥外接球的表面积为( )A. B. C. D.8. 已知,则a,b,c的大小关系为( )A.B. C.D.9. 已知函数,则( )A. 是奇函数B. 的单调递增区间为和C. 的最大值为D.的极值点为10.在平行六面体中,已知,,则( )A. 直线与BD 所成的角为B. 线段的长度为C.直线与所成的角为D. 直线与平面ABCD 所成角的正弦值为11. 已知O 为坐标原点,点,,线段AB 的中点M 在抛物线C :上,连接OB 并延长,与C 交于点N ,则( )A. C 的准线方程为B. 点B 为线段ON 的中点C. 直线AN 与C 相切D. C 在点M 处的切线与直线ON 平行12. 已知函数和及其导函数和的定义域均为R ,若,,且为偶函数,则( )A. B. 函数的图象关于直线对称C. 函数的图象关于直线对称D.13.的展开式中,常数项为______ 用数字作答14. 已知圆C :,直线l :是参数,则直线l 被圆C 截得的弦长的最小值为______ .15. 已知直线l 与椭圆交于M ,N 两点,线段MN 中点P 在直线上,且线段MN 的垂直平分线交x 轴于点,则椭圆E 的离心率是______ .16. 若过点有3条直线与函数的图象相切,则m 的取值范围是______ .17. 在平面直角坐标系Oxy 中,锐角、的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 的交点分别为P ,已知点P 的纵坐标为,点Q 的横坐标为求的值;记的内角A ,B ,C 的对边分别为a ,b ,请从下面两个问题中任选一个作答,如果多选,则按第一个解答计分.①若,且,求周长的最大值.②若,,且,求的面积.18. 已知在递增数列中,,为函数的两个零点,数列是公差为2的等差数列.求数列的通项公式;设数列的前n 项和为,证明:19. 渔船海上外出作业受天气限制,尤其浪高对渔船安全影响最大,二月份是某海域风浪最平静的月份,浪高一般不超过某研究小组从前些年二月份各天的浪高数据中,随机抽取50天数据作为样本,制成频率分布直方图:如图根据海浪高度将海浪划分为如下等级:浪高海浪等级微浪小浪中浪大浪海事管理部门规定:海浪等级在“大浪”及以上禁止渔船出海作业.某渔船出海作业除受浪高限制外,还受其他因素影响,根据以往经验可知:“微浪”情况下出海作业的概率为,“小浪”情况下出海作业的概率为,“中浪”情况下出海作业的概率为,请根据上面频率分布直方图,估计二月份的某天各种海浪等级出现的概率,并求该渔船在这天出海作业的概率;气象预报预计未来三天内会持续“中浪”或“大浪”,根据以往经验可知:若某天是“大浪”,则第二天是“大浪”的概率为,“中浪”的概率为;若某天是“中浪”,则第二天是“大浪”的概率为,“中浪”的概率为现已知某天为“中浪”,记该天的后三天出现“大浪”的天数为X,求X的分布列和数学期望.20. 如图,四棱锥中,为等腰三角形,,,,证明:;若,点M在线段PB上,,求平面DMC与平面PAD夹角的余弦值.21. 我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则称它们互为“姊妺”圆锥曲线.已知椭圆,双曲线是椭圆的“姊妺”圆锥曲线,,分别为,的离心率,且,点M,N分别为椭圆的左、右顶点.求双曲线的方程;设过点的动直线l交双曲线右支于A,B两点,若直线AM,BN的斜率分别为,试探究与的比值是否为定值.若是定值,求出这个定值;若不是定值,请说明理由;求的取值范围.22. 已知函数若在定义域上具有唯一单调性,求k的取值范围;当时,证明:答案和解析1.【答案】C【解析】解:,,,则,,,,,故选:分别将两个集合中的元素表示出来,再求补集,交集.本题考查集合的运算,考查二次不等式的解法,属于基础题.2.【答案】D【解析】解:因为,所以复数对应的点为在第四象限,故选:利用复数的运算性质化简复数z,求出对应的点的坐标,由此即可求解.本题考查了复数的运算性质,涉及到复数的实际意义,属于基础题.3.【答案】C【解析】解:已知平面向量的夹角为,且,则,则,故选:由平面向量数量积的运算,结合平面向量的模的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量的模的运算,属基础题.4.【答案】A【解析】解:如图所示,在平面中,连接与DA交于H,则,在平面中,连接与DC交于G,则,则GH为平面与平面ABCD的交线l,且,而在等边中AC与所成的角为,故l与直线所成角为故选:作出平面与平面ABCD的交线l,再求l与直线所成角.本题考查异面直线所成的角的求法,属基础题.5.【答案】B【解析】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种,故选:根据相邻问题用捆绑法和不相邻问题用插空法即可求解.本题考查了排列组合的应用,属于基础题.6.【答案】C【解析】解:,当,则,此时,则函数关于对称,故A错误,当,则,此时,则函数关于对称,故B错误,当,则,此时,则函数关于对称,故C正确,当,则,此时,则函数关于点对称,故D错误,故选:利用辅助角公式进行化简,然后分别利用对称性进行判断即可.本题主要考查三角函数对称性的判断,根据辅助角公式进行化简是解决本题的关键,是中档题.7.【答案】B【解析】解:在三棱锥中,底面ABC,如图所示:在中,,,利用余弦定理:,解得:,设的外接圆的半径为R,利用正弦定理,解得,过点E作的垂线和AP的垂直平分线交于点O,即点O为三棱锥外接球的球心,设球的半径为r,故;所以故选:首先利用正弦定理和余弦定理求出三棱锥的外接球的半径,进一步利用球的表面积公式求出结果.本题考查的知识要点:正弦定理和余弦定理,求和三棱锥的关系,球的表面积公式,主要考查学生的理解能力和计算能力,属于中档题和易错题.8.【答案】D【解析】解:,,,,设,,所以在上单调递减,因为,所以,所以,,令,,,所以在上单调递增,又,所以,所以,所以,故选:,,,则,设,,求导分析单调性,即可得出b与a的大小关系;,令,,求导分析单调性,即可得出b与c的大小关系,即可得出答案.本题考查函数的单调性,数的大小,属于基础题.9.【答案】AB【解析】解:对于A,因为对,,所以是R上的奇函数,故A正确;对于B,由得或,所以的单调递增区间为和,故B正确;对于C,因为时,,所以无最大值,故C错误;对于D,由得,经检验是函数的极大值点,是函数的极小值点,极值点是实数,故D错误,故选:根据奇偶性的定义可判断A;对函数求导,令可得函数的增区间,即可判断B;根据时,,所以无最大值,即可判断C;由得,检验可得为函数的极值点,即可判断本题主要考查了三次函数的性质,属于基础题.10.【答案】AC【解析】解:在平行六面体中,取,,,,,,,对于A:,,,则,故直线与BD所成的角为,故A正确;对于B:,则,即,故B错误;对于C:,故,即,故直线与所成的角为,故C正确;对于D:在平行六面体中,四边形ABCD是菱形,则,又,,平面,平面,平面,又平面ABCD,则平面平面ABCD,连接AC交BD于点O,过点作于点E,如图所示:平面平面,平面,平面ABCD,直线与平面ABCD所成角为,,则,即,在中,,故D错误,故选:在平行六面体中,取,,,利用空间向量的线性运算,逐一分析选项,即可得出答案.