高中数学必修五解三角形知识点归纳教程文件

高中数学必修五解三角形知识点归纳教程文件
高中数学必修五解三角形知识点归纳教程文件

解三角形

一.三角形中的基本关系: (1)sin()sin ,A B C +=

cos()cos ,A B C +=-

tan()tan ,A B C +=-

(2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C

+++===

(3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理:

2sin sin sin a b c

R C

===A B .R 为C ?AB 的外接圆的半径)

正弦定理的变形公式:

①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;

②化边为角:sin 2a

R A =,sin 2b R B =,sin 2c C R

=;

③::sin :sin :sin a b c C =A B ;

④sin sin sin sin sin sin a b c a b c

C C ++===A +B +A B .

两类正弦定理解三角形的问题:

①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解))

三.余弦定理:

222

2cos a b c bc =+-A

222

2cos b a c ac =+-B

222

2cos c a b ab C =+-.

注意:经常与完全平方公式与均值不等式联系 推论:

222

cos 2b c a bc

+-A =

222

cos 2a c b

ac

+-B =

2

2

2

cos 2a b c

C ab

+-=

. ①若2

22

a

b c

+=,则90

C =; ②若2

2

2a b c +>,则90

C

<;

③若2

22

a b c +<,则90C >.

余弦定理主要解决的问题:

(1).已知两边和夹角求其余的量。

(2).已知三边求其余的量。

注意:解三角形与判定三角形形状时,实现边角转化,统一成边的形式或角的形式

四、三角形面积公式:

等差数列

一.定义:如果一个数列从第2项起,每一项与 它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 二.符号表示:1n n a a d +-=(n>=1)

三.判断数列是不是等差数列有以下四种方法: (1)

),2(1为常数d n d a a n n ≥=-- (可用来证明)

(2)

211-++=n n n a a a (2≥n )(可用来证明) (3)b kn a n +=(k n ,为常数)

(4)12n n s a a a =+++是一个关于n 的2次式且无常数项 四.等差中项

a ,A ,

b 成等差数列,则A 称为a 与b 的等差中

项.若2a c

b +=,则称b 为a 与

c 的等差中项.

五.通项公式:

()11n a a n d =+-(是一个关于的一次式,一次项系数是公差)

通项公式的推广:

()n m a a n m d =+-; n m

a a d n m -=

-.

六.等差数列的前n 项和的公式:

①()12

n n n a a S +=(注意利用性质特别是下标为奇数) ②()112

n n n S na d -=+

(是一个关于n 的2次式且

无常数项,二次项系数是公差的一半) 七.等差数列性质:

(1)若m n p q +=+则

m n p q a a a a +=+; (2)若2n p q =

+则2n p q a a a =+.

(3) (4)

且公差为原公差的

成等差数列,}S {n n

(5)①若项数为(

)

*

2n n ∈N ,则()21n n n S n a a +=+,

且S S nd -=偶奇,1n

n S a S a +=奇偶

②若项数为()*

21n n -∈N ,则()2121n n S n a -=-,且

n S S a -=奇偶

,1

S n

S n =-奇偶(其中n S na =奇,()1n S n a =-偶). 成等差数列 n n n S S 232n n S ,S ,S --

(6)若等差数列{ an} {bn}的前n 项和为

,n n

S T 则

八.等差数列前n 项和的最值

(1)利用二次函数的思想:n d

a n d S n )2(212-+=

(2)找到通项的正负分界线 ①若 则 有最大值,当n=k 时取到的 最大值k 满足 ②若 则

有最大值,当n=k 时取到的最大

值k 满足

???<>0

01d a n s

???≤≥+0

1

k k a a ??

?><001d a ??

?≥≤+0

1k k a a n s

1

212--=n n n n T S b a

等比数列

一.定义、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.

