辐射传热角系数
合集下载
辐射换热

X1,3 X 3,2
辐射总热阻: R 1.51 24 24 11.5 53
辐射换热量:
q1,2 b
T14 T24 53
5.67108 5234 3284
53
67.66
W/m2
q1,3 b
T14 T34 26.5
67.66
0 , 1
⑵ 对于不含颗粒的气体,整个气体容积:
0 , 1
2、黑体模型
吸收比为1的物体。
3、定向辐射强度
在某给定辐射方向上,单位时间内、单 位可见辐射面积、在单位立体角内所发射全
部波长的能量,用 I 表示。
4、光谱定向辐射强度
在波长 附近的单位波长间隔内的定
2、斯蒂芬-玻尔兹曼定律(Stefan-Boltzmann )
Eb
0
Eb d
bT
4
W/m2
Eb
Cb
T 100
4
W/m2
b ——黑体辐射常数, b 5.67 108 W/ m2 K4
Cb ——黑体辐射系数, Cb 5.67
W/ m2 K4
E
Eb
Cb
T
4
100
W/m2
物体表面光谱定向发射率等于该表面对同温 度黑体辐射的光谱定向吸收比。
, T , T
T T
T T
T T
无条件成立 漫射表面 灰表面 漫灰表面
2、在两块黑度为0.4的平行板之间插入一块黑 度为0.04的遮热板,当平行板表面的温度分 别为250℃和55℃时,试计算辐射换热量和 遮热板温度?并画出网络图。(不计导热和 对流
辐射总热阻: R 1.51 24 24 11.5 53
辐射换热量:
q1,2 b
T14 T24 53
5.67108 5234 3284
53
67.66
W/m2
q1,3 b
T14 T34 26.5
67.66
0 , 1
⑵ 对于不含颗粒的气体,整个气体容积:
0 , 1
2、黑体模型
吸收比为1的物体。
3、定向辐射强度
在某给定辐射方向上,单位时间内、单 位可见辐射面积、在单位立体角内所发射全
部波长的能量,用 I 表示。
4、光谱定向辐射强度
在波长 附近的单位波长间隔内的定
2、斯蒂芬-玻尔兹曼定律(Stefan-Boltzmann )
Eb
0
Eb d
bT
4
W/m2
Eb
Cb
T 100
4
W/m2
b ——黑体辐射常数, b 5.67 108 W/ m2 K4
Cb ——黑体辐射系数, Cb 5.67
W/ m2 K4
E
Eb
Cb
T
4
100
W/m2
物体表面光谱定向发射率等于该表面对同温 度黑体辐射的光谱定向吸收比。
, T , T
T T
T T
T T
无条件成立 漫射表面 灰表面 漫灰表面
2、在两块黑度为0.4的平行板之间插入一块黑 度为0.04的遮热板,当平行板表面的温度分 别为250℃和55℃时,试计算辐射换热量和 遮热板温度?并画出网络图。(不计导热和 对流
辐射传热的计算

基本定律 :1. 普朗克定律
2. 斯狄芬-玻耳兹曼定律(维恩位移定律)
3. 兰贝特定律
4.基尔霍夫定律
基本原理: 1.辐射换热的分析与计算(四大部分)
2.遮热板原理的分析与计算
5.67 (1T010
)4
( T2 100
1 1 1
)
4
B(T14
T24 )
1 2
1 2
有板3时,对稳态有: q1,2’=q1,3=q3,2;其中q1,3=B(T14-T34)
图11 遮热板
q3,2=B(T34-T24);而q1,3+q3,2=B(T14-T34)+B(T34-T24)=B(T14-T24)= q1,2
这些都是用减少发射率(吸收比)的方法来削弱换热的例子。
在实际工程应用中,多采用遮热板来减少辐射换热的方法。
所谓遮热板,是指插入两个辐射换热表面之间以削弱辐射 换热的薄板。
如图11所示
假设 1 2 3 只考虑单位面积
无板3时,
q1,2
(Eb1 Eb2 ) 1 1 1
A11 A1 X1,2 A2 2
2. 三灰表面间的辐射换热
应用电学中的基尔霍夫定律, 可列出节点的热流方程:
J1 :
Eb1 J1
1 1
J2
1
J1
J3
1
J1
0
1 A1
A1 X1,2 A1 X1,3
J2 :
Eb2 J 2
12
J1 J2 1
J3 J2 1
0
辐射能的百分数随之而异,从而
影响到换热量。
2. 斯狄芬-玻耳兹曼定律(维恩位移定律)
3. 兰贝特定律
4.基尔霍夫定律
基本原理: 1.辐射换热的分析与计算(四大部分)
2.遮热板原理的分析与计算
5.67 (1T010
)4
( T2 100
1 1 1
)
4
B(T14
T24 )
1 2
1 2
有板3时,对稳态有: q1,2’=q1,3=q3,2;其中q1,3=B(T14-T34)
图11 遮热板
q3,2=B(T34-T24);而q1,3+q3,2=B(T14-T34)+B(T34-T24)=B(T14-T24)= q1,2
这些都是用减少发射率(吸收比)的方法来削弱换热的例子。
在实际工程应用中,多采用遮热板来减少辐射换热的方法。
所谓遮热板,是指插入两个辐射换热表面之间以削弱辐射 换热的薄板。
如图11所示
假设 1 2 3 只考虑单位面积
无板3时,
q1,2
(Eb1 Eb2 ) 1 1 1
A11 A1 X1,2 A2 2
2. 三灰表面间的辐射换热
应用电学中的基尔霍夫定律, 可列出节点的热流方程:
J1 :
Eb1 J1
1 1
J2
1
J1
J3
1
J1
0
1 A1
A1 X1,2 A1 X1,3
J2 :
Eb2 J 2
12
J1 J2 1
J3 J2 1
0
辐射能的百分数随之而异,从而
影响到换热量。
第九章 辐射传热的计算