本题考查直线与平面的夹角、异面直线的夹角,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.11.【答案】BCD【解析】解:对A,根据中点公式得,将其代入C:得,则,所以抛物线C:的准线方程为,故A错误;对B,因为,则直线OB的斜率为a,则直线OB的方程为,将其代入C:得,解得或舍去,此时,则,所以B为ON中点,故B正确;对C,C:,即,则,故抛物线C在点N处的切线的斜率为,故切线方程为,令得,所以直线AN为C的切线,故C正确;对D,抛物线C:在处的切线方程的斜率为,而直线ON的斜率为a,则两直线的斜率相等,且两直线显然不可能重合,所以C在点M处的切线与直线ON平行.故选:将代入抛物线得,则得到其准线方程,则可判断A,联立直线OB的方程与抛物线方程即可得到,即可判断B,利用导数求出抛物线C在点N处的切线方程,令,则可判断C,再次利用导数求出抛物线在处的切线斜率,则可判断本题考查了抛物线的性质,属于中档题.12.【答案】ABC【解析】解:对于A,由为偶函数得,即有,则的图象关于直线对称,对两边同时求导得:,令,得,故A正确;对于B,由关于直线对称得,由,得,所以,即的图象关于直线对称,故B正确;对于C,对两边同时求导得,由,得,则,即,所以的图象关于直线对称,故C正确;对于D,由,得,结合C选项可知,,即,所以,所以4是函数的一个周期,由,得4也是函数的一个周期,由,得,所以,故D错误.故选:根据为偶函数,可得,两边求导即可判断A;由关于直线对称得,结合,即可判断B;根据,两边同时求导得,从而可判断C;先求出函数和的周期,再结合函数的对称性即可判断本题考查了复合函数的奇偶性、周期性、对数性及复合函数的求导、导数的对称性及奇偶性,属于中档题.13.【答案】60【解析】解:的展开式的通项公式为,,1,,当,即时,;当时,无解;展开式中的常数项为,故答案为:当前边括号取3时,后边括号取常数项;当前边括号取x时,后边括号取项,无解;由此计算出常数项即可.本题考查二项式展开式的应用,考查学生计算能力,属于基础题.14.【答案】【解析】解:圆C:的圆心坐标为,半径为由直线l:,得,联立,解得直线l过定点,又,点在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时直线l被圆C截得的弦长的最小值为故答案为:由圆的方程求出圆心坐标与半径,由直线方程可得直线过定点,求得,再由垂径定理求得直线l被圆C截得的弦长的最小值.本题考查直线与圆的位置关系,考查了垂径定理的应用,属中档题.15.【答案】【解析】解:根据题意设MN中点,又,直线的斜率为,又,直线MN的斜率为,设,,则,两式相减可得:,,,椭圆E的离心率,故答案为:根据直线垂直的条件,点差法,方程思想,化归转化思想,即可求解.本题考查椭圆的离心率的求解,点差法的应用,方程思想,属中档题.16.【答案】【解析】解:设切点为,则,过点P的切线方程为,代入点P坐标化简为,即这个方程有三个不等根即可,令,求导得到,函数在上单调递减,在上单调递增,在上单调递减,又,当时,,要使方程有三个不等实数根,则,的取值范围是:故答案为:求出函数的导函数,可得函数的最值,即可求得实数m的取值范围.本题考查的是导数的几何意义的应用,将函数的切线条数转化为切点个数问题,最终转化为零点个数问题是解决此题的关键,是中档题.17.【答案】解:因为,是锐角,所以P,Q在第一象限,又因为P,Q在单位圆上,点P的纵坐标为,点Q的横坐标为,所以,所以故选①:由中结论可得,又,,由余弦定理可得,即,,,,当时,等号成立,,即当为等边三角形时,周长最大,最大值为选②:由可知,则,由正弦定理,可得,故,则【解析】先利用三角函数的定义与同角的平方关系求得,,,,再利用余弦的和差公式即可得解;选①:先结合中条件得到,再利用余弦定理与基本不等式推得,从而得解;选②:先结合中条件求得,再利用正弦定理求得a,b,从而利用三角形面积公式即可得解.本题考查了正余弦定理、三角函数的定义以及基本不等式的应用,属于中档题.18.【答案】解:在递增数列中,,为函数的两个零点,可得,,公差,则数列是首项为5,公差为2的等差数列,则,则;证明:,则,因为,所以【解析】令,解方程可得,,再由等差数列的通项公式和数列的恒等式,等差数列的求和公式,计算可得所求通项公式;求得,再由数列的裂项相消求和,结合不等式的性质可得证明.本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查转化思想和运算能力、推理能力,属于中档题.19.【答案】解:记这天浪级是“微浪”为事件,浪级是“小浪”为事件,浪级是“中浪”为事件,浪级是“大浪”为事件,该渔船当天出海作业为事件B ,则由题意可知:,,,所以依题意可知,X 的所有可能取值为0,1,2,3,所以,,,,则X 的分布列为:X 0123P所以【解析】根据频率分布直方图计算频率即可估计二月份的某天各种海浪等级出现的概率;根据全概率公式可求得该渔船在这天出海作业的概率;依题意可知,X 的所有可能取值为0,1,2,3,求出对应的概率,即可得出分布列,根据期望公式求出期望.本题主要考查概率的求法,离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.20.【答案】证明:取AD的中点O,连接OP,OC,如图,因为,则,又,即有,而,于是四边形ABCO为平行四边形,又,则,又,PO,平面POC,所以平面POC,又,因此平面POC,而平面POC,所以;解:因为,,且,AD,平面PAD,则平面PAD,又,则平面PAD,分别以OC,OP,OD所在的直线为x,y,z轴建立空间直角坐标系,如图,又,则,,又,则,所以,,,,,则,,设平面DMC的法向量为,则,令,得,又平面PAD的一个法向量为,则,所以平面DMC与平面PAD夹角的余弦值为【解析】根据给定条件,取AD的中点O,利用线面垂直的判定证明平面POC即可推理作答;以O为原点,建立空间直角坐标系,利用空间向量求解作答.本题考查了线线垂直的证明和二面角的计算,属于中档题.21.【答案】解:由题意可设双曲线:,则,解得,双曲线的方程为;设,,直线AB的方程为,由,消去x得,则,,且,,;设直线AM:,代入双曲线方程并整理得,由于点M为双曲线的左顶点,此方程有一根为,,解得,点A在双曲线的右支上,,解得,即,同理可得,由,,【解析】由题意可设双曲线:,利用,可求b;设,,直线AB的方程为,与双曲线联立方程组可得,,进而计算可得为定值.设直线AM:,代入双曲线方程可得,进而可得,,进而由可得,进而求得的取值范围.本题考查椭圆和双曲线的标准方程与离心率,双曲线的几何性质,直线与双曲线的位置关系,渐近线与双曲线的位置关系,属中档题.22.【答案】解:由题意得的定义域为,,若在定义域上单调递增,则恒成立,即在上恒成立,又,;若在定义域上单调递减,则恒成立,即在上恒成立,而这样的k不存在;综上所述:在定义域上单调递增,且,所以k的取值范围为;证明:要证成立,只需证,只需证,只需证,只需证,当时,,原不等式即证,由知在上单调递增,,,又,则,原不等式成立.【解析】求导后若在定义域上单调递增,则恒成立,若在定义域上单调递减,则恒成立,利用恒成立知识即可求解;,再根据的单调性即可得证.本题考查了导数的综合应用,属于中档题.。

