《比较线段的长短》教案 (公开课)2022年

合集下载

《比较线段的长短》示范公开课教学设计【北师大版七年级数学上册】

《比较线段的长短》示范公开课教学设计【北师大版七年级数学上册】

第四章基本平面图形4.2比较线段的长短教学设计一、教学目标1.了解“两点之间的所有连线中,线段最短”.2.能借助直尺、圆规等工具比较两条线段的长短.3.能用圆规作一条线段等于已知线段.4.知道中点的定义,会用符号表示中点.二、教学重点及难点重点:比较线段的方法,线段的公理,线段中点的概念.难点:比较线段的方法以及线段的中点理解和应用.三、教学准备圆规、直尺四、相关资源相关图片五、教学过程【问题情境】创设情境,提出问题师生活动:教师利用课件展示以上的图片,并回答问题:观察以上图片,谁的身高更高?哪棵树高?哪支铅笔长?窗框相邻的两条边哪条边长?设计意图:七年级学生的学习带有强烈的情感色彩,对于熟悉的情境、感兴趣的问题能够很容易的展开思维.利用姚明、李连杰的明星效应,把现实生活中的娱乐问题转化为数学活动的几何图形,让学生体会到“快乐数学”.在生活中我们经常会比较物体的长短,那么究竟可以概括为哪些方法,我们通过研究线段的长短进行探究.板书:4.2比较线段的长短【新知讲解】合作交流,探索新知探究一:比较线段长短的方法活动1.两名同学演示比较身高.活动2.归纳总结:方法一:目测法比较线段的长短:方法二:用度量法比较线段的长短:用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.方法三:叠合法比较线段的长短:步骤:(1)将线段AB的端点A与线段CD的端点C重合;(2)线段AB沿着线段CD的方向落下;(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记作AB=CD.若端点B落在C,D之间,则得到线段AB小于线段CD,可以记作AB<CD.若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD.设计意图:学生通过亲身实践,感受知识的形成过程,培养学生的动手、动脑、动口能力.归纳重叠比较法,进而向学生渗透分类的思想.用度量法比较线段的长短,其实就是比较两个数的大小.从“数”的角度去比较线段的长短,在此活动环节中,教师从数与形这两方面对线段长短的比较进行了说明,这样做既肯定了学生比较的方法,肯定了实际生活中的经验,同时又将生活中的方法科学化,实现了知识的抽象与升华.活动3.作图:画一条线段等于已知线段已知线段a,用直尺和圆规画一条线段,使它等于已知线段a.方法(1)度量法:先量出线段a 的长度,再画出一条等于这个长度的线段AB .方法(2)尺规作图法:尺规作图就是用无刻度的直尺和圆规作图. 第一步:先用直尺画一条射线AC ; 第二步:用圆规在射线AC 上截取AB =a .; 线段AB 及为所求.注意:这里教材上给出了两种画线段等于已知线段的方法,一种是使用刻度尺测量解决,另一种尺规作图,要使学生明白这两种方法的不同之处,并能准确掌握.先让学生自己尝试画,然后教师示范画图并叙述作法,让学生模仿画图,该问题不必要求学生写画法,但最后必须写出结论.设计意图:本环节中教师指导学生作图,在学生动手操作的基础上,向学生初步渗透圆规的作用,为后面学习尺规作图打基础.BA探究二:线段的和差与画法:活动1.如图,线段AB 和AC 的大小关系是怎样的?线段AC 与线段AB 的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?师生活动:让学生四人一小组交流、讨论,回答问题.教师关注学生是否认真讨论,能否找出其他线段间的和、差关系.小结:(1)AB <AC ; (2)AC -AB =BC ; AC -BC =AB ; BC +AB =AC .活动2.如图,已知线段a 和线段b ,怎样通过作图得到a 与b 的和、a 与b 的差呢?师生活动:让学生自主学习教材相关内容,然后由一名学生上黑板解答该问题.其他学生在练习本上画一画,教师巡回指导,关注学生画图是否规范,纠正画错的学生,最后师生一起点评.小结:在直线上作线段AB =a ,再在AB 的延长线上作线段BC =b ,线段AC 就是a 与b 的和,记作AC =a +b .CB A ba在直线上作线段AB=a,再在AB上作线段AC=b,线段BC就是a与b的差,记作BC =a-b.设计意图:充分发挥学生的主观能动性,把课堂交给学生,教师只在关键之处进行点拨即可.探究三:线段的中点活动1.通过折纸,探索线段的中点.(1)在一张透明纸上画一条线段AB;(2)对折这张纸,使线段AB的两个端点重合;(3)把纸展开铺平,标明折痕点C.教师:刚才用折纸的方法找出AB的中点C,你还能通过什么方法得到中点C呢?活动2.学生动手演示得到线段中点的方法:度量法、尺规截取法归纳总结:线段中点定义:点C把线段AB分成相等的两部分,则点C叫做线段AB的中点.类似地,还有三等分点、四等分点等.关键点:线段的中点应满足的两个条件:①点M在线段AB上;②AM=BM.线段间的关系:用几何语言表示:因为点C是线段AB的中点,AM=BM=12AB;AB=2AM=2BM.设计意图:以折纸的方法,使学生在动手操作的基础上发现中点问题中所存在的数量关系,在教材中的方法的基础上鼓励学生发现更多的找中点的方法,从而对中点这一重要的数学概念有更好的理解.探究四:基本事实如图,从A地到B地有四条路.问题1:从A地到B地的四条道路中,哪条路最近?,除它们外,能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.问题2:从这个现象中,你能得到什么结论?问题3:你还能举出类似的例子吗?归纳:线段公理:两点的所有连线中,线段最短.