数据结构 背包问题

合集下载

《信息学奥赛一本通》:第9章 第2节 动态规划背包问题(C++版)

《信息学奥赛一本通》:第9章  第2节 动态规划背包问题(C++版)
f[n][m]即为最优解。
【参考程序】
#include<cstdio> using namespace std;
const int maxm = 201, maxn = 31;
int m, n;
int w[maxn], c[maxn];
int f[maxn][maxm];
int main()
{
scanf("%d%d",&m, &n);
for (int i=1; i <= n; i++)
//设f(v)表示重量不超过v公斤的最大价值
for (int v = m; v >= w[i]; v--)
if (f[v-w[i]]+c[i]>f[v])
f[v] = f[v-w[i]]+c[i];
printf("%d",f[m]);
// f(m)为最优解
【例9-12】、完全背包问题 【问题描述】
设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限 的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品 可以多次选取),使其重量的和小于等于M,而价值的和为最大。
【输入格式】
第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 【输出格式】
第九章 动态规划
第二节 背包问题
第二节 背包问题
一、01背包问题 问题:
有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量, 且价值总和最大。 基本思路:

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。

物品i的重量是wi,其价值为vi。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。

(2)基因:染色体的每一个比特。

(3)种群:解的集合。

(4)适应度:衡量个体优劣的函数值。

2、控制参数(1)种群规模:解的个数。

(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。

(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。

3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。

(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。

三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。

种群:用二维数组表示,每一行表示一个染色体。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

背包问题全类型

背包问题全类型

背包问题全类型背包问题给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。

背包问题⼤体都可以⽤上述⽅式进⾏描述,但在具体的问题上有了不同的限制条件,于是便有了各种类型的背包问题。

背包问题可基本分为0-1背包问题、部分背包问题、多重背包问题、完全背包问题四⼤类。

接下从四种问题的解决的核⼼算法可以把部分背包问题单独化为⼀类,其核⼼算法为贪⼼。

其余的三种背包问题都可以⽤动态规划解决。

造成部分背包问题与其他的背包问题最⼤不同的原因是其限定条件的不同,部分1. 部分背包问题限定条件:每件物品可以只选取⼀部分完整问题描述:有 n 件物品,第i件物品重 w[i],价值为 v[i],且每件物品可以进⾏分割,分割后的价值按取⾛重量占该物品总重量的⽐值计算。

在不超过最⼤承载量 C 的范围内,问最⼤可以取⾛的价值为多少?( 其中 i ∈ {1,2,3,···,n} )算法:贪⼼分析:根据本题的特殊性,我们可以任意地对某⼀部品进⾏分割,所以我们优先选择性价⽐⾼的物品,即单位重量下物品的价值。

解题代码//C++#include<cstdio>#include<algorithm>#include<iostream>using namespace std;struct bag { int w,v; //w表⽰重量 v表⽰价值 double p; //⽤来储存v/w 性价⽐}a[10005];bool cmp(bag x,bag y) { return x.p > y.p; //性价⽐⾼的物品排在前⾯}int main() {剩余 } } printf('%.2f\n', ans); //输出答案 return 0;}注意计算时注意数据类型在计算“性价⽐”的时候要注意,在C/C++等⼀部分语⾔中存在以下机制 int/int = int ,这样是⽆法计算出⼩数的,需要将其中任意⼀项浮点化即可。

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。

在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。

1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。

给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。

动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。

dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。

通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。

可以通过回溯的方法找到具体放入背包的物品。

2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。

动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。

dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。

对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。

通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。

同样可以通过回溯的方法找到具体的最短路径。

天大《数据结构》学习笔记四

天大《数据结构》学习笔记四

主 题: 《数据结构》学习笔记 内 容:《数据结构》学习笔记四——树一、树形结构1、术语:树、子树、根结点、结点的度、叶结点、树的度、结点的子结点、结点的父结点、结点 的层次、树的深度(高)、森林。

2、二叉树: 2.1二叉树不属于“树”。

2.2 二叉树的性质:①在二叉树的第i 层上至多有2i -1个结点(i ≥1)②深度为K 的二叉树至多有2k-1个结点(k ≥1) ③对任何一棵二叉树,如叶结点的个数为n 0,2度结点个数为n 2则n 0=n 2+1 说明:分支数为B ,二叉树的结点总数为n =n 0+n 1+ n 2 ∵B =n -1(从结点的头上看) B =n 1+2n 2(从结点的下方看) ∴n -1=n 1+2n 2即n 0+n 1+n 2-1=n 1+2n 2 ∴n 0=n 2+13、二叉树的存储结构:s t r u c t n o d e{c h a r d a t a ;s t r u c t n o d e *l c h i l d ; s t r u c t n o d e *r c h i l d ; }4、树转换为二叉树:(右链为兄弟) A BC E A B CDE AB C DE F二、遍历二叉树1、规则:1.1先序:打印,遍历左子树,遍历右子树。