安徽省江南十校2023-2024学年高一上学期12月分科诊断模拟联考 数学答案

安徽省江南十校2023-2024学年高一上学期12月分科诊断模拟联考 数学答案

2023年“江南十校”高一分科诊断摸底联考数学答案一、单选题二、多选题9.AD 10.AB 11.ACD 12.ABD 详解1.A 略,2.D 略3.C []21,2,202x x a a ∀∈--≤⇒≥,则充分不必要条件选C 4.DA .令a=2,b=1,c=1a-c=b,A 错误B .令a=1,b=-2,c=2.B 错误C .0<c<1时不符合D .正确5.B11122212,,3,3r 9,812OAD OBCl RS l S ROB r OA R R l r S S l r =====∴===扇扇设则则,故6.Af (x )=f (-x )排除CD ,又f (1)>0,故选A 7.B12331,32,33log 2log 82222a a b ⎛⎫===>==< ⎪⎝⎭101,b b a a a a ∴<<<>=故选B8.法1()()()()()()()()()()()3122231231223223233log 413log 413log 41log 41234141240,1161821084821342x x x x x x x x f x f x x x x t t t t t t t t -+-+-+-<+⇒+-<+-+⇒+<++-⇒+<+=>+<+⇒--<⇒<<⇒-<<令则 法2.()()()[)()[)22221log 411log 2210,113131139614442x x x f x x y f x x x x x x x x x -+=+--=+-+∞∴==+∞-<+-⇒-+<++⇒-<<是偶函数,且在上单调递增,关于对称,且在,上单调递增,则 故选C二、多选题详解()()()()()22229.A. 11,21,01,B.201,2C.0004D.0,24155ADf x m m m m f x m x x x B R a a C t y t t t D --===-+∞∴=-->≥+∞=∆<⇒≤<=≥∴=-++=--+≤是幂函数,则得或又在,单减,且所以单增区间是,,故错误定义域为,则或,故错误令,故正确10.A. 01sin1cos10,2323sin 2cos 20,sin 3cos30,243D. 4,sin 4cos 40,2AB B C D ππππππ<<∴+><<<<∴+>+<<<∴+<Q 正确又故正确,错误故错误2211.2()()4()8022a b 1;22111122111,1,2(1)(1)3(1)(33)9ACDa b ab a b a b a b a b a b A ab a b B a b ab a b ab ab ab a b C ab a b a b a b +=++≤⇒+-+-≥⇒+≥++≤==+=++≥+⇒≥+≤-+-+===-≥-=-==+=++⇒--=⇒--=或当正确错误;当故正确;234(),2310,4,2a b a b a b D +-≤+≥==当时取等,故正确[][][])([][]2212.A 2023,2023,12023;0,1,()0;220121,0,1,2ABD x y xy x y B x f x C x x xx x x x x D αβαβ=+=++==+∈=-=≤⇒--≤⇒-≤≤∴-=-正确;当时故正确当时此时故错误可取,分别代入得故正确,也可画图。

2020年安徽省江南十校高考数学模拟试卷(文科)(4月份)(有答案解析)

2020年安徽省江南十校高考数学模拟试卷(文科)(4月份)(有答案解析)