简单说成,两点之间,线段最短.连接两点间的线段的长度,叫做这两点间的距离.需要强调两点之间的线段的长度叫两点间的距离,而不是两点间的线段,线段是图形,线段的长度是数值;举例:从A到B架电线,总是尽可能沿着线段AB架设等.设计意图:通过对以上问题的解决,归纳出关于线段的基本事实,培养学生观察、发现问题的能力和归纳总结的能力.【典型例题】例1.(1)在直线上顺次取A,B,C三点,使AB=4cm,BC=3cm,点O是线段AC的中点,则线段OB的长是( A )A. 0.5cmB. 1cmC. 1.5cmD. 2cm分析:由于是顺次取A,B,C三点,所以不用考虑多种情况.(2)如图,若AB=CD,则AC与BD的大小关系为( ).A.AC>BD B.AC<BD C.AC=BD D.不能确定解析:本题可用线段的和、差表示要比较的两条线段,从而判断两条线段的大小关系.因为AB=CD,所以AB+BC=CD+BC.又因为AB+BC=AC,CD+BC=BD,所以AC=BD.答案:C.例2.如图是A,B两地之间的公路,在公路工程改造时,为使A,B两地行程最短,请在图中画出改造后的公路,并说明你的理由.分析:根据“两点之间,线段最短”,可直接连接AB.解:如图,连接AB.理由是:两点之间的所有连线中,线段最短.例3.已知线段a,b(2a>b).用直尺和圆规作一条线段,使这条线段等于2a-b.分析:先作出一条线段等于2a,再在这条线段上截取一条线段等于b,则剩余线段就是所求作线段.作法:①作射线AM(如图);①在射线AM上依次截取AB=BC=a;①在线段AC上截取AD=b.线段DC就是所求作的线段.例4.已知三角形ABC,如图,试比较AC+BC与AB的大小关系.分析:方法一:用刻度尺直接度量三角形三条边,求出AC+BC的长度,就可以与AB比较大小了;方法二:如图,在AB上截取线段AD=AC,再比较BC与BD的大小关系即可.解:经过比较,可以得到:AC+BC>AB.例5.如图,已知点C在线段AB上,线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请表述你发现的规律.分析:(1)线段MN=MC+CN,可先利用已知条件和线段中点的定义分别求出线段MC和线段CN的长;(2)根据线段中点的定义,可知MC+CN=12AC+12BC=12(AC+BC)=12AB,代入后可得到MN的长度.解:(1)因为线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,所以MC=1 2AC=12×6=3(cm),CN=12BC=12×4=2(cm),MN=MC+CN=3+2=5(cm).(2)MN=12 a.规律:一点将一条线段分成两条线段,则这两条线段中点之间的距离等于原线段长的一半.设计意图:通过练习来发现学生对本节内容的掌握情况,发现学生学习中的问题,及时解决,争取把问题反映在课堂上,在课堂上解决.【随堂练习】1.(1)两点之间线段的长度是(C).A.线段的中点B.线段最短C.两点间的距离D.线段(2)若点P是线段CD的中点,则(B).A.CP=CD B.CP=PD C.CD=PD D.CP>PD(3)在跳大绳比赛中,要在两条大绳中挑出一条最长的绳子参加比赛,选择的方法是(A).A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B .把两条大绳接在一起C .把两条大绳重合观察另一端情况D .没有办法挑选(4)下列图形中能比较大小的是( A ).A .两条线段B .两条直线C .直线与射线D .两条射线 2.在①ABC 中,BC ____AB +AC (填“>”“<”“=”),理由是____.<,两点之间的所有连线中,线段最短.3.直线l 上依次有三点A ,B ,C ,AB ①BC =2①3,如果AB =2厘米,那么AC =___厘米.思路解析:根据比例的性质可得AB ①BC =2①3,BC =3厘米,所以AC =2+3=5厘米. 4.如图所示,已知AB =40,C 是AB 的中点,D 是CB 上的一点,E 是DB 的中点,CD =6,求ED 的长.解:①C 是AB 的中点,①AB =2BC .①AB =40,①BC =20.①BD =BC -CD ,CD =6,①BD =14. ①E 是DB 的中点, ①ED =7(厘米).5.已知线段AB =8 cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.思路解析:本题是关于中点的计算以及分类讨论的问题,题中只说明A ,B ,C 三点共线,但无法判断点C 是在线段AB 上,还是在AB 的延长线上,所以要分情况讨论.(1)解:第(1)种情况,如图(1),当点C 在线段AB 上时, 因为M 是AC 的中点, 所以AM =21AC . 因为AC =AB -BC =8-4=4 cm ,所以AM =21AC =21×4=2 cm .(2)第(2)种情况,如图(2),当点C 在线段AB 的延长线上时, 因为点M 是AC 的中点, 所以AM =21AC . 因为AC =AB +BC =8+4=12 cm , 所以AM =21AC =21×12=6 cm . 所以AM 的长度为2 cm 或6 cm .六、课堂小结这节课你学到了什么? (1)线段长短比较的方法; (2)画一条线段等于已知线段; (3)线段的和、差的概念及画法; (4)两点间距离的概念;(5)线段的性质“两点间线段最短”及应用; (6)线段的中点的概念及简单的应用.师生活动:教师鼓励学生先自述学会了什么,然后找几位学生谈收获和体会. 设计意图:培养学生自我总结、自我评价能力,学会把零散的知识进行整理和优化,完善自己的知识构建.七、板书设计。

