uboot源代码startS详解

uboot源代码startS详解
uboot源代码startS详解

以下内容源于朱友鹏老师《物联网大讲堂》视频的学习整理。如有侵权,请告知删除。

一、基本的概念

?阶段的定义:

1、第一阶段,即在内部SRAM运行的阶段,简单地理解为汇编阶段,此阶段主要涉及start.S文件,在cpu/s5pc11x/目录下。第一阶段以ldr pc _start_armboot为结束。

2、第二阶段,即在DDR中运行的阶段,简单地理解为C语言阶段,此阶段主要涉及start_armboot函数,在uboot/lib_arm/board.c文件的444~908行。

?第一阶段主要完成的任务有:

1、异常向量表的实现;

2、设置进入特权模式,即SVC模式;

3、检查恢复状态;

4、IO状态恢复;

5、关看门狗;

6、一些与SRAM、SROM相关的GPIO设置;

7、开发板的供电锁存;

8、时钟的初始化;

9、DDR的初始化;

10、重新设置栈空间;

11、uboot的重定位。

12、转换表的建立;

13、使能MMU。

可见,uboot的第一阶段初始化了SoC内部的一些部件,初始化DDR并且重定位。

一、start.S的引入

1、uboot中整个程序的入口取决于链接脚本中ENTRY声明的地方。因为链接脚本(即

board\samsung\x210\u-boot.lds)中有ENTRY(_start),因此_start符号所在的文件就是起始文件,所处的位置就是起始位置。

2、SI工具的使用:search—>lookup reference.

二、start.S解析1

(1)config.h文件在mkconfig脚本中生成,此文件内容为#include

(2)version.h文件中的内容是#include "version_autogenerated.h"。version_autogenerated.h文件是在主Makefile中自动生成的。

生成代码为:

生成内容(即version_autogenerated.h文件中内容为):

#define U_BOOT_VERSION "U-Boot 1.3.4"

(3)由于定义了宏CONFIG_ENABLE_MMU,因此包含asm/proc/domain.h。由于采用了符号链接(为了让uboot 具有可移植性),实际包含include\asm-arm\proc-arm\domain.h文件。

三、start.S解析2

1、启动代码的16字节头部

(1)arm7和arm9(其他的我不清楚)的arm指令集中,一个字类型是32bit。

(2)此段代码用16个字节填充占位(这些数字貌似可以任意?),字节内容需要后续计算重新填充。.word 是arm汇编的伪指令,含义是当前地址的值为XX,XX的内容一般为数值或者地址。

如:.word 0x2000表示当前地址的值为0x2000;

.word _start 表示当前地址的值为_start函数

2、构建异常向量表

(1)异常向量表由硬件决定,软件只是参照硬件设计来实现。

(2)此向量表只是虚有其表,并未做非常细致的异常处理。

(3)复位异常处理代码是b reset,reset是个函数。

(4)最后一句是让内存16字节对齐,如果不对齐,用0xdeadbeef这个数字填充。3、

(1)_TEXT_BASE(4字节)这个内存地址出的值为TEXT_BASE(即0xc3e00000);

_TEXT_PHY_BASE(4字节)这个内存存放的值为CFG_PHY_UBOOT_BASE(uboot的物理基地址):

(2)CFG_PHY_UBOOT_BASE(定义在x210_sd.h中)为MEMORY_BASE_ADDRESS + 0x3e00000,而在x210_sd.h 中有#define MEMORY_BASE_ADDRESS 0x30000000,因此CFG_PHY_UBOOT_BASE为0x33e00000,这个是uboot 在DDR中的物理地址。

(3)总结:标签表示地址,.word后面的表示值。如_bss_end: .word _end表示地址_bss_end上存放的值是_end。

4、reset中断处理函数

(1)0xd3=11010011,参照之前cpsr的位含义,可知此代码将cpu设置为SVC模式、arm状态,禁止FIQ、IRQ中断。

(2)整个uboot工作时,cpu一直处于SVC模式(特权模式)。

5、Cpu的初始化(设置l1,l2cache和MMU等内容)

6、识别并暂存启动介质选择

(1)由SoC的OM0:OM5这6个引脚的高低电平决定启动介质。

(2)由#define PRO_ID_BASE0xE0000000和#define OMR_OFFSET 0x04得到寄存器0xE000 0004,其根据OM引脚自动硬件设置值。

(3)此三行代码后,r2存储了一个数字,后续通过该数字进行启动介质的判断。

(3)通过判断r2中的值,来确定是从哪里启动的。如果r2中的值为0xc,那从SD卡启动,然后把#BOOT_MMCSD 赋值给r3,即r3存储的值为0x3(#define BOOT_MMCSD 0x3)。