2020年安徽省江南十校高考数学模拟试卷(文科)(4月份)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.已知复数为虚数单位,则A. B. C. D.3.某装饰公司制作一种扇形板状装饰品,其圆心角为,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连弧的两端各一个,导线接头忽略不计已知扇形的半径为30厘米,则连接导线最小大致需要的长度为A. 58厘米B. 63厘米C. 69厘米D. 76厘米4.函数在上的图象大致为A. B.C. D.5.在2020年春节前夕,为了春节食品市场安全,确保人们过一个健康安全的春节,某市质检部门对辖区内的某大型超市中的一品牌袋装食品进行抽检,将超市中该袋装食品编号为1,2,3,,500,从中用系统抽样等距抽样的方法抽取20袋进行检测,如果编号为69的食品被抽到,则下列4个编号的食品中被抽到的是A. 9号B. 159号C. 354号D. 469号6.已知,则A. B. C. D.7.已知,,,则a,b,c的大小关系为A. B. C. D.8.执行如图的程序框图,则输出S的值为A. B. C. D.9.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数素数之和,也就是我们所谓的“”问题,它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩,若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为A. B. C. D.10.在中,角A,B,C的对边分别为a,b,若,,,则的面积为A. B. C. D.11.已知椭圆C:的焦距为2c,F为右焦点,直线与椭圆C相交于A,B 两点,是等腰直角三角形.点P的坐标为,若记椭圆C上任一点Q到点P的距离的最大值为d,则的值为A. B. C. D.12.已知给出下列判断:若,,且,则;存在,使得的图象右移个单位长度后得到的图象关于y轴对称;若在上恰有7个零点,则的取值范围为若在上单调递增,则的取值范围为其中,判断正确的个数为A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共20.0分)13.已知函数,则曲线在点处的切线方程为______.14.已知双曲线C:的离心率为,则双曲线C的右顶点到双曲线的渐近线的距离为______.15.在直角坐标系xOy中,已知点和点,若点C在的平分线上,且,则向量的坐标为______.16.已知在三棱锥中,A,B,C,D四点均在以O为球心的球面上,若,,,则球O的表面积为______.三、解答题(本大题共7小题,共82.0分)17.已知数列是递增的等比数列,是其前n项和,,.求数列的通项公式;记,求数列的前n项和.18.移动支付是指移动客户端利用手机等电子产品来进行电子货币支付,移动支付将互联网、终端设备、金融机构有效地联合起来,形成了一个新型的支付体系,使电子货币开始普及.某机构为了研究不同年龄人群使用移动支付的情况,随机抽取了100名市民,得到如表格:年龄岁使用移动支付402010442不使用移动支1122410付画出样本中使用移动支付的频率分布直方图,并估计使用移动支付的平均年龄;完成下面的列联表,能否在犯错误的概率不超过的前提下认为使用移动支付与年龄有关系?年龄小于50岁年龄不小于50岁合计使用移动支付不使用移动支付合计附:,19.如图,在四棱锥中,底面ABCD为等腰梯形,,,,为等腰直角三角形,,平面底面ABCD,E为PD的中点.求证:平面PBC;求三棱锥的体积.20.已知函数.当时,讨论的单调区间;若对,成立,求实数a的取值范围.21.已知抛物线C:,若圆M:与抛物线C相交于A,B两点,且.求抛物线C的方程;过点的直线与抛物线C相切,斜率为的直线与抛物线C相交于D,E两点,直线,交于点Q,求证:.22.在直角坐标系xOy中,直线的参数方程为为参数,直线的参数方程为为参数若直,的交点为P,当k变化时,点P的轨迹是曲线C.求曲线C的普通方程;以坐标原点为极点,x轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点Q为射线与曲线C的交点,求点Q的极径.23.已知函数.求不等式的解集;若不等式在R上恒成立,求实数m的取值范围.-------- 答案与解析 --------1.答案:D解析:解:集合,,.故选:D.求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:A解析:解:,.故选:A.利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:B解析:解:因为弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,所以导线长度为厘米.故选:B.弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小,用弧长近似代替弦长,计算导线的长度即可.本题考查了扇形的弧长计算问题,也考查了分析问题解决问题的能力,是基础题.4.答案:C解析:解:根据题意,,有,所以在上为奇函数,其图象关于原点对称,排除A,B,在上,,,,则,排除D;故选:C.根据题意,利用排除法分析:先分析函数的奇偶性,再分析在上,,可得答案.本题考查函数图象的识别,函数的奇偶性,属于基础题.5.答案:D解析:解:由题意得抽样间隔为,因为69号是第三组被抽到,即,可得,则,所以被抽中的初始编号为19号,之后被抽到的编号均是25的整数倍与19的和,四个选项中,只有D选项满足.故选:D.根据系统抽样的抽样方法,抽样间隔为,所以若第一组被抽到的编号为b,则第n组被抽到的编号为,根据69被抽到,故,再计算4个编号的食品中被抽到的即可.本题考查了系统抽样,考查了数列的通项公式得的应用,属于基础题6.答案:C解析:解:由,得,.故选:C.由已知求得,再由,结合诱导公式及倍角公式求解.本题考查三角函数的化简求值,考查诱导公式及倍角公式的应用,是基础题.7.答案:A解析:解:因为,,,故.故选:A.结合指数与对数函数的单调性分别确定a,b,c的范围即可比较.本题主要考查了利用指数函数与对数函数的单调性比较函数值大小,属于基础试题.8.答案:D解析:解:由题意得.故选:D.根据循环体的算法功能可以看出,这是一个对数列求前五项和的程序框图,计算可求解.这是一道程序框图中的循环结构问题,考查了数列求和,需要弄清楚首项与项数,计算要准确.难度不大.9.答案:A解析:解:由古典概型的基本事件的等可能性得6拆成两个正整数的和含有5个基本事件,分别为:,,,,,而加数全为质数的有,拆成的和式中,加数全部为质数的概率为.故选:A.利用列举法求出由古典概型的基本事件的等可能性得6拆成两个正整数的和含有5个基本事件,而加数全为质数的有1个,由此能求出拆成的和式中,加数全部为质数的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.10.答案:B解析:解:,,,即,,解得,,解得.,解得.则的面积.故选:B.由,利用正弦定理可得:,利用和差公式、诱导公式即可得出利用余弦定理及其,,即可得出三角形面积.本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11.答案:C解析:解:由题意可知,,点A的坐标为,将其代入椭圆方程有,又,,解得或舍,,椭圆C的方程可化为.设点Q的坐标为,则,,,即,故选:C.先通过是等腰直角三角形,得出点,代入椭圆方程,并与结合,可得到b与c的关系,从而椭圆C的方程可化为,设点,利用两点间距离公式表示出,再结合配方法即可求得其最大值.本题考查椭圆的几何性质,两点间距离公式和配方法求最值,考查学生的分析能力和运算能力,属于基础题.12.答案:B解析:解:,周期.由条件知,周期为,,故错误;函数图象右移个单位长度后得到的函数为,其图象关于y轴对称,则,,故对任意整数k,,故错误;由条件,得,,故正确;由条件,得,,又,,故正确.故选:B.先将化简,对于由条件知,周期为,然后求出;对于由条件可得,然后求出;对于由条件,得,然后求出的范围;对于由条件,得,然后求出的范围,再判断命题是否成立即可.本题考查了三角函数的图象与性质和三角函数的图象变换,考查了转化思想和推理能力,属中档题.13.答案:解析:解:函数,可知,故切点为,,故,所以曲线在点处的切线方程为,即,故答案为:.根据题意,求出和,即可得解.本题考查了导数的几何意义,是基础题.14.答案:解析:解:设双曲线的焦距为2c,,,,则.故双曲线的右顶点坐标为,一条渐近线方程为.双曲线C的右顶点到双曲线的渐近线的距离为:.故答案为:.由已知结合离心率公式求得b,可得双曲线的一条渐近线方程,再由点到直线的距离公式求解.本题考查双曲线的简单性质,训练了点到直线距离公式的应用,是基础题.15.答案:解析:解:由点C在的平分线上,所以存在,使;又,所以,解得,所以向量.故答案为:.由点C在的平分线上得存在,使,再由求出的值即可.本题考查了平面向量的线性表示与坐标运算问题,是基础题.16.答案:解析:解:设球的半径为R,过A作平面BDC,垂足为,连接,,;由可得;即为的外心,所以球心在射线AO上,在中,,,的外接圆半径满足:;;连接OB,则.故球O的表面积为:.故答案为:.先求出的外接圆半径并确定球心所在位置,再建立等量关系进一步求出球的半径.本题考查球的表面积的求法,考查空间想象能力以及计算能力,是中档题.17.答案:解:数列是递增的等比数列,设公比为q,由题意可得,由,,可得,解得或舍去,则数列的通项公式为;,,,两式相减可得,化简可得.解析:设等比数列的公比为q,,运用等比数列的通项公式,解方程可得公比q,即可得到所求通项公式;求得,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,化简运算能力,属于中档题.18.答案:解:样本中使用移动支付的人数为80人,所以每段的频率分别为,,,,,;画出样本中使用移动支付的频率分布直方图,如图所示;所以使用移动支付的平均年龄为;估计使用移动支付的平均年龄为岁;根据题意填写列联表如下,年龄小于50岁年龄不小于50岁合计使用移动支付701080不使用移动支付41620合计7426100计算,所以能在犯错误的概率不超过的前提下认为使用移动支付与年龄有关系.解析:根据题意画出样本中使用移动支付的频率分布直方图,再计算使用移动支付的平均年龄;根据题意填写列联表,计算,对照临界值得出结论.本题考查了频率分布直方图与独立性检验的应用问题,是基础题.19.答案:证明:如图,取PC的中点F,,,,.,,且,四边形ABEF为平行四边形,得,而平面PBC,平面PBC,平面PBC;解:由知,平面PBC,点E到平面PBC的距离等于A到平面PBC的距离,.如图取AB的中点O,连接PO,,,平面平面ABCD,平面平面,平面PAB,平面ABCD,为等腰直角三角形,,,.四边形ABCD为等腰梯形,且,,,梯形ABCD的高为1,则.三棱锥的体积为.解析:取PC的中点F,可得,,再由,,得到四边形ABEF为平行四边形,得,利用线面平行的判定可得平面PBC;由知,平面PBC,则点E到平面PBC的距离等于A到平面PBC的距离,可得,再求出三棱锥的体积得答案.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.20.答案:解:函数的定义域,,当即时,当,时,,函数单调递增,当时,,函数单调递减,当即时,恒成立,故在上单调递增,当即时,时,,函数单调递减,当时,,函数单调递增;综上可得,当时,函数的单调递增区间,,单调递减区间;当时,函数的单调递增区间,没有递减区间;当时,函数的单调递增区间,,单调递减区间;因为,成立,所以,成立,即恒成立,所以,令,,则,令,,则,所以在上单调递增,且,所以当时,,即,函数单调递减,当时,,即,函数单调递增,故当时,取得最小值,所以.解析:先对函数求导,然后结合导数与单调性的关系对a进行分类讨论,确定导数的符号,即可求解函数的单调性;由已知不等式恒成立,分离参数后转化为求解相应函数的范围,构造函数,结合导数可求.本题主要考查了利用导数研究函数的单调性及不等式的恒成立求解参数范围问题,体现了分类讨论思想及转化思想的应用.21.答案:解:因为抛物线C与圆M关于x轴对称,所以交点A,B关系x轴对称,设,,因为,所以,所以,交点或舍,所以,代入抛物线的方程可得,所以,所以抛物线的方程为:;证明:设直线的方程为,,即,联立方程,整理可得,,可得,所以直线的方程为:,设直线的方程为,点D,E的坐标分别为,,联立可得,即所以,所以.联立方程,整理可得,可得,,,所以,同理可得,所以,所以.解析:由于抛物线和圆的对称性可得A,B关于x轴对称,由弦长可得A的纵坐标,代入圆的方程求出A的横坐标,再将A点代入抛物线的方程,求出p的值,求出抛物线的方程;证明设的直线方程,与抛物线联立,由判别式等于0求出k的值,可得直线的方程,设直线的方程,设D,E的坐标,联立直线,的方程求出交点Q的坐标,求出的值,联立直线的方程,与抛物线联立,求出两根之和,两根之积,,的值及之积可证得.本题考查抛物线的性质及直线与抛物线的综合应用,及求弦长的方法,属于中难题.22.答案:解:直线的参数方程为为参数,转换为直角坐标方程为.直线的参数方程为为参数,转换为直角坐标方程为.联立两直线的方程消去参数k得:.设点由,可得:.代入曲线C,得,解得或舍去,故点Q的极径为.解析:直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:当时,可化为,解得,无解;当时,可化为,解得,故;当时,可化为,解得,故.综上可得,的解集为;不等式在R上恒成立,可得,即,由的最小值为,此时;由,当且仅当时,取得等号,则,所以,即m的取值范围是.解析:由绝对值的定义,去绝对值符号,解不等式,再求并集可得所求解集;由题意可得,结合二次函数的最值求法,以及绝对值不等式的性质可得所求最小值,进而得到m的范围.本题考查绝对值不等式的解法和不等式恒成立问题解法,注意运用分类讨论思想和转化思想,考查化简运算能力,属于中档题.。