七年级数学上册《比较线段的长短》教案、教学设计

七年级数学上册《比较线段的长短》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.理解线段的概念,掌握比较线段长短的方法,这是本章节的核心知识点,也是学生学习的重点。
-重难点突破设想:通过生动的实物举例,如比较两根铅笔的长度,让学生直观地理解线段的概念。接着,设计不同层次的练习题,引导学生运用观察法、计算法等方法比较线段的长短,逐步突破这一重难点。
七年级数学上册《比较线段的长短》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握线段的概念,理解线段的两个端点以及线段的长度。
2.学会使用直尺、圆规等工具准确地画出给定长度的线段。
3.能够通过直观观察、比较、计算等方法判断线段的长短,掌握比较线段长短的方法。
4.培养学生运用数学知识解决实际问题的能力,例如在日常生活中比较物体的长度。
5.思考题:请学生思考以下问题,并在作业本上简要回答:
a.在比较线段长短时,有哪些因素可能导致我们的判断出现误差?
b.如何避免这些误差,提高线段长短比较的准确性?
c.除了今天学到的比较方法,你还能想到其他比较线段长短的方法吗?
作业要求:
1.作业需按时完成,字迹工整,保持卷面整洁。
2.学生在完成作业过程中,如遇到问题,应及时与同学或老师交流,寻求帮助。
3.家长应关注孩子的作业完成情况,鼓励孩子独立思考,克服困难。
2.提高拓展题:完成课本第26页的练习题4、5,引导学生利用几何图形的性质,如三角形的边长关系,解决问题。此部分作业旨在培养学生的几何思维和空间观念。
3.实际应用题:请学生观察生活中存在的线段长短比较问题,如家庭成员的身高、家中物品的长度等,并运用所学方法进行比较,将比较结果和过程记录在作业本上。
4.小组合作题:分组完成一份关于比较线段长短的研究报告。报告内容包括:线段长短比较的方法、实际应用案例、小组讨论心得等。此部分作业旨在培养学生的团队合作意识和沟通能力。