(4)最后两行中,因为有#define INF_REG_BASE 0xE010F000和#define INF_REG3_OFFSET 0x0c,因此其把BOOT_MMCSD(0x3)这个值放入寄存器 0xE010F00C中。

7、第一次设置栈

(1)这次设置栈是在SRAM中设置的,因为当前整个代码还在SRAM中运行,此时DDR还未被初始化还不能用。栈地址0xd0036000是自己指定的,指定的原则就是这块空间只给栈用,不会被别人占用。

(2)在调用函数前初始化栈,主要原因是接下来调用的lowlevel_init函数中还要调用其他函数。而bl 只会将返回地址存储到LR中,但是我们只有一个LR,所以在第二层调用函数前要先将LR入栈,否则函数返回时第一层的返回地址就丢了。

8、lowlevel_init函数

函数解释第一部分:

(1)lowlevel_init在uboot\board\samsung\x210\lowlevel_init.S中。

(2)检查复位状态

A、因为复杂CPU支持多种复位状态(冷上电、休眠复位等),因此在复位代码中检查复位状态,判断到底是哪一种。

B、冷上电时DDR需要初始化,而休眠状态下复位不需要再次初始化DDR。

(3)IO状态恢复;

(4)关看门狗;

(5)一些与SRAM、SROM相关的GPIO设置;

(6)开发板的供电锁存。

函数解释第二部分:

(1)判断当前代码执行位置(判断在SRAM还是DDR中)

为什么要判断?

●BL1(uboot的前一部分)在SRAM中有一份,在DDR中也有一份,因此如果是冷启动那么当前代码应

该是在SRAM中运行的BL1,如果是低功耗状态的复位这时候应该就是在DDR中运行的。

●指导后面代码的运行。譬如在lowlevel_init.S中判定当前代码的运行地址,就是为了确定要不要执

行时钟初始化和初始化DDR的代码。如果当前代码是在SRAM中,说明冷启动,那么时钟和DDR都需要初始化;如果当前代码是在DDR中,那么说明是热启动则时钟和DDR都不用再次初始化。

(2)时钟初始化:system_clock_init

(3)内存的初始化:system_clock_init

●该函数和裸机中初始化DDR代码是一样的。实际裸机中初始化DDR的代码就是从这里抄的。

●配置值中有一个和裸机中讲的不一样,即DMC0_MEMCONFIG_0,它在裸机中配置值为0x20E01323,在

uboot中配置为0x30F01313.这个配置不同就导致结果不同。

●在裸机中DMC0的256MB内存地址范围是0x20000000-0x2FFFFFFF,在uboot中DMC0的256MB内存地

址范围为0x30000000-0x3FFFFFFF。

●之前在裸机中时配置为2开头的地址,当时并没有说可以配置为3开头。从分析九鼎移植的uboot可

以看出:DMC0上允许的地址范围是20000000-3FFFFFFF(一共是512MB),而我们实际只接了256MB 物理内存,SoC允许我们给这256MB挑选地址范围。

●总结一下:在uboot中,可用的物理地址范围为:0x30000000-0x4FFFFFFF。一共512MB,其中

30000000-3FFFFFFF为DMC0,40000000-4FFFFFFF为DMC1。

●分析的时候要注意条件编译的条件,配置头文件中考虑了不同时钟配置下的内存配置值,这个的主要

目的是让不同时钟需求的客户都能找到合适自己的内存配置值。

(4)串口初始化:打印一个“O”

(5)返回前通过串口打印“K”

9、第二次设置栈(已经退出lowlevel_init)

(1)在调用lowlevel_init程序前设置过1次栈,那时候是因为DDR尚未初始化,因此程序执行都是在SRAM中,所以在SRAM中分配了一部分内存作为栈。本次因为DDR已经被初始化了,因此要把栈挪移到DDR 中,所以要重新设置栈。

(2)实际设置的栈的地址是33E00000,刚好在uboot的代码段的下面紧挨着。因为是满减栈,所以栈向下增长。注意uboot基地址在0x33e00000,向上增长。

(3)为什么要再次设置栈?DDR已经初始化了,已经有大片内存可以用了,没必要再把栈放在SRAM中可怜兮兮的了;原来SRAM中内存大小空间有限,栈放在那里要注意不能使用过多,否则栈会溢出,我们及时将栈迁移到DDR中也是为了尽可能避免栈使用时候的小心翼翼。

