知识点:辐射角系数PPT.
合集下载
传热学第九章

角系数的完整性
9-1 辐射传热的角系数
(3)角系数的可加性
从表面1上发出而落到表面2上的总能量,等于落到表面2上 各部分的辐射能之和,于是有
注意,利用角系数可加性时,只有对角系数符号中第二个角码 是可加的,对角系数符号中的第一个角码则不存在类似的关系。
9-1 辐射传热的角系数 3. 角系数的计算方法
试计算: (1)板1的自身辐射; (2)板1的有效辐射; (3)板1的投入辐射; (4)板1的反射辐射; (5)板1,2的净辐射换热量。
§ 9-4 气体辐射的特点及其计算
辐射性气体: 具有发射和吸收辐射能的能力的气体。
工业上常见的温度范围内 常见的辐射性气体: 二氧化碳、水蒸气、二氧化硫、甲烷、氟里昂等三原子、多原子及 结构不对称的双原子气体(一氧化碳)
ቤተ መጻሕፍቲ ባይዱ
9.3.2 多表面封闭系统网络法求解的实施步骤
9.3.2 多表面封闭系统网络法求解的实施步骤
3. 求解代数方程组,计算各表面的有效辐射。
例如
已知三个表面温度T1, T2, T3;以及 A1, A2, A3, ε1, ε2, ε3, X1,2, X1,3, X2,3。
确定每个表面的有效辐射J1, J2, J3和 净辐射热量Φ1, Φ2, Φ3。
81
9.6 综合传热问题
82
9.6 综合传热问题
83
9.6 综合传热问题 解:
求解的结果为,
这样的测量误差在工业上是可以接受的。
84
85
9.6 综合传热问题 辐射传热系数
86
第9章 测试题
• 试述气体辐射的基本特点,气体能当做灰体来处 理吗?请说明原因。(2003年,华电,15分)
• 两块平行放置且相互靠得很近的灰体平壁,它们 的黑度均为0.8,壁1和2的温度分别为400和30℃ ,试计算壁2的(1)辐射换热量;(2)本身辐 射;(3)有效辐射。( 2003年,华电,15分)
9-1 辐射传热的角系数
(3)角系数的可加性
从表面1上发出而落到表面2上的总能量,等于落到表面2上 各部分的辐射能之和,于是有
注意,利用角系数可加性时,只有对角系数符号中第二个角码 是可加的,对角系数符号中的第一个角码则不存在类似的关系。
9-1 辐射传热的角系数 3. 角系数的计算方法
试计算: (1)板1的自身辐射; (2)板1的有效辐射; (3)板1的投入辐射; (4)板1的反射辐射; (5)板1,2的净辐射换热量。
§ 9-4 气体辐射的特点及其计算
辐射性气体: 具有发射和吸收辐射能的能力的气体。
工业上常见的温度范围内 常见的辐射性气体: 二氧化碳、水蒸气、二氧化硫、甲烷、氟里昂等三原子、多原子及 结构不对称的双原子气体(一氧化碳)
ቤተ መጻሕፍቲ ባይዱ
9.3.2 多表面封闭系统网络法求解的实施步骤
9.3.2 多表面封闭系统网络法求解的实施步骤
3. 求解代数方程组,计算各表面的有效辐射。
例如
已知三个表面温度T1, T2, T3;以及 A1, A2, A3, ε1, ε2, ε3, X1,2, X1,3, X2,3。
确定每个表面的有效辐射J1, J2, J3和 净辐射热量Φ1, Φ2, Φ3。
81
9.6 综合传热问题
82
9.6 综合传热问题
83
9.6 综合传热问题 解:
求解的结果为,
这样的测量误差在工业上是可以接受的。
84
85
9.6 综合传热问题 辐射传热系数
86
第9章 测试题
• 试述气体辐射的基本特点,气体能当做灰体来处 理吗?请说明原因。(2003年,华电,15分)
• 两块平行放置且相互靠得很近的灰体平壁,它们 的黑度均为0.8,壁1和2的温度分别为400和30℃ ,试计算壁2的(1)辐射换热量;(2)本身辐 射;(3)有效辐射。( 2003年,华电,15分)
传热学-第九章 辐射计算

X1, 2
1,2 1,2 A 1,2 B
X1, 2i
i 1