江南十校2013届高三3月联考数学试题(文)

江南十校2013届高三3月联考数学试题(文)

安徽省江南十校2013届高三下学期3月联考数学文试题一、选择題:本大题共10小題,每小题5分,共50分,在毎小题给出的四个选项中,只有一项是符合题目要求的.1.复数111++-i i的虚部为(A) 1 (B) -1 (C) i (D) -i2.对于下述两个命题:p.对角线互相垂直的四边形是菱形;q:对角线互相平分的四边 形是菱形.则命题“q p ∨”、“q p ∧”、“p ⌝”中真命题的个数为(A) O(B) 1(C) 2(D) 33.己知集合A={x|x2-x ≤0},函数,f(x)=2-x(x ∈A)的值域为B.则B A C R )(为 (A) (1,2] (B) [1,2] (C) [O,1] (D) (1, ∞)4. 函数y=log2(| x|+1)的图象大致是5.已知21,e e 是两个单位向量,其夹角为θ,若向量2132e e m +=,则||m =1的充要条件是(A)πθ= (B)2πθ=(C) 3πθ= (D) 32πθ=6.某次摄影比赛,9位评委为某参赛作品给出的分数 如茎叶图所示.记分员在去掉一个最高分和一个 最低分后,算得平均分为91分.复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分 员计算无误,则数字x 是 (A) 1 (B) 2 (C) 3 (D) 47.已知函数f(x)=xa 的图象过点(4,2),令*,)()1(1N n n f n f a n ∈++=记数列{an}的前n 项和为则Sn S2013 = (A) 12012- (B) 12013- (C)12014- (D) 12014+8.执行如右图所示的程序框图,若输出i 的值为2 ,则输入 x 的最大值是 (A) 5 (B) 6 (C) H (D) 229.已知抛物线y2=2px(p>0)的焦点F 恰好是双曲线 12222=-b y a x 的右焦点,且双曲线过点(p b pa 222,3)则该双曲线的离心率是(A) 2 (B) 410 (C) 213(D) 42610. 对于集合{a1,a2,...,an}和常数a0,定义:为集合{a1,a2,...,an}相对a0的“正弦方差” 则集合相对a0的“正弦方差”为(A) 21 (B) 31(C) 4 (D)与%有关的一个值二、填空题11. 函数y=(x+1)0+ln(-x)的定义域为________12. 某几何体的三视图如图所示,则该几何体的体积 是_______.13. 若不等式组表示的平面区域的面积为3,则实数a 的值是______.14.从某校高中男生中随机抽取100名学生,将他们的体 重(单位:kg)数据绘制成频率分布直方图(如图).若要从身高在[60,70), [70 , 80),[80,90]三组内的 男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人 中选两人当正副队长,则这两人身 髙不在同一组内的概率为______.15 已知ΔABC 的三边长分别为AB = 5,BC = 4,AC =3, M 是AB 边上的点,P 是平面ABC 外 一点.给出下列四个命题:①若PA 丄平面ABC,则三棱锥P- ABC 的四个面都是直角三角形;②若PM 丄平面ABC,且M 是AB 边中点,则有PA=PB=PC③若PC= 5,PC 丄平面ABC,则ΔPCM 面积的最小值为;④若PC= 5, P 在平面ABC 上的射影是ΔABC 内切圆的圆心,则点P 到平面ABC 的 距离为.其中正确命题的序号是_______.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤16.(本小题满分12分)己知现将f(x)的图象向左平移个单位,再向上平移个单位,得到函数g(x)的图象(I)求+的值;(II)若a 、b 、C 分别是ΔABC 三个内角A 、B 、C 的对边,a + c = 4,且当x = B 时, g(x)取得最大值,求b 的取值范围.17. (本小题满分12分)随着生活水平的提髙,人们休闲方式也发生了变化。