油气储运工程--- Oil & gas storage and transportation engineering
18
传热学
油气储运工程09级
油气储运工程--- Oil & gas storage and transportation engineering
19
传热学
油气储运工程09级
2、代数分析法
1、角系数的相对性
• 一个微元表面到另一个微元表面的角系数
X
dA1 , dA2
由dA1发出的落到dA2上的辐射能 Ib1 dA1 cos1 d 由dA1发出的辐射能 Eb1 dA1
E b1 I b1
Eb1 : 辐射力 I b1:定向辐射强度
dA2 cos 1 cos 2 X dA1 ,dA2 2 r
异,从而影响到换热量。
油气储运工程--- Oil & gas storage and transportation engineering
3
传热学
油气储运工程09级
一. 角系数的定义 角系数是进行辐射换热计算时空间热阻的 主要组成部分。 定义:把表面1发出的辐射能中落到表面2 上的百分数称为表面1对表面2的角系数, 记为X1,2。
油气储运工程--- Oil & gas storage and transportation engineering
2
传热学
油气储运工程09级
a图中两表面无限接近,相互间的换热量
最大;b图中两表面位于同一平面上,相互
间的辐射换热量为零。由图可以看出,两个
表面间的相对位置不同时,一个表面发出而
落到另一个表面上的辐射能的百分数随之而
18
传热学
油气储运工程09级
油气储运工程--- Oil & gas storage and transportation engineering
19
传热学
油气储运工程09级
2、代数分析法
1、角系数的相对性
• 一个微元表面到另一个微元表面的角系数
X
dA1 , dA2
由dA1发出的落到dA2上的辐射能 Ib1 dA1 cos1 d 由dA1发出的辐射能 Eb1 dA1
E b1 I b1
Eb1 : 辐射力 I b1:定向辐射强度
dA2 cos 1 cos 2 X dA1 ,dA2 2 r
异,从而影响到换热量。
油气储运工程--- Oil & gas storage and transportation engineering
3
传热学
油气储运工程09级
一. 角系数的定义 角系数是进行辐射换热计算时空间热阻的 主要组成部分。 定义:把表面1发出的辐射能中落到表面2 上的百分数称为表面1对表面2的角系数, 记为X1,2。
油气储运工程--- Oil & gas storage and transportation engineering
2
传热学
油气储运工程09级
a图中两表面无限接近,相互间的换热量
最大;b图中两表面位于同一平面上,相互
间的辐射换热量为零。由图可以看出,两个
表面间的相对位置不同时,一个表面发出而
落到另一个表面上的辐射能的百分数随之而
六节辐射传热

E1 A2E1
(1-A2) E1
E1 = E1 + (1-A1) E2 (a) E2 = E2 + (1-A2) E1 (b) 辐射传热量:
q 1-2 = E1 - E2 (W/m2)
E1 = E1 + (1-A1) E2 (a) E2 = E2 + (1-A2) E1 (b)
由(a),(b)两式可得:
E1
E1 A1
(1 - A1 ) E2 A2 A1A2
辐射传热速率:
q 1-2 = E1 - E2 (W/m2)
q
1-2
E1A2 - E2A1 A1 A2 A1A2
E2
E2 A1
(1 - A2 ) E1 A2 A1A2
又由
E
Eb
Co
T 4 100
和 A=
得:
q 1-2
1
Co 1
1流体K (T源自.02t3)ddiSdiuW cC0.8pccdpt
nWhCphdT)
平均推动力法
-NTU法
S
NTU KS WC P
返回
1.有一套管换热器长10m,管间用饱和蒸气加热,空气在一定 流量下由管内流过,温度可升至某指定温度。现将空气流量增加一 倍,并近似认为加热面壁温不变,问套管加热器需加长几米,气体 温度可达到原指定温度?假定空气在管内流动处于湍流状态,忽略 管壁热组。
5.在一新的套管式换热器中,冷却水在252.5mm的内管中流动,以冷凝环 隙间的某蒸气。当冷却水流速为0.4m/s和0.8m/s时,测得基于内管外表面的总传 热系数分别为Ko=1200W/m2.℃和Ko´=1700W/m2.℃ ,水在管内为湍流,管壁得 导热系数为45W/m. ℃,水流速改变后,可认为环隙间蒸气冷凝的传热系数不变。 试求:(1)当水流速为0.4m/s时,管壁对水的对流传热系数为多少? (2)若操作一时期后,水流速仍保持为0.4m/s,但测得的K值比操作初期下降 10%,试分析原因,并说明此时蒸气的冷凝量是否也下降10%?
传热学第八章辐射换热的计算