10、再次判断运行地址是在SRAM中还是DDR中

(1)上次判断是为了决定是否要执行初始化时钟和DDR的代码,本次判断是为了决定是否进行uboot的重定位。上图中最后一行代码如果不执行,则说明需要重定位。

●冷启动时,uboot的前一部分(16kb或者8kb)开机自动从SD卡加载到SRAM中运行,uboot的第二

部分(其实第二部分是整个uboot)还躺在SD卡的某个扇区开头的N个扇区中。此时uboot的第一阶段已经即将结束了(第一阶段该做的事基本做完了),结束之前要把第二部分加载到DDR中链接地址处(0x33e00000),这个加载过程就叫重定位。

(2)如下图:

●D0037488这个内存地址在SRAM中,这个地址中的值是被硬件自动设置的。硬件根据我们实际电路中

SD卡在哪个通道中,会将这个地址中的值设置为相应的数字。譬如我们从SD0通道启动时,这个值为EB000000;从SD2通道启动时,这个值为EB200000

●我们确定是从MMCSD启动(这里和6(4)一起看),因此最终跳转到mmcsd_boot函数中去执行重定

位动作,即把SD卡中相应的内容复制到内存中。

●真正的重定位是通过调用movi_bl2_copy函数完成的,在uboot/cpu/s5pc11x/movi.c中。此函数包

含copy_bl2(2, MOVI_BL2_POS, MOVI_BL2_BLKCNT,CFG_PHY_UBOOT_BASE, 0)函数;分析其参数,2表示通道2,MOVI_BL2_POS是uboot的第二部分在SD卡中的开始扇区,这个扇区数字必须和烧录uboot 时烧录的位置相同;MOVI_BL2_BLKCNT是uboot的长度占用的扇区数;CFG_PHY_UBOOT_BASE是重定位时将uboot的第二部分复制到DDR中的起始地址(33E00000)。

11、最后一段代码:

(1)作用是配置MMU、重新设置栈、清bss、跳转到start_armboot函数中去执行BL2阶段。

(2)MMU(memory management unit),内存管理单元。

●MMU实际上是SOC中一个硬件单元,它的主要功能就是实现虚拟地址到物理地址的映射。

●MMU单片在CP15协处理器中进行控制,也就是说要操控MMU进行虚拟地址映射,方法就是对cp15协

处理器的寄存器进行编程。

(3)第三次设置栈。

●这次设置栈还是在DDR中,之前虽然已经在DDR中设置过一次栈了,但是本次设置栈的目的是将栈放

在比较合适(安全,紧凑而不浪费内存)的地方。

●我们实际将栈设置在uboot起始地址上方2MB处,这样安全的栈空间是:2MB-uboot大小-0x1000=1.8MB

左右。这个空间既没有太浪费内存,又足够安全。

(4)清理bss:注意表示bss段的开头和结尾地址的符号是从链接脚本u-boot.lds得来的。

(5)ldr pc, _start_armboot

●start_armboot是uboot/lib_arm/board.c中,这是一个C语言实现的函数。这个函数就是uboot的

第二阶段。这句代码的作用就是将uboot第二阶段执行的函数的地址传给pc,实际上就是使用一个远跳转直接跳转到DDR中的第二阶段开始地址处。

●远跳转的含义就是这句话加载的地址和当前运行地址无关,而和链接地址有关。因此这个远跳转可以

实现从SRAM中的第一阶段跳转到DDR中的第二阶段。

●这里这个远跳转就是uboot第一阶段和第二阶段的分界线。

u-boot启动分析

背景: Board →ar7240(ap93) Cpu →mips 1、首先弄清楚什么是u-boot Uboot是德国DENX小组的开发,它用于多种嵌入式CPU的bootloader程序, uboot不仅支持嵌入式linux系统的引导,当前,它还支持其他的很多嵌入式操作系统。 除了PowerPC系列,还支持MIPS,x86,ARM,NIOS,XScale。 2、下载完uboot后解压,在根目录下,有如下重要的信息(目录或者文件): 以下为为每个目录的说明: Board:和一些已有开发板有关的文件。每一个开发板都以一个子目录出现在当前目录中,子目录存放和开发板相关的配置文件。它的每个子文件夹里都有如下文件(以ar7240/ap93为例): Makefile Config.mk Ap93.c 和板子相关的代码 Flash.c Flash操作代码 u-boot.lds 对应的链接文件 common:实现uboot命令行下支持的命令,每一条命令都对应一个文件。例如bootm命令对应就是cmd_bootm.c cpu:与特定CPU架构相关目录,每一款Uboot下支持的CPU在该目录下对应一个子目录,比如有子目录mips等。它的每个子文件夹里都有入下文件: Makefile Config.mk Cpu.c 和处理器相关的代码s Interrupts.c 中断处理代码 Serial.c 串口初始化代码 Start.s 全局开始启动代码 Disk:对磁盘的支持