二.符号表示:1

n n

a q a +=

注:①等比数列中不会出现值为0的项;

②奇数项同号,偶数项同号 (3)合比性质的运用

三.数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n (可用来证明)

②112

-+?=n n n a a a (2≥n )(可用来证明)

n

n cq a =(q c ,为非零常数).(指数式) ④从前n 项和的形式(只用来判断)

四.等比中项:

在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2

G ab =,

则称G 为a 与b 的等比中项.(注:由2G ab =不能得出a ,G ,b 成等比,由a ,G ,b ?2

G ab

=)

五.等比数列的通项公式:1

1n n a a q

-=.

通项公式的变形: (1) n m

n m a a q

-=;

(2)

n m

n m a q

a -=

.(注意合比性质的利用)

六.前n 项和的公式:

①()()()11111111n n n na q S a q a a q

q q

q =??

=-?-=≠?

--?. ②

12n n s a a a =+++=A+B*q n ,则A+B=0

七.等比数列性质: (1)若m n p q +=

+,则m n p q a a a a ?=?;

(2)若2n p q =+ 则

2

n

p q a a a =?. (3)

成等比数列 n n n S S 232n n S ,S ,S --

通项公式的求法: (1).归纳猜想

(2).对任意的数列{n

a }的前n 项和n

S 与通项n

a 的关

系:???≥-===-)2()1(111n s s n a s a n n n

检验第②式满不满足第①式,满足的话写一个式子,不满足写分段的形式 (3).利用递推公式求通项公式 1、定义法:符合等差等比的定义 2、迭加法:

3、迭乘法:

4、构造法:

5.如果上式后面加的是指数时可用同除指数式

6.如果是分式时可用取倒数 (4)同时有和与通项有两种方向 一种:

当n 大于等于2,再写一式,两式相减,可以消去前n 项和 二种:消去通项

1()n n a a f n +-=1

()n n

a f n a +=1n n a qa p

+=+

数列求和的常用方法

1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

2.裂项相消法:适用于

?

??

???+1n n a a c 其中{ n

a }是各项不

为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。(分式且分母能分解成一次式的乘积)

3.错位相减法:适用于{}n

n b a 其中{ n

a }是等差数

列,{}n

b 是各项不为0的等比数列。

4.倒序相加法: 类似于等差数列前n 项和公式的推导方法.

5.常用结论

(1): 1+2+3+...+n = 2)

1(+n n (2) 1+3+5+...+(2n-1) =2

n

(3)2

3

3

3

)1(2121??

?

???+=+++n n n (4))12)(1(61

3212

2

2

2

++=++++n n n n ;

(5)11

1)1(1+-=+n n n n

不等式

一、不等式的主要性质: (1)对称性:

a

b b a

(2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;

(4)同向不等式加法法则:d b c a d c b a +>+?>>, (5)乘法法则:bc ac c b a >?>>0,;bc ac c b a 0, (6)同向不等式乘法法则:bd ac d c b a >?>>>>0,0 (7)乘方法则:)

1*(0>∈>?>>n N n b a

b a n n

(8)开方法则:)1*(0>∈>?>>n N n b a b a n

n

(9)倒数法则:b a ab b a 1

10,> 二、一元二次不等式0

2

>++c bx ax 和)

0(02

≠<++a c bx ax

其解法 0>?

0=?

0

二次函

c

bx ax y ++=2

(0>a )的图象 )

)((212x x x x a c bx ax y --=++=

)

)((212x x x x a c bx ax y --=++=

c

bx ax y ++=2

一元二次方程

有两相异实根

有两相等实根

实根

()的根

00

2>=++a c bx ax

)

(,2121x x x x <

a

b x x 221-

==

的解集)0(02>>++a c bx ax {}2

1

x x x x x ><或

??

??

??-≠a b x x 2

R

的解集

)0(02><++a c bx ax

{}

21

x x x

x << ? ?