n
A1 Eb1 X 1,2 A1 Eb1 X 1,2 A A1 Eb1 X 1,2 B X 1,2 X 1,2 A X 1,2 B
再来看一下2 对 1 的能量守恒情况: 2 ,1 2 A ,1 2 B ,1
X 1,2 X 2,1
1 A1 1 A2
A1
A2
X d 1, d 2 dA1 X d 2, d 1dA2
A
A1 1
1
cos 1 cos 2 dA1dA2
A2
A1
1 A2
A2
A1
r cos 1 cos 2 dA1dA2
2
(9-4a)
A2
r
2
(9-4b)
的电流、电位差和电阻比拟热辐射中的热流、热势差与热
阻,用电路来比拟辐射热流的传递路径。但需要注意的是, 该方法也离不开角系数的计算,所以,必须满足漫灰面、 物性均匀以及投入辐射均匀的条件。
热势差与热阻
上节公式(9-12):
J Eb ( 1)q
1
改写为:
Eb J q 1
1, 2 A1 Eb1 X 1, 2 A2 Eb 2 X 2,1 A1 X 1, 2 ( Eb1 Eb 2 ) 的热辐射 到达表面 2的部分 的热辐射 到达表面 1的部分
图9-13 黑体系统的 辐射换热
表面1发出 表面 2发出
例题9-4 一直径d=0.75m的圆筒形埋地式加热炉采用电加热。 在操作过程中需要将炉子顶盖移去一段时间,设此时筒身温 度为 500K ,筒底为 650K 。环境温度为 300K 。试计算顶盖移 去期间单位时间内的热损失。设筒身及底面均可作为黑体。
9.1 辐射角系数

4
代入角系数的定义式
1
X i, j Ai
Aj
Ai
cos i cos j r2
dAi
dA j
1
X j,i A j
Ai
Aj
cos i cos j r2
dA j
dAi
• 角系数完全是一个几何量(有条件!)
• 角系数概念的前提条件:漫灰表面,或 者黑体;表面温度均匀,有效辐射均匀: 令 K1, 2=A1 X1, 2,由互换性, K1, 2= A2 X2, 1
K1,2 K1,2a K1,2b K 2,1 K 2a,1 K 2b,1
第九章 9.1节(12)
8
9.1.3 角系数的计算方法
(1)直接积分法 (2)数值计算方法 (3)图线方法 (4)代数方法 (5)几何投影方法(单位球法)
3
代入立体角的定义和 J 与 L 之间的关系式
d i j
Ji
cos i cos j r2
dAi dA j
离开有限表面Ai的辐射中到达Aj的部分
i j J i
Aj
Ai
cos i cos j r2
dAi
dA j
注意:这个写法本身已经附加了一项条件, 即 Ji 在 Ai上必须是常量。
第九章 9.1节(12)
5
• 微元面之间及微元对有限面的角系数是 定值,而有限面之间的角系数具有平均 的含义
1
X i j Ai Ai X di j dAi
X di j
di j
JidAi
cosi cos j
Aj
r2
dAj
第九章 9.1节(12)
6
9.1.2 角系数的基本性质
1. 互换性(相对性)
第八章——传热学课件PPT

• 在讨论角系数时,我们假定:
(1)所研究的表面是漫射表面;
(2)所研究表面向外发射的辐射热流密度是均匀的。
• 在这两个假定下,当物体的表面温度及发射率的改变 时,只影响到该物体向外发射的辐射能的大小,而不 影响辐射能在空间的相对分布,因而不影响辐射能落 到其他表面的百分数,即不影响角系数的大小。这样, 角系数就是一个仅与辐射表面间相对位置有关,而与 表面特性无关的纯几何量,从而给计算带来极大的方 便。
• 考虑如图所示的表面1对表面2的角系数。由于 从表面1上发出的落到表面2的总能量,等于落 到表面2上各部分的能量之和,于是有
A1Eb1 X 1,2 A1Eb1 X 1,2a A1Eb1 X 1,2b
2a
2b
• 所以,有 X 1,2 X 1,2a X 1,2b