Doc:文档目录。Uboot有非常完善的文档。 Drivers:Uboot支持的设备驱动程序都放在该目录,比如网卡,支持CFI的Flash,串口和USB等。 Fs:支持的文件系统,Uboot现在支持cramfs、fat、fdos、jffs2和registerfs。 Include:Uboot使用的头文件,还有对各种硬件平台支持的汇编文件,系统的配置文件和对文件系统支持的文件。该目下configs目录有与开发板相关的配置文件,如 ar7240_soc.h。该目录下的asm目录有与CPU体系结构相关的头文件,比如说mips 对应的有asm-mips。 Lib_xxx:与体系结构相关的库文件。如与ARM相关的库放在lib_arm中。 Net:与网络协议栈相关的代码,BOOTP协议、TFTP协议、RARP协议和NFS文件系统的实现。 Tools:生成Uboot的工具,如:mkimage等等。 3、mips架构u-boot启动流程 u-boot的启动过程大致做如下工作: 1、cpu初始化 2、时钟、串口、内存(ddr ram)初始化 3、内存划分、分配栈、数据、配置参数、以及u-boot代码在内存中的位置。 4、对u-boot代码作relocate 5、初始化malloc、flash、pci以及外设(比如,网口) 6、进入命令行或者直接启动Linux kernel 刚一开始由于参考网上代码,我一个劲的对基于smdk2410的板子,arm926ejs的cpu看了N 久,启动过程和这个大致相同。 整个启动中要涉及到四个文件: Start.S →cpu/mips/start.S Cache.S →cpu/mips/cache.S Lowlevel_init.S →board/ar7240/common/lowlevel_init.S Board.c →lib_mips/board.c 整个启动过程分为两个阶段来看: Stage1:系统上电后通过汇编执行代码 Stage2:通过一些列设置搭建了C环境,通过汇编指令跳转到C语言执行. Stage1: 程序从Start.S的_start开始执行.(至于为什么,参考u-boot.lds分析.doc) 先查看start.S文件吧!~ 从_start标记开始会看到一长串莫名奇妙的代码:

UBoot移植详解

u-boot 移植步骤详解 1 U-Boot简介 U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux 系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT 改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。 选择U-Boot的理由: ①开放源码; ②支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS; ③支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale; ④较高的可靠性和稳定性; ④较高的可靠性和稳定性; ⑤高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等; ⑥丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等; ⑦较为丰富的开发调试文档与强大的网络技术支持; 2 U-Boot主要目录结构 - board 目标板相关文件,主要包含SDRAM、FLASH驱动; - common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

UBOOT命令详解

常用U-boot命令详解(z) 2010-09-30 15:05:52| 分类:学习心得体会|字号订阅 U-boot发展到现在,他的命令行模式已经非常接近Linux下的shell了,在我编译的 U-boot-2009.11中的命令行模式模式下支持“Tab”键的命令补全和命令的历史记录功能。而且如果你输入的命令的前几个字符和别的命令不重复,那么你就只需要打这几个字符即可,比如我想看这个U-boot的版本号,命令就是“ version”,但是在所有的命令中没有其他任何一个的命令是由“v”开头的,所以只需要输入“v”即可。 [u-boot@MINI2440]# version U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# v U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# base Base Address: 0x00000000 [u-boot@MINI2440]# ba Base Address: 0x00000000 由于U-boot支持的命令实在太多,一个一个细讲不现实,也没有必要。所以下面我挑一些烧写和引导常用命令介绍一下,其他的命令大家就举一反三,或者“help”吧! (1)获取帮助 命令:help 或? 功能:查看当前U-boot版本中支持的所有命令。 [u-boot@MINI2440]#help ?- alias for'help' askenv - get environment variables from stdin base - print or set address offset bdinfo - print Board Info structure bmp - manipulate BMP image data boot - boot default, i.e., run 'bootcmd' bootd - boot default, i.e., run 'bootcmd' bootelf - Boot from an ELF image in memory bootm - boot application image from memory bootp - boot image via network using BOOTP/TFTP protocol