江南十校期末大联考数学(文)试题及答案

江南十校期末大联考数学(文)试题及答案

安徽省江南十校2015届高三上学期期末大联考
数学(文)试题
第I卷(选择题,共50分)
一、选择题
1.设i是虚数单位,若复数z满足,则其虚数为
A.B.C.D.2.下列与侧面线具有公共焦点的双曲线是
3.已知U为全集,集合A,B如图所示,则
4.非零向量a,b满足夹角的余弦值为
5.已知函数的图象按图下列哪种交换得到
第II卷
二、填空题
11.“手技术与数学学科集合”是十二五重噗研究课题,某县为调查研究数学教师在教学中手持技术的使用情况,采用简单随机抽样的方法,从该县180名授课教师中抽取20名教师,调查他们在上学期的教学中使用手
持技术的次数,结果用茎叶图表示,则据此可估计上学期180名教师中使用次数落在的人数为。

三、解答题
16.△ABC的内角A,B,C所对的边分别为a,b,c,已知
17.
18.某公司生产部门调研发表,该公司第二,三季度的用电量与月份性相关,数据统计如下:
但核对电费报有时发现一组数据统计有误。

(I)请指出哪组数据有误,并说明理由;
(II)在排除有误数据后,求用电量与月份之间的回归直线
方程并预测统计有误哪个月份的用电量。

19.(本小题满分13分)
谢谢大家。

2021届江南十校一模联考江南十校文科数学答案


所以 BD EF . (6 分)
(2)由 EF 3 , OE OF 3 ,可得 EOF 120 ,
2
2
所以SOEF
1 OE OF 2
sin120 = 3 3 16

△DEF 中, cos EDF = 1, sin EDF = 3 7 ,


所以SDEF
1 DE DF 2
sin EDF= 3 7 16
所以an 的公差为 2,则 an 2n 1 .
(6 分)
(2)由(1)知 bn
1
=
an an1
1 2n 1
2n 1 2n 1
2n 1 ( 2n 1 2n 1)( 2n 1
2n 1)
1 ( 2n 1 2n 1) . 2
(10 分)
所以Sn
b1
b2
… bn
1 [( 2
所以 a 2 ,故 c 3 ,则△MF1F2 面积的最大值为 1 2c b bc 3 ,故选 B. 2
7.D 【解析】由排除法可排除 A,B,C,故选 D.
8.A 【解析】 y 0 时,曲线方程为 (x 3)2 ( y 1)2 1 , y 0 时,曲线方程为
(x 3)2 ( y 1)2 1 .当直线 y kx 与曲线相切时,k 3 ,则 k 的取值范围是 3,3 , 故选 A.
a aa
a
a
3.A
【解析】因为 sin
3且π 52
3 π ,所以 tan 2
3 ,故 tan 2 4
2 tan 1 tan2
24 , 7
故选 A.
4.C 【解析】过 O3 作 x 轴平行线 O3E ,则 OO3E 16 .由五
角星的内角为 36 ,可知 BAO3 18 ,所以直线 AB 的倾斜角为

安徽省江南十校2020届高三冲刺联考(二模)试题数学(文)(含解析)

姓名座位号(在此卷上答题无效}绝密★启用前2019年“江南十校”高三学生冲刺联考(二模)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中座位号与本人座位号是否一致,务必在答題卡规定的地方填写考场/座位号、姓名、班级。

2.答第I 卷时,每小题选出答案后,用2B 铅笔把答題卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5亳米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰,作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试题卷和答题卡一并上交。

.第1卷(选择题共60分)―、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合 A= {1<|x x },B = {2|x x },则C R (A ∩B)= A. {2<|x x } B. {1|xx }C. {1x 2<|或x x }D. {x >>2|或xx }2.设ii z2332,复数2z 位于复平面A.第一象限B.第二象限C.第三象限D.第四象限3. 执行如图所示的程序框图,输出的S 的值为A.2B.25 C.290941 D.10294. 已知抛物线方程为2ax y,它的准线方程为81y,则a 的值为A.21 B.21 C.-2D.25. 已知圆台上、下两底面与侧囿都与球相切,它的侧面积为16,则该圆台上、下两个底面圆的周长之和为A.4B.6 C.8 D.106. 已知:31log ,)31(,411ln 11eec b a,则 a ,b ,c 的大小关系为A. c > a > bB. c > b > aC.b > a > cD.a > b > c 7. 在平行四边形ABCD 中,E 为BC 的中点,点F 在CD 上, 且DF=2FCC ,连接AE 、BF 交于G 点,则DGA.AD AB 7154 B.AD AB 7476C.ADAB7275 D.ADAB71738. 已知函数)(3cos 33sin )(R xx x x f ,曲线)(x f 与直线3y的交点中,相邻交点的距离最小值与最大值分别为A.54,3B.65,6C.95,9D.125,129.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足BB AA Cbc ac bcos sin 3cos sin 3sin 2)2(,33)(3)1(222,则角C 为A.6B.65 C.3D.3210. 如图所示,正方形ABCD 的边长为1,等腰直角△SAD 绕其直角边AD 转动,另一直角边SD 与正方形一边DC 成角(018<90),则异面直钱SA与DB 所成角的取值范围为A.]2,0( B.]6,0( C.]3,0( D.]2,6[11.已知双曲线方程12222by ax(a>0,b>0,a≠b), A ,B 是它的两条渐近线上的点,△OAB 为直角三角形,则A ,B 两点横坐标的绝对值之比为A.ab ba 或B.||2222b aba C.2222||bab a D.||2222b aba 或2222||bab a 12. 已知函数xxee xf 4)(,则A.)(x f 在(-∞,2)单调递增,在(2, +∞)单调递减B.)(x f 在(-∞,2)单调递减,在(2, +∞)单调递增C.函数)(x f 的图象不关于直线2x 对称D.函数)(x f 的图象关于点(2,0)对称(在此卷上答题无效)绝密★启用前2019年“江南十校”高三学生冲剌联考(二模)文科数学第Ⅱ卷(非选择题共90分)考生注意事项:请用0.3毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。