2022年初中数学精品教案《线段长短的比较与运算2》公开课专用

2022年初中数学精品教案《线段长短的比较与运算2》公开课专用

4.2 直线、射线、线段第2课时线段长短的比拟与运算教学目标:1.结合图形认识线段间的数量关系,学会比拟线段的长短.2.利用丰富的活动情景,让学生体验到两点之间线段最短的性质,并能初步应用.3.知道两点之间的距离和线段中点的含义.教学重点:线段长短比拟、线段的性质是重点.教学难点:线段上点、三等分点、四等分点的表示方法及运用是难点.教学过程:一、创设情境1.多媒体演示十字路口:为什么有些人要过马路到对面,但又没走人行横道呢?2.讨论课本P128思考题:学生分组讨论:从A地到B地有四条道路,如果要你选择,你走哪条路?为什么?在小组活动中,让他们猜一猜,动动手,再说一说.学生交流比拟的方法.除它们外能否再修一条从A地到B地的最短道路?为什么?小组交流后得到结论:两点之间,线段最短.结合图形提示:此时线段AB的长度就是A、B两点之间的距离.3.做一做:在中国地图上测量北京、天津、上海、重庆四个直辖市之间的距离.(小组合作完成)解决生活中的数学问题,是为了进一步稳固两点之间的距离的意义,引导学生主动参与学习过程,从中培养学生动手和合作交流的能力.二、数学活动1.教师给出任务:比拟两位同学的身高.2.学生讨论、实践、交流方法,师生总结评价.想一想教师在黑板上任意画两条线段AB, CD.怎样比拟两条线段的长短?在学生独立思考和讨论的根底上,请学生把自己的方法进行演示、说明.1.用度量的方法比拟.2.放到同一直线上比拟.教师对方法2讨论、归纳,引出用尺规作出两线段的和与差的作法,如图4.2-10.试一试课本P128练习.折一折让学生将一条绳子对折,使绳子的端点重合,说说你的感受.在一张透明的纸上画一条线段,折叠纸片,使线段的两端点重合,折痕与线段的交点就是线段的中点.引导学生看课本,你能找到线段的中点吗?三等分点?四等分点?画一画尝试完成课本P130习题4.2第9题.三、课时小结四、课堂作业1.必做题:课本P129~P130习题4.2第5、7、8、10题.2.备选题:(1)数轴上A ,B 两点所表示的数分别是-5,1,那么线段AB 的长是 个单位长度,线段AB 的中点所表示的数是 ;(2)线段AC 和BC 在一条直线上,如果AC =5.6 cm ,BC=2.4 cm ,求线段AC 和BC 的中点之间的距离.第1课时 分式的加减【知识与技能】理解并掌握分式的加减法法则,能用它进行简单的分式加减.【过程与方法】经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.【情感态度】进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.。