02
辐射换热的计算方法
辐射换热的基本公式
斯蒂芬-玻尔兹曼方程
描述了物体在任意温度下的辐射功率,是辐射换热的基本公式。
辐射力方程
表示物体发射和吸收的辐射能与物体表面温度和周围环境温度之间 的关系。
辐射传递方程
表示在给定温度和光谱发射率下,物体表面发射和吸收的辐射能与 物体表面温度之间的关系。
辐射换热的角系数法
表面传热系数的计算方法
通过实验测定或经验公式计算表面传热系数, 需要考虑表面粗糙度和涂层的影响。
表面传热系数的应用
适用于简化模型或近似计算中的辐射换热计算。
辐射换热的积分方程法
积分方程的建立
根据斯蒂芬-玻尔兹曼方程和边界条件建立积分方程。
积分方程的求解方法
采用数值方法求解积分方程,如有限元法、有限差分 法等。
太阳能利用
通过优化太阳能集热器的设计,提高太阳能辐射的吸收和 转换效率,降低太阳能利用成本,有助于减少化石能源的 消耗和碳排放。
05
辐射换热的发展趋势与展 望
新型材料的辐射换热特性研究
总结词
随着科技的发展,新型材料不断涌现,对新型材料的辐射换热特性研究成为当 前热点。
详细描述
新型材料如碳纳米管、石墨烯等具有独特的物理和化学性质,其辐射换热特性 与传统材料有所不同。研究这些新型材料的辐射换热特性有助于发现新的传热 机制,提高传热效率。
感谢观看
THANKS
传热学第八章辐射 换热的计算
目 录
• 辐射换热的基本概念 • 辐射换热的计算方法 • 辐射换热的实际应用 • 辐射换热的优化与控制 • 辐射换热的发展趋势与展望
01
辐射换热的基本概念
定义与特性
定义
传热学课件第六章辐射换热计算

若表面1是非i1凹表面,则X1,1=0,上式可写为
Φ1=A1X1,2(Eb1-Eb2)+A1X1,3(Eb1-Eb3)
= Eb1 Eb2 Eb1 Eb3
1
1
A1 X 1,2
A1 X 1,3
同理,可得到 表面2和表面3的净辐 射热流的计算式。
三个黑体表面之 间的辐射换热可用如 图所示的网络图表示。 J1=Eb1 , J2=Eb2, J3=Eb3
• (2) 角系数的完整性
• 对于由n个表面组成的封闭系统, 根据能量守恒定律,任何一个表面 发出的总辐射能必全部落到组成封 闭系统内的n个表面(包括该表面) 上。因此任一表面对各表面的角系 数之和为1。即
• Xi,1+Xi,2+…Xi,i+…Xi,j
+…Xi,n=1
(6-2)
• 这就是角系数的完整性Eb1A1 X1,2-Eb2A2 X2,1 (c)
• 若两表面温度相等,则净辐射热流Φ1,2=0, 且Eb1=Eb2,由式(c)可得
A1 X1,2=A2 X2,1
(6-1)
这就是角系数的相互性。
• 由于角系数是纯几何量,与是否是黑体无关, 因此,式(6-1)也适用于其它表面。由上式 可见,已知一个角系数,可方便地利用角系 数的相互性求得另一个角系数。
二、角系数的性质
(1) 角系数的相互性
• 两个黑体表面间进行辐射换热时,表面1辐射到表 面2的辐射能为
•
Φ1→2=Eb1A1 X1,2
(a)
表面2辐射到表面1的辐射能为
Φ2→1=Eb2A2 X2,1 (b) • 由于两个表面都是黑体,落到表面上的辐射能被全
部吸收,所以两个黑体表面间的净辐射热流量为
第六章 辐射换热计算
例内 重 基 题容 点 本 赏精 难 要 析粹 点 求
传热学课件第六章辐射换热计算