Tiny6410_Uboot移植步骤详解

Uboot_for_Tiny6410_移植步骤详解 一、设计要求 1.目的 1)掌握U-boot剪裁编写 2)掌握交叉编译环境的配置 3)掌握U-boot的移植 2.实现的功能 1)U-boot编译成功 2)移植U-boot,使系统支持从NAND FLASH启动 二、设计方案 1.硬件资源 1)ARM处理器:ARM11芯片(Samsung S3C6410A),基于ARM1176JZF-S核设 计,运行频率533Mhz,最高可达 667Mhz 2)存储器:128M DDR RAM,可升级至 256M;MLC NAND Flash(2GB) 3)其他资源:具有三LCD接口、4线电阻 触摸屏接口、100M标准网络接口、标准DB9 五线串口、Mini USB2.0接口、USB Host 1.1、3.5mm音频输入输出口、标准TV-OUT

接口、SD卡座、红外接收等常用接口;另外 还引出4路TTL串口,另1路TV-OUT、 SDIO2接口(可接SD WiFi)接口等;在板的 还有蜂鸣器、I2C-EEPROM、备份电池、A D 可调电阻、8个中断式按键等。 2.软件资源 1)arm-linux-gcc-4.5.1(交叉编译) 2)u-boot-2010.09.tar.gz arm-linux-gcc-4.5.1-v6-vfp-20101103.t gz 三、移植过程 1.环境搭建 1)建立交叉编译环境 2)去这2个网站随便下载都可以下载得到最 新或者你想要的u-boot。( https://www.360docs.net/doc/dd7751502.html,/batch.viewl ink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ )

AM335x uboot spl分析

AM335x uboot spl分析 芯片到uboot启动流程 ROM → SPL→ uboot.img 简介 在335x 中ROM code是第一级的bootlader。mpu上电后将会自动执行这里的代码,完成部分初始化和引导第二级的bootlader,第二级的bootlader引导第三级bootader,在 ti官方上对于第二级和第三级的bootlader由uboot提供。 SPL To unify all existing implementations for a secondary program loader (SPL) and to allow simply adding of new implementations this generic SPL framework has been created. With this framework almost all source files for a board can be reused. No code duplication or symlinking is necessary anymore. 1> Basic ARM initialization 2> UART console initialization 3> Clocks and DPLL locking (minimal) 4> SDRAM initialization 5> Mux (minimal) 6> BootDevice initialization(based on where we are booting from.MMC1/MMC2/Nand/Onenand) 7> Bootloading real u-boot from the BootDevice and passing control to it. uboot spl源代码分析 一、makefile分析 打开spl文件夹只有一个makefile 可见spl都是复用uboot原先的代码。 主要涉及的代码文件为u-boot-2011.09-psp04.06.00.03/arch/arm/cpu/armv7 u-boot-2011.09-psp04.06.00.03/arch/arm/lib u-boot-2011.09-psp04.06.00.03/drivers LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot-spl.lds 这个为链接脚本 __image_copy_end _end 三、代码解析 __start 为程序开始(arch/arm/cpu/armv7/start.S) .globl _start 这是在定义u-boot的启动定义入口点,汇编程序的缺省入口是 start 标号,用户也可以在连接脚本文件中用ENTRY标志指明其它入口点。

UBoot源码分析1

?UBoot源码解析(一)

主要内容 ?分析UBoot是如何引导Linux内核 ?UBoot源码的一阶段解析

BootLoader概念?Boot Loader 就是在操作系统内核运行之前运行 的一段小程序。通过这段小程序,我们可以初始 化硬件设备、建立内存空间的映射图,从而将系 统的软硬件环境带到一个合适的状态,以便为最 终调用操作系统内核准备好正确的环境 ?通常,Boot Loader 是严重地依赖于硬件而实现 的,特别是在嵌入式世界。因此,在嵌入式世界 里建立一个通用的Boot Loader 几乎是不可能的。 尽管如此,我们仍然可以对Boot Loader 归纳出 一些通用的概念来,以指导用户特定的Boot Loader 设计与实现。

UBoot来源?U-Boot 是 Das U-Boot 的简称,其含义是 Universal Boot Loader,是遵循 GPL 条款的开放源码项目。最早德国 DENX 软件工程中心的 Wolfgang Denk 基于 8xxROM 和 FADSROM 的源码创建了 PPCBoot 工程项目,此后不断 添加处理器的支持。而后,Sysgo Gmbh 把 PPCBoot 移 植到 ARM 平台上,创建了 ARMBoot 工程项目。最终, 以 PPCBoot 工程和 ARMBoot 工程为基础,创建了 U- Boot 工程。 ?而今,U-Boot 作为一个主流、通用的 BootLoader,成功地被移植到包括 PowerPC、ARM、X86 、MIPS、NIOS、XScale 等主流体系结构上的百种开发板,成为功能最多、 灵活性最强,并且开发最积极的开源 BootLoader。目前。 U-Boot 仍然由 DENX 的 Wolfgang Denk 维护