三.含有参数的二次不等式的解法: (1) 二次项系数(正负零) (2) 根

一种:能分解因式,主要是比较根的大小 。 二种:能分解因式就从判别式进进行行讨论(3)画图写解集 四、线性规划

1.在平面直角坐标系中,直线0x y C A +B +=同侧的点代入后符号相同,异侧的点相反

2.由A 的符号来确定:先把x 的系数A 化为正后,看不等号方向:

①若是“>”号,则0x y C A +B +>所表示的区域为直线:0x y C A +B +=的右边部分。 ②若是“<”号,则0x y C A +B +<所表示的区域为直线 0x y C A +B +=的左边部分。

注意:

)0(0<>++或C By Ax 不包括边界;

)0(0≤≥++C By Ax 包括边界

3.求解线性线性规划问题的步骤 (1)画出可行域(注意实虚)

(2)将目标函数化为直线的斜截式

(3)看前的系数的正负.若为正时则上大下小,若为负则上小下大 4.非线性问题:

(1)看到比式想斜率

(2)看到平方之和想距离

四、均值不等式

1、设a 、b 是两个正数,则2a b

+称为正数a 、b 的

算术平均数(等差中项),ab 称为正数a 、b 的几何平均数.(等比中项)

2、基本不等式(也称均值不等式):

如果a,b 是正数,那么

).

""(22号时取当且仅当即==≥+≥+b a ab b

a a

b b a 注意:

使用均值不等式的条件:一正、二定、三相等

3、平均不等式:(a 、b 为正数),即

b

a a

b b a b a 112

2

222+≥

≥+≥+(当a = b 时取等)

4、常用的基本不等式:

①()22

2,a b ab a b R +≥∈;②()22,2

a b ab a b R +≤∈; ③()2

0,02a b ab a b +??

≤>> ???

;④()2

2

2,22a b a b a b R ++??

≥∈ ???

5、极值定理:设x 、y 都为正数,则有: ⑴若x y s +

=(和为定值),则当x y =时,

积xy 取得最大值2

4s .

⑵若

xy p =(积为定值),则当x y =时,

和x y +取得最小值2p . 五、含有绝对值的不等式

1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 ;

代数意义:??

???<-=>=0

a 0 00 ||a a a a a 2、

则不等式:

如果,0>a

(1) a x a x a x -<><=>>或||

(2)a x a x a

x -≤≥<=>≥或||

(3) a

x a a

x <<-<=><|| ;

(4) a x a a

x ≤≤-<=>≤||

注意:上式中的x 可换成f(x)

3、解含有绝对值不等式的主要方法:解含绝对

值的不等式的基本思想是去掉绝对值符号 、其他常见不等式形式总结:

式不等式的解法:移项通分,化分为整

0)()(0)

()

(>?>x g x f x g x f ;

???≠≥?≥0

)(0)()(0)()

(x g x g x f x g x f ②指数不等式:

)()()1()()(x g x f a a a x g x f >?>>

)()()10()()(x g x f a a a x g x f

③对数不等式:

??

?

??>>>?>>)()(0

)(0

)()1)((log )(log x g x f x g x f a x g x f a a

??

?

??<>>?<<>)()(0

)(0)()10)((log )(log x g x f x g x f a x g x f a a ④高次不等式:数轴穿线法口诀: “从右向左,自上而下;奇穿偶不穿,遇偶转个弯;小于取下边,大于取上边”

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理 ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

高中数学的必修五解三角形知识点归纳

解三角形 一.三角形中的基本关系: (1)sin()sin ,A B C += cos()cos ,A B C +=- tan()tan ,A B C +=- (2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理: 2sin sin sin a b c R C ===A B .R 为C ?AB 的外接圆的半径) 正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 两类正弦定理解三角形的问题:

①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解)) 三.余弦定理: 222 2cos a b c bc =+-A 222 2cos b a c ac =+-B 222 2cos c a b ab C =+-. 注意:经常与完全平方公式与均值不等式联系 推论: 222 cos 2b c a bc +-A = 222 cos 2a c b ac +-B = 2 2 2 cos 2a b c C ab +-= .