《比较线段的长短》教案

《比较线段的长短》教案

《比较线段的长短》教案教学目标1、使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2、使学生学会线段的两种比较方法及表示法.3、通过本课的教学,进一步培养学生的动手能力、观察能力.教学重点和难点对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点. 教学手段现代课堂教学手段.教学方法启发式教学.教学过程一、巧设情景问题,引入课题[师]对,如图(教师把图画在黑板)从A地到B地,实线表示公路,虚线表示小路,若要让你从A地到B地办事,你走哪条路?为什么?[生]因为小路近,所以我走小路.[师]很好,我们现在把A地、B地看成两个点时,就会发现:两点之间的所有连线中,线段最短.这是线段的性质.两点之间线段的长度叫做这两点之间的距离(distance).思考:1、怎样比较两个同学的高矮?(请同桌两同学站起来各自发表意见)2、要比较两条绳子的长短,你能想出几种方法?(用两根绳子作教具)学生动手画出(1)直线AB.(2)射线OA.(3)线段CD.2、提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念.)3、提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示.这就是数与形的结合.4、线段的两种度量方法:(1)直接用刻度尺.(2)圆规和刻度尺结合使用.(教师可让学生自己寻找这两种方法)5、教师再讲表示法:线段AB=7cm.二、通过实例,引导学生发现线段大小的比较方法.教师设计以下过程由学生完成.1、怎样比较两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?2、怎样比较两座大山的高低?只要量出它们的高度.由此引导学生发现线段大小比较的两种比较方法:重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置.教师为学生演示,步骤有三:(1)将线段AB的端点A与线段CD的端点C重合.(2)线段AB沿着线段CD的方向落下.(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记AB=CD.若端点B落在D上,则得到线段AB小于线段CD,可以记作AB<CD.若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD.教师讲授此部分时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象.也可以用圆规截取线段的方法进行.数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.可以用推理的写法,培养学生的推理能力.写法如下:因为量得AB=××cm,CD=××cm,所以AB=CD(或AB<CD或AB>CD.)总结:现在我们学会了比较线段的大小,还会比较什么?学生可以回答出,可以比较数的大小,进而再问:数的大小如何比较?(数轴)再问:比较线段的大小与比较数的大小有什么联系?引导学生得到:比较线段的大小就是比较数的大小.三、应用实例,变式练习:完成课本的随堂练习,同学进行交流,老师给予相应的指导.课堂小结1、教师提问:怎样表示线段的长度?怎样比较线段的大小?通过本节课你对图形与数之间的关系有什么了解?2、根据学生回答的情况,教师重点总结数与形的结合以及比较线段大小的两种方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较线段的长短教学目标知识与能力1、借助具体情境了解“两点之间所有连线中,线段最短〞的性质。

2、能借助直尺、圆规等工具比较两条线段的长短。

3、能用圆规作一条线段等于线段。

教学思考创设现实情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题。

解决问题`立足具体情境,尽可能从学生感兴趣的话题出发,去开展有条理的思考,并能用语言表达自己的发现成果。

情感态度与价值观调动学生的主观能动性,积极参与数学活动,促使学生在学习中培养良好的情感态度、主动参与、合作的意识,进一步提高观察、分析和抽象的能力。

教学重点:了解线段性质及线段比较方法,两点之间的距离的概念和线段中点的概念。

教学难点:比较线段长短的方法,线段中点的表示方法及应用。

教学过程创设情境,引入新课想一想如上图,从A地到B地有四条道路,那条路最近?1、线段的性质:两点之间的所有连线中,线段最短。

也可简述为:“两点之间,线段最短〞这就是线段的根本性质2、两点之间的距离:两点之间线段的长度叫做这两点之间的距离探究新知,学习新课在没有接触如何比较之前大家来看这个问题试一试怎样用圆规作一条线段等于线段〔师生互动作图〕第一步:先用直尺画一条射线AB第二步:用圆规量出线段的长度〔记作a〕第三步:在射线AB上以A为圆心,截取AC=a所以,线段AC就是所求的线段议一议怎样比较两条线段AB与CD的长短?方法1:用刻度尺量出线段AB与线段CD的长度,然后进行比较。

方法2:把这两条线段都放在同一条直线上进行比较,即:画一条直线L,在L上先作出线段AB,再作出线段CD,并且使点C 与点重合,点D与点B位于点A的同侧。

〔1〕如果点D 与点B 重合,那么线段AB 与线段CD 相等,记作:AB=CD 〔2〕如果点D 在线段AB 内部,那么线段AB 大于线段CD ,记作AB >CD〔3〕如果点D 在线段AB 外部,那么线段AB 小于线段CD ,可记作AB <CD1、度量比较法2、叠合比较法:从形的角度来比较,比较线段的长短的方法步骤:两条线段的一个端点重合,另一个端点落在此端点的同一侧,看另一端点的位置。