1
• 如果把表面2进一步分成
若干小块,则仍有
• 实际工程问题虽然不一定满足这些假设,但由此造成 的偏差一般均在计算允许的范围之内,因此这种处理 问题的方法在工程中被广泛采用。本书为讨论方便, 在研Байду номын сангаас角系数时把物体作为黑体来处理。但所得到的 结果对于漫射的灰体表面也适用。
角系数的性质
• 角系数的相对性 • 角系数的完整性 • 角系数的可加性
角系数的相对性
第八章 辐射换热的计算
• 本章讨论物体间辐射换热的计算方法,重点是 固体表面间辐射换热的计算。
• 首先讨论辐射换热计算中的一个重要几何因 子——角系数的定义、性质及其计算方法;
• 然后介绍由两个表面及多个表面所组成系统的 辐射换热计算方法。
• 此基础上总结辐射换热的强化及削弱方法。
• 最后对位于容器及设备壳体内的烟气的辐射换 热特性及烟气与壳体间的辐射换热计算方法作 简要的讨论。
(1)所研究的表面是漫射表面;
(2)所研究表面向外发射的辐射热流密度是均匀的。
• 在这两个假定下,当物体的表面温度及发射率的改变 时,只影响到该物体向外发射的辐射能的大小,而不 影响辐射能在空间的相对分布,因而不影响辐射能落 到其他表面的百分数,即不影响角系数的大小。这样, 角系数就是一个仅与辐射表面间相对位置有关,而与 表面特性无关的纯几何量,从而给计算带来极大的方 便。
• 考虑如图所示的表面1对表面2的角系数。由于 从表面1上发出的落到表面2的总能量,等于落 到表面2上各部分的能量之和,于是有
A1Eb1 X 1,2 A1Eb1 X 1,2a A1Eb1 X 1,2b
2a
2b
• 所以,有 X 1,2 X 1,2a X 1,2b
1
• 如果把表面2进一步分成
若干小块,则仍有
• 实际工程问题虽然不一定满足这些假设,但由此造成 的偏差一般均在计算允许的范围之内,因此这种处理 问题的方法在工程中被广泛采用。本书为讨论方便, 在研Байду номын сангаас角系数时把物体作为黑体来处理。但所得到的 结果对于漫射的灰体表面也适用。
角系数的性质
• 角系数的相对性 • 角系数的完整性 • 角系数的可加性
角系数的相对性
第八章 辐射换热的计算
• 本章讨论物体间辐射换热的计算方法,重点是 固体表面间辐射换热的计算。
• 首先讨论辐射换热计算中的一个重要几何因 子——角系数的定义、性质及其计算方法;
• 然后介绍由两个表面及多个表面所组成系统的 辐射换热计算方法。
• 此基础上总结辐射换热的强化及削弱方法。
• 最后对位于容器及设备壳体内的烟气的辐射换 热特性及烟气与壳体间的辐射换热计算方法作 简要的讨论。
2020年高中物理竞赛—传热学-第八章 辐射换热的计算:角系数的定义、性质和计算等(共31张PPT)

A1 A2 Lb1cos1d1dA1 A1 Lb1dA1
A1 A2 Lb1cos1dA2cos2dA1
A1Lb1r 2
1
A1
A1
A2
c os1c os 2dA2 r2
dA1
1
A1
A1
A2 X d1,d 2dA1
2. 角系数性质 根据角系数的定义和诸解析式,可导出角系数的代数性质。 (1) 相对性
质,则表面1对表面2的角系数X1,2是:表面1直接投射到 表面2上的能量,占表面1辐射能量的百分比。即
表面1对表面2的投入辐射
X1,2
表面1的有效辐射
(8-1)
同理,也可以定义表面2对表面1的角系数。从这个概
念我们可以得出角系数的应用是有一定限制条件的,
即漫射面、等温、物性均匀
(2) 微元面对微元面的角系数
s 1
(3) 表面积A1与表面积A2相当,即A1/A2 1 于是
s
1
1
1
1
2
1
§ 8-3 多表面系统辐射换热的计算