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

高中数学必修五第一章解三角形知识点归纳与测试卷.doc

第十二讲 解三角形 1 、三角形三角关系: A+B+C=180 °; C=180 °— (A+B) ; 3 、三角形中的基本关系: sin( A B) sin C , cos( A B) cosC , tan(A B) tanC , sin A B cos C ,cos A B sin C , tan A B cot C 2 2 2 2 2 2 4 、正弦定理:在 C 中, a 、 b 、 c 分别为角 、 、 C 的对边, R 为 C 的外接圆的半 径,则有 a b c 2R . sin sin C sin 5 、正弦定理的变形公式: ①化角为边: a 2Rsin , b 2Rsin , c 2R sin C ; ②化边为角: sin a , sin b c ; , sin C 2R 2R 2R ③ a : b: c sin :sin :sin C ;④ a b c a b c . sin sin sin C sin sin sin C 7 、余弦定理:在 C 中,有 a 2 2 c 2 2bc cos 等,变形: cos b 2 c 2 a 2 b 等, 2bc 8 、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角) 9 、三角形面积公式: 1 1 1 S C bc sin ab sin Cac sin . 2 2 2 10 、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式设 a 、 b 、 c 是 C 的角 、 、 C 的对边,则: ①若 a 2 b 2 c 2 ,则 C 90o ;②若 a 2 b 2 c 2 ,则 C 90o ;③若 a 2 b 2 c 2 ,则 C 90o . 11 、三角形的四心: 垂心——三角形的三边上的高相交于一点

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

必修5-解三角形知识点归纳总结

第一章解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a =;sin sin C B c b =;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c a C A = 5)化角为边:R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b =;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正 弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数和解三角形知识点

三角函数和解三角形知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点及原点重合,角的始边及x 轴的非负半轴重合,终边落在第几象限,则称α 为第几象限 角.第一象限角的集合为 {}360 36090,k k k αα?<,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11 、 角 三 角 函 数 的基本关系:()221sin cos 1 αα+=() 2 222sin 1cos ,cos 1sin αααα=-=-;

必修5_解三角形知识点归纳总结

z 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <

高中数学必修五--第一章---解三角形知识点归纳

- 1 - 高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C < ;③若222a b c +<,则90C > . 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、请同学们自己复习巩固三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。

高中数学必修五解三角形知识点

必修五不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<; ②,a b b c a c >>?>; ③a b a c b c >?+>+; ④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+; ⑥0,0a b c d ac bd >>>>?>; ⑦()0,1n n a b a b n n >>?>∈N >; ⑧)0,1a b n n >>?>∈N >. 小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。 在字母比较的选择或填空题中,常采用特值法验证。 3、一元二次不等式解法: (1)化成标准式:2 0,(0)ax bx c a ++>>;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。 线性规划问题: 1.了解线性约束条件、目标函数、可行域、可行解、最优解 2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤: (1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。 两类主要的目标函数的几何意义: ①z ax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径; 4、均值定理: 若0a >,0b >,则a b +≥,即2a b +≥. ()20,02a b ab a b +??≤>> ???; 2a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值. 注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

解三角形知识点归纳总结归纳

第一章解三角形 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180,求角A,由正弦定理a =sinA ; b =sin B ; a =sin A :求出匕与。 b sin B c sin C c sin C ②已知两边和其中一边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理生二业求出角B ,由A+B+C=180求出角C,再使用正弦定理弓二sinA b sin B 4. △ ABC 中,已知锐角A,边b,贝U ① a :: bsinA 时,B 无解; ② a = bsin A 或a _ b 时,B 有一个解; ③ bsin A ::: a ::: b 时,B 有两个解。 如:①已知A = 60 Y a = 2, b = 2 3 ,求B (有一个解) ②已知A = 60 Y b =2,a = 2、、3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。 二. 三角形面积 1 1 1 1. S ABC absi nC bcsi nA acsi nB 2 2 2 .正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 — b — =2R (其中R 是三角形外接圆的半径) sin A sin B sin C abc 2.变形: 1) a b c a b sin A+si n E+si nC si n A si n E sinC 2)化边为角: a : b : c = sin A: sin B :sin C ; 7 a sin A ; b sin B a sin A b sin B c sin C ' c sin C )化边为角: a = 2Rsin A, b=2Rsin B, c = 2RsinC )化角为边: )化角为边: sin A a ; ; sin B b sin A =— 2R si n B b si nA a sin C c sin C c ' si nB=2, si 门。=£ 2R 2R 求 c sin C

相关文档
最新文档