A ,B ,D ,C ,E ,F 1.2中序:遍历左子树,打印,遍历右子树。

D ,B ,A ,E ,C ,F 1.3后序:遍历左子树,遍历右子树,打印。

D ,B ,E ,F ,C ,Aa*b-c 此式可画成一个二叉树,如左:先序: -*abc 中序: a*b-c后序: ab*c-3、程序: 3.1先序: preorder(p)struct node *p {if (p){printf(“%c,”,p->data); preorder (p->lchild); preorder(p->rchild); } }3.2中序: …… { preorder (p->lchild);printf(“%c,”,p->data); preorder(p->rchild); } ……3.3后序: ……RC E F H K R ABCDEFGHK{ preorder (p->lchild);preorder(p->rchild);printf(“%c,”,p->data);}……4、求已知二叉树上的叶结点个数:4.1思路:遍历二叉树,如遇到叶结点,则记数器增值。

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。

约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。

在这个表达式中,需求出xt 的值。

xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。

0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。

货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。

例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。

店中有n 种不同的货物。

规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。

你的目标是使车中装载的物品价值最大。

当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。

这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。

0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。

在每一步过程中利用贪婪准则选择一个物品装入背包。

一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。

这种策略不能保证得到最优解。

例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。

当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。

而最优解为[ 0 , 1 , 1 ],其总价值为3 0。

另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构背包问题
背包问题是数据结构中的一个经典问题,它在计算机科学和算法设计中有着广
泛的应用。

本文将详细介绍背包问题的定义、解决思路以及常见的解决方法。

一、背包问题的定义
背包问题是指在给定的一组物品中,选择一些物品放入背包中,使得背包中物
品的总价值最大化,同时受到背包的容量限制。

每一个物品都有自己的分量和价值,背包的容量是事先确定的。

二、解决思路
背包问题可以使用动态规划的思想进行求解。

具体来说,可以定义一个二维数
组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时所能获得的最大价值。


后根据状态转移方程进行递推求解。

三、常见的解决方法
1. 0-1背包问题
0-1背包问题是最基本的背包问题,每一个物品要末完整地放入背包中,要末
不放入。

具体的解决方法是使用动态规划,根据状态转移方程进行递推计算。

2. 彻底背包问题
彻底背包问题相较于0-1背包问题,每一个物品可以无限次地放入背包中。


样使用动态规划进行求解,但在状态转移方程中需要进行一些调整。

3. 多重背包问题
多重背包问题是在彻底背包问题的基础上,对每一个物品的数量进行了限制。

可以将多重背包问题转化为0-1背包问题进行求解。

4. 分组背包问题
分组背包问题是在背包问题的基础上,将物品进行了分组。

每一个组内的物品只能选择一个放入背包中。

可以使用动态规划进行求解,需要对状态转移方程进行一些修改。

四、示例
假设有一个背包的容量为10,有以下物品可供选择:
物品1:分量3,价值4
物品2:分量4,价值5
物品3:分量5,价值6
物品4:分量2,价值3
我们可以使用动态规划来解决这个问题。

首先初始化一个二维数组dp,大小为(n+1)×(W+1),其中n为物品的个数,W为背包的容量。

然后根据状态转移方程进行递推计算,最终得到dp[n][W]即为所求的最大价值。

具体的计算过程如下:
1. 初始化dp数组,dp[0][j]和dp[i][0]均为0,表示背包容量为0或者没有物品可选时的最大价值为0。

2. 从物品1开始,遍历每一个物品i,计算dp[i][j]的值。

对于每一个物品i,有两种情况:
a. 如果物品i的分量大于背包的容量j,则物品i不能放入背包中,此时
dp[i][j]等于dp[i-1][j],即不选择物品i。

b. 如果物品i的分量小于等于背包的容量j,则物品i可以选择放入背包中。

此时,我们需要比较选择物品i和不选择物品i两种情况下的最大价值,选择其中较大的值作为dp[i][j]的结果。

3. 遍历完所有物品后,dp[n][W]即为所求的最大价值。

根据以上示例,通过动态规划的方法计算得到的最大价值为9。

五、总结
背包问题是一类经典的优化问题,在实际应用中有着广泛的应用。

本文介绍了背包问题的定义、解决思路以及常见的解决方法,通过动态规划的思想可以高效地求解背包问题。

在实际应用中,还可以根据具体的问题特点进行一些优化,以提高算法的效率。

相关文档
最新文档