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本)

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本) ?开发平台:i.MX 6UL ?最新系统: u-boot2015.04 + Linux4.1.15_1.2.0 ?交叉编译工具:dchip-linaro-toolchain.tar.bz2 源码下载地址: U-Boot: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.360docs.net/doc/dd7751502.html,/git/cgit.cgi/imx/uboot-imx.git/ Kernel: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.360docs.net/doc/dd7751502.html,/git/cgit.cgi/imx/linux-2.6-imx.git/ 源码移植过程: 1、将linux内核及uBoot源码拷贝到Ubuntu12.04系统中的dchip_imx6ul目录下; 2、使用tar命令分别将uboot和kernel解压到dchip_imx6ul目录下; 3、解压后进入uboot目录下,新建文件make_dchip_imx6ul_uboot201504.sh,且文件内容如下: ################################################################### # Build U-Boot.2015.04 For D518--i.MX6UL By FRESXC # ################################################################### #!/bin/bash export ARCH=arm export CROSS_COMPILE=/dchip-linaro-toolchain/bin/arm-none-linux-gnueabi - make mrproper # means CLEAN make mx6ul_14x14_evk_defconfig make2>&1|tee built_dchip_imx6ul_uboot201504.out 4进入kernel目录下,新建文件make_dchip_imx6ul_linux4115120.sh,且文件内容如下: ###################################################################

uboot版本文件结构

uboot版本文件结构的更新改变 分类:ARM2011-09-22 12:57 339人阅读评论(0) 收藏举报本来是开始分析uboot代码的,但是无论是教材还是网上资料都对于我最新下的uboot原码结构不同,对于还是小白的我不容易找到相应的文件,下面是uboot版本中文件组织结构的改变,,,,, u-boot版本情况 网站:http://ftp.denx.de/pub/u-boot/ 1、版本号变化: 2008年8月及以前 按版本号命名:u-boot-1.3.4.tar.bz2(2008年8月更新) 2008年8月以后均按日期命名。 目前最新版本:u-boot-2011.06.tar.bz2(2011年6月更新) 2、目录结构变化: u-boot目录结构主要经历过2次变化,u-boot版本第一次从u-boot-1.3.2开始发生变化,主要增加了api的内容;变化最大的是第二次,从2010.6版本开始。 u-boot-2010.03及以前版本 ├── api存放uboot提供的接口函数 ├── board根据不同开发板定制的代码,代码也不少 ├── common通用的代码,涵盖各个方面,已命令行处理为主 ├── cpu与体系结构相关的代码,uboot的重头戏 ├── disk磁盘分区相关代码 ├── doc文档,一堆README开头的文件 ├── drivers驱动,很丰富,每种类型的设备驱动占用一个子目录 ├── examples示例程序 ├── fs文件系统,支持嵌入式开发板常见的文件系统 ├── include头文件,已通用的头文件为主 ├── lib_【arch】与体系结构相关的通用库文件 ├── nand_spl NAND存储器相关代码 ├── net网络相关代码,小型的协议栈 ├── onenand_ipl

iTop4412的uboot第一阶段

2 uboo t 源码分析 2.5.1.star t.S 2.5.1.star t.S 引入引入 2.5.1.1、u-boot.lds中找到start.S入口 (1)在C语言中整个项目的入口就是 main函数(这是 个.c文件的项目,第一个要分析的文件就是包含了C语言规定的),所以譬如说一 个有 main函数的那个文件。 10000 ( 2 方。ENTRY(_start)因此 _start 符号所在的文件就是整个程序的起始文 件, _sta rt 所在处的 代码就是整个程序的起始代码。 2.5.1.2、SourceInsight中如何找到 文件 (1)当前状况:我们知道在uboot中的1000多个文件中有一个符号 叫 _start,但是我们不知道 这个符号在哪个文件中。这种情况下要查找一个符号在所有项目中文件中的引用,要使用SourceInsight的搜索功能。 (2)start.s 在cpu/arm_cortexa9/start.s (3)然后进入start.S文件中,发现 个uboot的入口代码,就是第57 57行中就 是行。_sta rt 标号的定义处,于是乎我们就找到了整 2.5.1.3、SI中找文件技巧 (1)以上,找到了start.S文件,下面我们就从start.S文件开始分析uboot第一阶段。 (2)在SI中,如果我们知道我们要找的文件的名字,但是我们又不知道他在哪个目录下,我 们要怎样找到并打开这个文件?方法是在 SI中先打开右边的工程项目管理栏目,然后点击 最左边那个(这个是以文件为单位来浏览的),然后在上面输入栏中输入要找的文件的名 字。我们在输入的时候,SI在不断帮我们进行匹配,即使你不记得文件的全名只是大概记 得名字,也能帮助你找到你要找的文件。 2.5.2.start.S解析1 2.5.2.1、不简单的头文件包含