X 1,3
A1 A3 A2 2 A1
X 2,1
A2
A1 A3 2 A2
X 2,3
A2
A3 A1 2 A2
X 3,1
A3 A1 A2 2 A3
X 3,2
A3
A2 2 A3
A1
3.查曲线图法
利用已知几何关系的角系数,确定
其它几何关系的角系数。 例:如图,确定X1,2 由相互垂直且具有公共边的长方形表面
• 若A2和A3的温度相等,则有
J2A2X2,1+J2A3X3,1 =J2 A2+3X(2+3),1 角系数的可加性
即 A2+3X(2+3),1=A2X2,1+A3X3,1
利用角系数的可加性,应注意只有对角系数
符号中第二个角码是可加的。
• 三、角系数的确定方法
角系数的确定方法很多,从角系数的定义直 接求解法、查曲线图法、代数分析法和几何图形 法,这里主要介绍定义直求法和代数分析法。
一、表面辐射热阻
对于任一表面A,其本身辐射为E=ε Eb, 投射辐射为G,吸收的辐射能为α G。向外 界发出的辐射能为
J E G Eb 1 G (a)
因此,表面A的净热流密度为
q = J-G
(b)
对于灰体表面α =ε ,联解(a)和(b),
消去G得
q
Eb J
1
第六章 辐射换热计算
例内 重 基 题容 点 本 赏精 难 要 析粹 点 求
基本要求
1.掌握角系数的意义、性质及确定方法。 2.掌握有效辐射的确定方法。 3.熟练掌握简单几何条件下透热介质漫灰
面间辐射换热的计算方法。 4.掌握遮热板的原理及其应用
11-4辐射换热的计算

对于灰体,表面 与外界的净换热量Q1为以放出为正: 1
Q1 J1 G1 A1
其中,G1
J1 1 Eb1 1 1
J1 1Eb1 Eb1 J1 热势差 Q1 J1 A1 1 1 1 1 表面热阻 1 A1
2013年1月18日星期五
华北电力大学能源与动力工程学院 工程热物理教研室
Heat transfer (3)角系数的计算
Q12 1 cos1 cos 2 1).积分法:利用式 X 12 dA1 dA2计算 2 E1 A1 A1 A1 A2 R
教材中给出了几种几何系统角系数的计算公式 也可查典型几何体系角系数的线图,并利用角系数的特性进行计算 2).代数法:利用角系数的定义及性质, 通过代数运算确定角系数。 图(a)、(b):
n n
Ebi J i n J k J i 0 1 i k 1 1 A AX i i i ik
i 1 2, n ,3......
上式表明,在辐射换热网络 中,流向Ji点的热流量为0。N 个表面组成的封闭空腔有n个 节点,可列出n个方程,求出 n个未知数, J1、 J2、…… Jn, 从而求解换热网络。
1 1 Eb1 A 1 1
J1
1 A1 X 12
J2
1 2 2 A2 Eb 2
1 A1 X 13
J3
1 A2 X 23 1 3 3 A3
Eb 3
2013年1月18日星期五
华北电力大学能源与动力工程学院 工程热物理教研室
Heat transfer
几点说明:
①.对于不封闭的空间,向外界敞开的截面可以用假想表面来封闭, 并且常常可以处理成黑体表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辐射传热角系数
辐射传热角系数是一个非常重要的理论参量,在工程实践中极为重要。它的表
示形式为α,也称为热对流传质角系数,用于衡量外界热量传入物体,物体散发
出去的热量穿过外部热界面的能量传输速率的大小。也可以用来估算发热表面的温
度变化。用它可以实现物体热能平衡,从而改善它在保温、制冷以及新能源系统中
的应用。
辐射传热角系数α通常受到表面反射、表面状态等因素的影响,这其中表面
反射可以有效地改变物体的表面温度,不仅提高传热效率,而且还可以延缓炉壁过
热的过程,有效地提高热损失。表面状态通常包括光滑度、表面颈角、表面材料以
及表面处理状态等,如果表面光滑度太低,会导致表面对热能量传播不足,从而影
响辐射传热角系数α的正常测量。
从传热学角度来看,辐射传热角系数α可以分为物体辐射角系数αs和热湿
空气辐射角系数αd。前者表示物体表面和气体之间的热能传递;后者表示采暖房
间气体间的热能传递。它们的比值β表示物体对热湿空气的对比度,且α>0,
αd>0,但是β会根据热对流传质的对比程度变化。
辐射传热角系数α的测量主要用于计算物体在外界热流作用下的表面温度和
发热量,从而为改善物体内部热能调节提供参考,更有利于维护热环境和节能减排。
当然,应该做好测量前的准备工作,以确保准确结果,它可以帮助科学家和工程师
们更好地把握热能转化、热环境控制以及新能源利用的规律,从而提高热能系统的
效率及实用价值。