线段中点的定义A M B点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 即为线段AB 的中点。

你能尝试给出线段中点的定义吗?把一条线段分成两条相等线段的点叫做线段的中点。

点M 就是线段AB 的中点。

可记作AB BM AM 21== 定义具有判定和性质的双重属性,即: 假设AB BM AM 21==,那么M 是AB 的中点 假设M 是线段AB 的中点,那么AB BM AM 21==或BM AM AB 22== 课堂练习课本第112页随堂练习归纳提炼本节课我们学习了1、线段的性质:两点之间的所有连线路,线段最短。

2、线段比较长短的方法:叠合比较法和度量比较法,它们分别从“形〞和“数〞的角度来比较线段的长短。

3、用圆规作一条线段等于线段的方法4、两点间的距离的概念、线段中点的定义简言之:一条性质、两个概念、两种方法课后作业〔一〕课本第112习题4.2 1、2活动与探究1、线段AB=8,平面上有一点P,〔1〕假设AP=5,PB等于多少时,P在线段AB上?〔2〕当P在线段AB上,并且PA=PB时,确定P点的位置,并比较PA+PB 与AB的大小。

2、线段AB=8cm,在直线上画BC,使BC=3cm,求线段AC的长。

3、线段AC和BC在一条直线上,如果AC=5cm,BC=3cm,求线段AC 和线段BC的中点间的距离。

平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

教学中可以通过让学生举实际生活中的例子,以加深学生对平行四边形的认识。

〔2〕教学中应引导学生通过操作与探索,发现平行四边形是中心对称图形,在此根底上认识平行四边形的性质。

〔3〕探索平行四边形的性质,熟练的运用平行四边形的性质解决问题。

第一课时重点:平行四边形的概念和性质难点:探索平行四边形的性质解决过程环节1:学生举生活中平行四边形的实例;回忆概念“两组对边分别平行的四边形,叫平行四边形〞并据此性质从图16.1.1中找出平行四边形。

环节2:【探究】学生操作探索:如图16.1.2,在方格纸上画一个平行四边形。

如图16.1.2,用剪刀把ABCD 从方格纸上剪下,再在一张纸上沿ABCD 的边沿,画出一个四边形,记为EFGH 。

在ABCD 中连接AC 、BD ,它们的交点记为O 。

用一枚图钉在O 点穿过,将ABCD 绕点O 旋转180度。

观察旋转后的180度和纸上所画的EFGH 是否重合。

根据观察结果,运用上一章所学的知识,你能探索出ABCD 中存在哪些相等的边与相等的角?让学生用数学语言描述观察和探索的结果,再试用文字总结,得“平行四边形的对边相等,对角相等〞 。

【注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对(H)(G)(F)(E)D C B A OH GF E DCB A (B)(D)(C)(A)H G F E 图16.1.3角.〔教学时要结合图形,让学生认识清楚〕】【〔相邻的角指四边形中有一条公共边的两个角.注意和七年级学的邻角相区别.教学时结合图形使学生分辨清楚.〕】环节3:理解和稳固:例1 如图16.1.4,在ABCD中,∠A=40度,求其他各个内角的度数。