uboot环境变量总结

Common目录下面与环境变量有关的文件有以下几个:env_common.c,env_dataflash.c,env_eeprom.c,env_flash.c,env_nand.c,env_nowhere.c,env_nvram.c,environment.c。 env_common.c中包含的是default_environment[]的定义; env_dataflash.c,env_eeprom.c,env_flash.c,env_nand.c, env_nvram.c 中包含的是相应存储器与环境变量有关的函数:env_init(void),saveenv(void),env_relocate_spec (void),env_relocate_spec (void),use_default()。至于env_nowhere.c,因为我们没有定义CFG_ENV_IS_NOWHERE,所以这个文件实际上没有用。 environment.c这个文件时是我真正理解环境变量的一个关键。在这个文件里定义了一个完整的环境变量的结构体,即包含了这两个ENV_CRC(用于CRC校验),Flags(标志有没有环境变量的备份,根据CFG_REDUNDAND_ENVIRONMENT这个宏定义判断)。定义这个环境变量结构体的时候还有一个非常重要的关键字: __PPCENV__,而__PPCENV__在该.c文件中好像说是gnu c编译器的属性,如下: # define __PPCENV__ __attribute__ ((section(".text"))) 意思是把这个环境变量表作为代码段,所以在编译完UBOOT后,UBOOT的代码段就会有环境变量表。当然,这要在我们定义了ENV_IS_EMBEDDED之后才行,具体而言,环境变量表会在以下几个地方出现(以nand flash为例): 1、UBOOT中的代码段(定义了ENV_IS_EMBEDDED), 2、UBOOT中的默认环 境变量, 3、紧接UBOOT(0x0 ~ 0x1ffff)后面:0x20000 ~ 0x3ffff 之间,包括备份的环境变量,我们读取,保存也是对这个区域(即参数区)进行的。3、SDRAM中的UBOOT中,包括代码段部分和默认部分,4、SDRAM中的melloc分配的内存空间中。 Environment.c代码如下: env_t environment __PPCENV__ = { ENV_CRC, /* CRC Sum */ #ifdef CFG_REDUNDAND_ENVIRONMENT 1, /* Flags: valid */ #endif { #if defined(CONFIG_BOOTARGS) "bootargs=" CONFIG_BOOTARGS "\0" #endif #if defined(CONFIG_BOOTCOMMAND) "bootcmd=" CONFIG_BOOTCOMMAND "\0" #endif #if defined(CONFIG_RAMBOOTCOMMAND) "ramboot=" CONFIG_RAMBOOTCOMMAND "\0"

嵌入式Linux之我行 史上最牛最详细的uboot移植,不看别后悔

嵌入式Linux之我行——u-boot-2009.08在2440上的移植详解(一) 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux中的每个步骤。一为总结经验,二希望能给想入门嵌入式Linux 的朋友提供方便。如有错误之处,谢请指正。 ?共享资源,欢迎转载:https://www.360docs.net/doc/dd7751502.html, 一、移植环境 ?主机:VMWare--Fedora 9 ?开发板:Mini2440--64MB Nand,Kernel:2.6.30.4 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.08.tar.bz2 二、移植步骤 本次移植的功能特点包括: ?支持Nand Flash读写 ?支持从Nor/Nand Flash启动 ?支持CS8900或者DM9000网卡 ?支持Yaffs文件系统 ?支持USB下载(还未实现) 1.了解u-boot主要的目录结构和启动流程,如下图。

u-boot的stage1代码通常放在cpu/xxxx/start.S文件中,他用汇编语言写成;u-boot的stage2代码通常放在lib_xxxx/board.c文件中,他用C语言写成。各个部分的流程图如下:

2. 建立自己的开发板项目并测试编译。 目前u-boot对很多CPU直接支持,可以查看board目录的一些子目录,如:board/samsung/目录下就是对三星一些ARM 处理器的支持,有smdk2400、smdk2410和smdk6400,但没有2440,所以我们就在这里建立自己的开发板项目。 1)因2440和2410的资源差不多,主频和外设有点差别,所以我们就在board/samsung/下建立自己开发板的项目,取名叫my2440 2)因2440和2410的资源差不多,所以就以2410项目的代码作为模板,以后再修改