高考数学高三模拟考试试卷压轴题“江南十校”高三联考数学试题文科1

高考数学高三模拟考试试卷压轴题“江南十校”高三联考数学试题(文科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再涂其他答案标号.写在本试卷上无效.3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}04A x x =≤≤,{}0,1,2B =,则A B ⋂中的元素个数为(A)2(B)3 (C)4 (D)5(2)已知复数z 满足(1)1z i +=(i 为虚数单位),则z =(A)12i -(B)12i+ (C)1i -(D)1i + (3)随机抛掷一枚质地均匀的骰子,记正面向上的点数为a ,则函数22)(2++=ax x x f 有两个不同零点的概率为 (A)13(B)12(C)23(D)56(4)已知函数12,1()tan(),13x x f x x x π-⎧>⎪=⎨≤⎪⎩,则1()(2)f f =(A)3-(C)3(5)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点与抛物线x y 202=的焦点重合,且其渐近线方程为x y 34±=,则双曲线C 的方程为 (A)221916x y -=(B)221169x y -=(C)2213664x y -=(D)2216436x y -= (6)设()sin f x x x =+()x R ∈,则下列说法错误的是(A)()f x 是奇函数(B)()f x 在R 上单调递增(C)()f x 的值域为R(D)()f x 是周期函数(7)设y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则2z x y =-的最小值为(A)3- (B) 2- (C) 1- (D)2(8)在平面直角坐标系xOy 中,满足221,0,0x y x y +≤≥≥的点(,)P x y 的集合对应的平面图形的面积为4π;类似的,在空间直角坐标系O xyz -中,满足2221x y z ++≤,0,0,0x y z ≥≥≥的点(,,)P x y z 的集合对应的空间几何体的体积为(A)8π(B)6π(C)4π (D)3π (9)已知各项均为正数的等比数列}{n a 中,465=⋅a a ,则数列{}2log n a 的前10项和为(A)5 (B)6 (C)10 (D)12(10)执行如图所示的程序框图,如果输入的50t =,则输出的n(A) 5 (B) 6 (C) 7 (D)8(11)已知函数()sin()(0,)2f x x πωϕωϕ=+><的一个对称中心坐标是 (A)2(,0)3π-(B)(,0)3π-(C)2(,0)3π (D)5(,0)3π (12)已知函数32()4f x x ax =-+,若()f x 的图象与x 的取值范围为 (A)(1,)+∞(B)3(,)2+∞(C)(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分.(13)已知向量(1,2)a =,(3,)b x =,若//a b ,则实数x =.(14)在数列}{n a 中,12n n a a +-=,n S 为}{n a 的前n 项和.若990S =,则1a =.(15)椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,P 是椭圆C 上一点,O 为坐标原点.已知60POA ∠=,且OP AP ⊥,则椭圆C 的离心率为.(16)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为.(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)下表是近五届奥运会中国代表团获得的金牌数之和y (从第26届算起,不包括之前已获得的金牌x 作出散点图如下:(i )由图可以看出,金牌数之和y 与时间x 之间存在线性相关关系,请求出y 关于x 的线性回归方程; (ii )利用(i )中的回归方程,预测今年中国代表团获得的金牌数.020406080100120140160180参考数据:28x =,85.6y =,1()()381n iii x x y y =--=∑,21()10nii x x =-=∑附:对于一组数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:121()()=()niii nii x x y y b x x ==---∑∑,=a y bx -(19)(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,四边形EFBD 为等腰梯形,//EF BD ,12EF BD =,平面⊥EFBD 平面ABCD . (Ⅰ)证明:AC ⊥平面EFBD ;(Ⅱ)若210=BF ,求多面体ABCDEF(20)(本小题满分12分)已知过原点O 的动直线l 与圆C :22(1)x y ++=(Ⅰl 的方程;(Ⅱ)x 轴上是否存在定点0(,0)M x ,使得当l 变动时,总有直线MA 、MB 的斜率之和为0?若存在,求出0x 的值;若不存在,说明理由. (21)(本小题满分12分) 设函数()(1)1xaxf x e x x =->-+. (I )当=1a 时,讨论()f x 的单调性;(II )当0a >时,设()f x 在0x x =处取得最小值,求证:()01f x ≤.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时请写清题号. (22)(本小题满分10分) 选修41:几何证明选讲 如图,过O 外一点E 作O 的两条切线EA EB 、,其中A B 、为切点,BC 为O 的一条直径,连中国俄罗斯1 2 3 4 5CACA 并延长交BE 的延长线于D 点.(Ⅰ)证明:ED BE =;(Ⅱ)若3AD AC =,求:AE AC 的值.(23)(本小题满分10分)选修44:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知在极坐标系中,),(),,(33233ππB A ,圆C 的方程为θρcos 2= (Ⅰ)求在平面直角坐标系xOy 中圆C 的标准方程;(Ⅱ)已知P 为圆C 上的任意一点,求ABP ∆面积的最大值. (24)(本小题满分10分)选修45:不等式选讲设12)(--=x x x f ,记1)(->x f 的解集为M . (Ⅰ)求集合M ;(Ⅱ)已知M a ∈,比较12+-a a 与a1的大小. “江南十校”高三联考数学(文科)试题参考答案与评分标准(1)B 【解析】{}0,1,2A B ⋂=,A B ⋂中有3个元素,故选B (2)A 【解析】由(1)1z i +=,得1111(1)(1)2i i z i i i --===++-,故选A (3)D 【解析】抛掷一枚质地均匀的骰子包含6个基本事件,由函数22)(2++=ax x x f 有两个不同零点,得0842>-=∆a ,解得22>-<a a 或.又a 为正整数,故a 的取值有6,5,4,3,2,共5种结果,所以函数22)(2++=ax x x f 有两个不同零点的概率为56,故选D (4)C 【解析】(2)2f =,11()()tan (2)26f f f π===,故选C (5)A 【解析】抛物线的焦点坐标为),(05,双曲线焦点在x 轴上,且5c =,又渐近线方程为x y 34±=,可得34=a b ,所以4,3==b a ,故选A(6)D 【解析】因为()sin()(sin )()f x x x x x f x -=-+-=-+=-,所以)(x f 为奇函数,故A 正确;因为()1cos 0f x x '=-≥‘,所以函数)(x f 在R 上单调递增,故B 正确;因为)(x f 在R 上单调递增,所以()f x 的值域为R ,故C 正确;()f x 不是周期函数,故选DO A CE D(7)B 【解析】由⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 作出可行域如图所示,目标函数2z x y =-在点)0,1(-处取到最小值2-(8)B 【解析】所求的空间几何体是以原点为球心,1为半径的球位于第一卦限的部分,体积为3141836ππ⨯⨯=,故选B (9)C 【解析】由等比数列的性质可得51210110295656()()()()a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=⋅故521222102121022log log log log log 45log 410a a a a a a ++⋅⋅⋅+=⋅⋅⋅⋅===5(),故选C(10)B 【解析】第一次运行后1,3,2===n a s ;第二次运行后2,5,5===n a s ;第三次运行后3,9,10===n a s ;第四次运行后4,17,19===n a s ;第五次运行后5,33,36===n a s ;第六次运行后6,65,69===n a s ;此时不满足t s <,输出6=n ,故选B (11)A 【解析】由)sin()(ϕω+=x x f 的最小正周期为π4,得21=ω.因为()13f π=,所以12()232k k Z ππϕπ⨯+=+∈,由2πϕ<,得3πϕ=,故)321sin()(π+=x x f .令1()23x k k Z ππ+=∈,得22()3x k k Z ππ=-∈,故()f x 的对称中心为))(0,322(Z k k ∈-ππ,当0=k 时,()f x 的对称中心为)0,32(π-,故选A(12)D 【解析】由题意可知关于x 的方程24a x x=+有两个不等的正根,设)0(4)(2>+=x xx x g ,则2338(2)(24)()1(0)x x x g x x x x -++'=-=>, 令()0g x '=,得2=x ,分析可知)(x g 在)2,0(上单减,),2(+∞上单增,在2=x 处取得极小值3,结合)(x g 的图像可得3>a ,故选D(13)6【解析】由//,可得236x =⨯=(14)2【解析】由题意可知}{n a 是公差2的等差数列,由919(91)92902S a -=+⨯=,解得21=a (15)【解析】由题意可得cos602aOP OA ==,易得1()4P a ,代入椭圆方程得:116316122=+b a ,故222255()a b a c ==-,所以离心率552=e(16)32165++π【解析】由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为16242=⨯⨯,两个底面面积之和为3232212=⨯⨯⨯;半圆柱的侧面积为ππ44=⨯,两个底面面积之和为ππ=⨯⨯⨯21212,所以几何体的表面积为32165++π(17)【解析】(Ⅰ)在BCD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠………………3分故sin 3sin CD BD BCD CBD =⋅∠==∠,………………6分(Ⅱ)在ABD ∆中,由余弦定理得:222cos 2AD BD AB ADB AD BD +-∠=⋅………………8分== ………………10分 所以45ADB ∠= ………………12分18.【解析】(Ⅰ)两国代表团获得的金牌数的茎叶图如下…………………3分通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“江南十校”数学(文科)试题答案 第 1 页 (共 4 页)
2013年安徽省“江南十校”高三联考
数学(文科)参考答案
一、选择题:本大题共10小题,每小题5分,共50分.
1.B 2.B 3.A 4.B 5.A