净热量法虽然也可以用于多表面情况,当相比之下网 络法更简明、直观。网络法(又称热网络法,电网络法等) 的原理,是用电学中的电流、电位差和电阻比拟热辐射中 的热流、热势差与热阻,用电路来比拟辐射热流的传递路 径。但需要注意的是,这两种方法都离不开角系数的计算, 所以,必须满足漫灰面、等温、物性均匀以及投射辐射均 匀的四个条件。下面从介绍相关概念入手,逐步展开。
A1
A2
cos 1 cos 2dA1dA2 r2
1 A1
A1
A2 X d1,d 2dA1
X 2,1
1 A2
A1
A2
cos 1 cos 2dA1dA2 r2
传热学-第9章-辐射传热的计算

A2
cos1 cos2 r 2
dA1dA2
X 2,1
1 A2
A1
A2
cos1 cos2 r 2
dA1dA2
则有: A1 X1,2 A2 X 2,1
2
平面1
2
凸面1
3. 角系数的完整性
封闭空腔中: A2 两表面组成封闭空腔:
X1,1 X1,2 1
A1
多表面组成封闭空腔:
Eb 2
1 2
A11 A1 X1,2 A2 2
或:
1,2
(1
A1(Eb1 Eb2 ) 1) 1 A1 (
1
1)
1
X1,2 A2 2
1,2 s A1(Eb1 Eb2 )
系统黑度
两漫灰表面间的辐射换热网络图
Φ 1,2
Eb1
1 1 J1 1
J2 1 2
解:作辅助面A3(非自见面):
A2
A3
则: X1,2 X1,3 , X 2,1 X 2,3
A1
由角系数的相对性: A1 X1,3 A3 X 3,1
得: X1,3
A3 A1
X 3,1
A3 A1
X1,2
X 1,1
1
X 1, 2
1
A3 A1
同理:X 2,3
A3 A2
X 3,2
A11
A1 X1,2
A2 2
节点J3:
Eb3 J 3
13
J1 J3 1
J2
J3 1
0
A3 3
A1 X1,3 A2 X 2,3
3. 求解代数方程组,计算各表面的有效辐射。
传热学 第九章 辐射换热的计算

灰体——多次反射、吸收
9-2 两表面之间的辐射换热过程
1. 黑体表面之间的辐射换热
任意位置的两个黑体表面1、2,从表面1发出并直接投射
到表面2上的辐射能为
1 2 A1 X 1,2 E b1
从表面2发出并直接投射到表面1上的辐射能为
21 A2 X 2 ,1 E b 2
两个表面之间的直接辐射换热量为
X 1,2 X 2 ,1 1
A2 a
A1
9-1 角系数
4. 角系数的计算方法
(2) 代数法
由三个垂直于纸面方向无限长的非凹表面构成的封闭空腔,
三个表面的面积分别为A1、A2、A3 。
X i ,i 0
根据角系数的完整性
角系数的相对性
A1 X 1, 2 A1 X 1, 3 A1
A1 X 1,2 A2 X 2 ,1
Eb1 cos 1 cos 2 dA1dA2
1d 1
dd11
2
2 Lb1 dA1 cos
2
r
Eb1
dA2 cos 2
Lb1
d1
r2
9-1 角系数
2. 角系数的定义式
12
cos 1 cos 2
cos 1 cos 2
dA1dA2
E b1
dA1dA2 E b1
2
2
A1 A2
A1 A2
r
r
表面1对表面2的角系数为
X 1,2
12
A1 Eb1
1
A1
cos 1 cos 2
A1 A2 r 2 dA1dA2
1
A2
cos 1 cos 2
9-2 两表面之间的辐射换热过程
1. 黑体表面之间的辐射换热
任意位置的两个黑体表面1、2,从表面1发出并直接投射
到表面2上的辐射能为
1 2 A1 X 1,2 E b1
从表面2发出并直接投射到表面1上的辐射能为
21 A2 X 2 ,1 E b 2
两个表面之间的直接辐射换热量为
X 1,2 X 2 ,1 1
A2 a
A1
9-1 角系数
4. 角系数的计算方法
(2) 代数法
由三个垂直于纸面方向无限长的非凹表面构成的封闭空腔,
三个表面的面积分别为A1、A2、A3 。
X i ,i 0
根据角系数的完整性
角系数的相对性