例2 如图16.1.5,在ABCD中,AB=8,周长为24,求其余三条边的长环节4、〔随堂练习〕1.填空:〔1〕在ABCD中,∠A=50,那么∠B= 度,∠C= 度,∠D= 度.〔2〕ABCD中,∠A—∠B=240°,那么∠A= ,∠B= ,∠C= ,∠D= .〔3〕如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.〔4〕在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有.第2课时重点、难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算二解决过程环节11.复习提问:〔1〕什么样的四边形是平行四边形?四边形与平行四边形的关系是:〔2〕平行四边形的性质:①具有一般四边形的性质〔内角和是 360〕.②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边分别平行且相等.环节2【探究】:在像上节课有图16.1.3那样的旋转过程中,让学生探究OA 与OC 、OB 与OD 的关系〔1〕平行四边形是中心对称图形,两条对角线的交点是对称中心; 〔2〕平行四边形的对角线互相平分注意:教学时要讲明线段互相平分的意义和表示方法.如图,设平行四边形ABCD 的对角线AC 、BD 相交于点O ,假设AC 与BD 互相平分,那么有OA =OC ,OB =OD .环节3:理解和稳固: 例3如图16.1.6,在ABCD 中,对角线AC 和BD 相交与点O ,△AOB 的周长为15,AB=6,那么对角线AC 与BD 的和是多少?环节4、〔随堂练习〕1、如图,ABCD 中,对角线AC 与BD 交于点O ,AC=8,OB=6,那么OA= ,OC= OD= BD=2、在ABCD 中,对角线AC 与BD 相交于点O,AC +BD=24,且AC=3BD,O D C B A那么OA= OB=3、在平行四边形ABCD 中,周长等于48,① 一边长12,求各边的长② AB=2BC ,求各边的长③ 对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 第3课时:平行线间距离处处相等的性质一、重点:平行线间距离处处相等的性质难点:平行四边形性质与平行线间距离处处相等性质的应用二、解决过程环节1:学生回忆:平行四边形的性质环节2:平行四边形性质的应用:例1平行四边形的一个内角比它的邻角大42度,求四个内角的度数。

例2如图,在ABCD 中,AE 垂直于CD ,E 是垂足。

如果∠B=42°,那么∠D 与∠DAE 分别等于多少度?例3如右上图,在平行四边形ABCD 中,AC 、BD 相交于点O ,两条对角线的和为36厘米,CD 的长为5厘米,求三角形OCD 的周长。

环节3:学生实践操作:E D C B A O DC B A在方格纸上画两条互相平行的直线,在其中一条直线上任取假设干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间的垂线段的长度。

学生探索:你发现什么结论?在其中一条直线上再取一点,验证一下。

教师给出概念“两条平行线之间的距离〞学生试总结平行线的性质:平行线之间的距离处处相等。

环节4:学生稳固:例4如图,如果直线m ∥n,那么△ABC 的面积和△DBC 的面积是相等的。

你能说出理由吗?你还能在两条平行线m 、n 之间画出其他与△ABC 面积相等的三角形吗?第4课时:平行四边形的综合练习一、重点:平行四边形的性质的综合应用难点:开展学生进一步的推理能力和解决问题的能力二、解决过程环节1:学生回忆:平行四边形性质。

题组一:〔复习〕1、 在ABCD 中,假设∠A+∠C=130,那么∠A= ,∠B= 。

2、 在ABCD 中,假设周长为40厘米,两邻边AB 与AD 之比为:3:2,那么CD= AD= 。

3、ABCD 中,∠A :∠B :∠C :∠D 的值可能是〔 〕。

mD C B A nA 1:2:3:4B 1:2:2:1C 1:2:1:2D 2:2:1:1环节2:例1、四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA 的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC 中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高〔高为此底上的高〕,可求得ABCD的面积.〔平行四边形的面积小学学过,再次强调“底〞是对应着高说的,平行四边形中,任一边都可以作为“底〞,“底〞确定后,高也就随之确定了.〕解略.环节3:题组二〔稳固〕1、在ABCD中,AB=10,AB与CD之间的距离为6,那么S ABCD=2、平行四边形一边长为10,那么它的对角线长度可以为〔〕。

A.8和12B.20和30C.6和8D.4和63、平行四边形被一条对角线分得的两个三角形〔〕。

A、关于该对角线成轴对称B、关于该对角线的中心成中心对称C、既关于该对角线成轴对称,又关于该对角线的中点成中心对称D、既不关于该对角线成轴对称,又不关于该对角线的中点成中心对称环节4:思考与探究〔提高〕1、如图,假设P 点是内的一点,连PB接AP、BP、CP、DP,假设△APB的面积是40平方厘米,△BPC的面积是25平方厘米,△CPD的面积是15平方平方,请问根据题目所给条件能求出△PAD的面积吗?如能,请求出△PAD的面积;如不能,请说明理由。

相关文档
最新文档