6.A 7.C 8.D 9.D 10.A
二、填空题:本大题共5小题,每小题5分,共25分.
11.0,11, 12.31 13.2 14.1511 15.①②④
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.
16.解析:(Ⅰ)∵)6sin(23312)4(sin2)(xxxg ………2分

∴13sin23124sin264gf ……………………5分
(Ⅱ)∵)6sin(2)(xxg
∴当)(,226zkkx即)(,23zkkx时,()gx取得最大值.
Bx
时()gx取得最大值,又(0,)B, ∴3B ………………7分

而accaaccab222223cos2acacca3163)(2
41216)2(3162
ca
……………………………………………10分

∴2b, 又4bac
∴b的取值范围是4,2 …………………………………………………………12分
17.解析:(Ⅰ)由题意,被调查的男性人数为52n,其中有5n人的休闲方式是运动;被调查

的女性人数应为53n,其中有5n人的休闲方式是运动,则22列联表如下:
运动 非运动 总计
男性
5n 5n 5

2n

女性
5n 5

2n

5
3n

总计
5

2n

5
3n

n

…………………4分
“江南十校”数学(文科)试题答案 第 2 页 (共 4 页)

(Ⅱ)由表中数据,得36535253525552522nnnnnnnnnnk,要使在犯错误的概率不超过05.0 的
前提下,认为“性别与休闲方式有关”,则841.32k.所以841.336n
解得276.138n. 又*Nn且*5Nn,所以140n
即本次被调查的人数至少有140人. …………………………………………9分
(Ⅲ)由(Ⅱ)可知:5652140,即本次被调查的人中,至少有56人的休闲方式是运动.
………………………………………………………………………12分
18.解析:(Ⅰ)证明:取EF中点M,连GM、MC,则1//2GMAE,

又等腰梯形ABCD中,1,3BCAD,∴1//.2BCAE
∴//GMBC,∴四边形BCMG是平行四边形,
∴//.BGCM 又CMFCE平面 ∴BG//FCE平面 …………………6分
(Ⅱ)∵平面FCE平面ABCE,平面FCE平面CEABCE
又EF平面FCE,CEFE,FEABCE平面 …………………8分

又∵1122FBEGBGEFBAEFFABEVVVV …………………………………10分

∵11221ABCS, ∴61113121BEGFV ………………………12分
19.解析:(Ⅰ)设),(yxM MPMD2, ),2(yxP
又P在圆1C上,1)2(22yx,即2C的方程是 1422yx …………5分
(Ⅱ)解法一:当直线l的斜率不存在时,点B与A重合,此时点T坐标为0,554,
显然不在圆1C上,故不合题意; ……………………………………………6分
所以直线l的斜率存在.设直线l的方程为)2(xky,

由14)2(22yxxky 得 041616)41(2222kxkxk

A
B C
E

F
G
M
“江南十校”数学(文科)试题答案 第 3 页 (共 4 页)

解得224128kkxB ,∴2414kkyB 即222414,4128kkkkB ………………8分
222414,4116kkkkOBOA 

222414,411655kkk
k

OT
…………10分

因为T在圆1C上,所以141441165122222kkkk
化简得,052417624kk 解得412k或4452k(舍去) …………12分
21k 故存在满足题意的直线l,其方程为)2(2
1
xy
………13分

解法二:当直线l的斜率为0时,点B坐标为0,2,此时0OBOA,点T坐标为0,0,
显然不在圆1C 上,故不合题意; ………………………………………6分
设直线l的方程为Rttyx,2.

由14222yxtyx 得 04422tyyt.

解得442ttyB, ∴42822ttxB,即44,428222ttttB …………………8分
由)(55OBOAOT得44,4165522tttOT …………………10分
因为T在圆1C上,所以,144416512222ttt
化简得,017624524tt,解得42t或5442t(舍去) ………………12分
2t
. 故存在满足题意的直线l,其方程为22yx ……………………13分
20.解析:(Ⅰ)由已知得xfeefxfx01,所以1011fff,
即10f. …………………………………………………………………………2分
又eff10,所以ef1.

从而221xxexfx. ………………………………………………………4分
显然xexfx1在R上单调递增且0)0(f,故当0,x时,0xf;
“江南十校”数学(文科)试题答案 第 4 页 (共 4 页)

当,0x时,0xf.

xf的单调递减区间是0,,单调递增区间是
,0
. ………………7分

(Ⅱ)由xgxf得xeax.令xexhx,则1xexh.
由0xh得0x. …………………………………………………………9分
当0,1x时,0xh;当2,0x时,0xh.
xh在0,1上单调递减,在
2,0
上单调递增.

又22,111,102ehehh且21hh …………11分


两个图像恰有两个不同的交点时,实数a的取值范围是e11,1. …………13分
21.解析:(Ⅰ)圆nC的圆心到直线nl的距离ndn,半径narnn2

nnnnnnnannadrBAa2)2(212221
………………4分
又11a 12nna ……………………………………………6分
(Ⅱ)当n为偶数时,
)()(42131nnnbbbbbbT




)222()]32(51[13nn

41)21(22)1(
nnn

)12(3222
n
nn
. ………………………………9分

当n为奇数时,1n为偶数,)12(322)1()1(121nnnnT
)12(32212
n
nn

而nnnnnTbTT211,∴)22(3122nnnnT. ………………12分





)()22(312)()12(32222为奇数为偶数n
nn
n
nn

T
n

n

n
………………………………………13分

相关文档
最新文档