A1 X 1, 2 A1 X 1, 3 A1
A1 X 1,2 A2 X 2 ,1
Eb1 cos 1 cos 2 dA1dA2
1d 1
dd11
2
2 Lb1 dA1 cos
2
r
Eb1
dA2 cos 2
Lb1
d1
r2
9-1 角系数
2. 角系数的定义式
12
cos 1 cos 2
cos 1 cos 2
dA1dA2
E b1
dA1dA2 E b1
2
2
A1 A2
A1 A2
r
r
表面1对表面2的角系数为
X 1,2
12
A1 Eb1
1
A1
cos 1 cos 2
A1 A2 r 2 dA1dA2
1
A2
cos 1 cos 2
辐射换热·角系数及计算举例

辐射换热·角系数及计算举例
角系数的定义:离开表面1的总辐射能量Q1W中到达表面2的那部分能量
Q1-2 W所占的分率,称为表面1对表面2的角系数,即
角系数亦称为:视角系数.、形状系数、形态系数、形状因素。
图3-23为两个黑体表面A,与A2。
表面间为真空或非吸收性介质。
离开表面1而到达表面2的能量Q1→2为:
离开表面2到达表面1的能量Q2→1为:
黑体表面能吸收全部的投射辐射,故两个表面的净换热量为:
对于黑体或灰体,属于扩散辐射,符合余弦定律,角系数纯粹是一项几何参数,仅取决于物体表面的形状及相对位置,而与各表面的温度,黑度无关。
这是因为当物体的温度、黑度改变时,其辐射能的绝对值虽然也发生变化,但这些能量在不同方向上分配的比例则是不变的,仍服从余弦定律。
因此当这两个表面的相对位置确定以后,从一个表面发出的能量到达另一表面的分率—角系数也就确定了。
在研究角系数时,为了方便起见,常用黑体表面间的换热作为对象。
角系数的推导。
图3-23为两个微元表面dA1和dA2之间的换热。
由于假定是扩散辐射(漫辐射),辐射强度在各个方向上是相同的,即Iφ不随φ而变,从而得知离开dA1的能量中投射到dA2的能量dQ2→1为:
例3一2
计算图3一盯中的面3对面4的角系数。
解:
由角系数的定义,可知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2 1 1 1
知识点:辐射角系数
射角系数用φ 2,1表示。两表面间的角系数可以通过有关的计 算公式和图表查得。 2.角系数的性质 (1)相对性 φ 1,2F1= φ 2,1F2 (2)完整性
j 1
n
, j
,1 , 2 , ,n 1
知识点:辐射角系数
影响辐射换热的因素,除物体的表面温度外,还有物体 大小、形状、相互位置以及表面的辐射性质等。 表面2 1.角系数的定义 dF F 如右图,两物体 n 表面相互辐射,表面 积分别为F1和F2,把 表面1辐射出的总能 量落到表面2上的百 n 分数,称为表面1对 表面2的辐射角系数 dF F 表面1 用φ 1,2 表示。同理 表面2对表面1 的辐 图1 任意位置的两个表面之间的辐射换热
(3)可加性
1,( 23) 1, 2 1,3
Hale Waihona Puke
知识点:辐射角系数
射角系数用φ 2,1表示。两表面间的角系数可以通过有关的计 算公式和图表查得。 2.角系数的性质 (1)相对性 φ 1,2F1= φ 2,1F2 (2)完整性
j 1
n
, j
,1 , 2 , ,n 1
知识点:辐射角系数
影响辐射换热的因素,除物体的表面温度外,还有物体 大小、形状、相互位置以及表面的辐射性质等。 表面2 1.角系数的定义 dF F 如右图,两物体 n 表面相互辐射,表面 积分别为F1和F2,把 表面1辐射出的总能 量落到表面2上的百 n 分数,称为表面1对 表面2的辐射角系数 dF F 表面1 用φ 1,2 表示。同理 表面2对表面1 的辐 图1 任意位置的两个表面之间的辐射换热
(3)可加性
1,( 23) 1, 2 1,3
Hale Waihona Puke