U_Boot第一启动阶段Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解)

Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) 1 u-boot.lds 首先了解uboot的链接脚本board/my2410/u-boot.lds,它定义了目标程序各部分的链接顺序。OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") /*指定输出可执行文件为ELF格式,32为,ARM小端*/ OUTPUT_ARCH(arm) /*指定输出可执行文件为ARM平台*/ ENTRY(_start) /*起始代码段为_start*/ SECTIONS { /* 指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置*、. = 0x00000000;从0x0位置开始 . = ALIGN(4); 4字节对齐 .text : {

cpu/arm920t/start.o (.text) board/my2440/lowlevel_init.o (.text) *(.text) } . = ALIGN(4); .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) } . = ALIGN(4); .data : { *(.data) } /* 只读数据段,所有的只读数据段都放在这个位置*/ . = ALIGN(4); .got : { *(.got) } /*指定got段, got段式是uboot自定义的一个段, 非标准段*/ . = .; __u_boot_cmd_start = .; /*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/ .u_boot_cmd : { *(.u_boot_cmd) } /* u_boot_cmd段,所有的u-boot命令相关的定义都放在这个位置,因为每个命令定义等长,所以只要以__u_boot_cmd_start为起始地址进行查找就可以很快查找到某一个命令的定义,并依据定义的命令指针调用相应的函数进行处理用户的任务*/ __u_boot_cmd_end = .; /* u_boot_cmd段结束位置,由此可以看出,这段空间的长度并没有严格限制,用户可以添加一些u-boot的命令,最终都会在连接是存放在这个位置。*/

关于uboot移植 CAMDIVN与时钟

关于uboot移植 CAMDIVN与时钟 2010-03-09 19:57 在该文件的122行附近有这样一个结构体 typedef struct { S3C24X0_REG32 LOCKTIME; S3C24X0_REG32 MPLLCON; S3C24X0_REG32 UPLLCON; S3C24X0_REG32 CLKCON; S3C24X0_REG32 CLKSLOW; S3C24X0_REG32 CLKDIVN; } /*__attribute__((__packed__))*/ S3C24X0_CLOCK_POWER; 是用来封装时钟寄存器的,我们要在其中增加一项S3C24X0_REG32 CAMDIVN,为什么加这么一个呢?因为这个寄存器是2410所没有的,而2440在配置时钟的时候又必须用到,看名字我们就知道是用来配置CAMERA时钟的,也就是配置摄像头的时钟的。 貌似和配置uboot启动的时钟没有关系?其实不然,我们在修改下一个文件的时候就可以看到其用途了, 此结构体修改后的结果为 typedef struct { S3C24X0_REG32 LOCKTIME; S3C24X0_REG32 MPLLCON; S3C24X0_REG32 UPLLCON; S3C24X0_REG32 CLKCON; S3C24X0_REG32 CLKSLOW; S3C24X0_REG32 CLKDIVN; S3C24X0_REG32 CAMDIVN; } /*__attribute__((__packed__))*/ S3C24X0_CLOCK_POWER; 第二个文件..\cpu\arm920t\s3c24x0\speed.c 在这个文件中需要修改两个函数 第一个函数在54行附近:static ulong get_PLLCLK(int pllreg) 由于S3C2410和S3C2440的MPLL、UPLL计算公式不一样,所以get_PLLCLK 函数也需要修改:

经典=Uboot-2-命令详解(bootm)

bootm命令中地址参数,内核加载地址以及内核入口地址 分类:u-boot2010-11-04 10:472962人阅读评论(0)收藏举报downloadlinuxbytecmdheaderimage bootm命令只能用来引导经过mkimage构建了镜像头的内核镜像文件以及根文件镜像,对于没有用mkimage对内核进行处理的话,那直接把内核下载到连接脚本中指定的加载地址0x30008000再运行就行,内核会自解压运行(不过内核运行需要一个tag来传递参数,而这个tag是由bootloader提供的,在u-boot下默认是由bootm命令建立的)。 通过mkimage可以给内核镜像或根文件系统镜像加入一个用来记录镜像的各种信息的头。同样通过mkimage也可以将内核镜像进行一次压缩(指定-C none/gzip/bzip2),所以这里也就引申出了两个阶段的解压缩过程:第一个阶段是u-boot里面的解压缩,也就是将由mkimage压缩的镜像解压缩得到原始的没加镜像头的内核镜像。第二个阶段是内核镜像的自解压,u-boot 里面的解压实际上是bootm 实现的,把mkimage -C bzip2或者gzip 生成的uImage进行解压;而kernel的自解压是对zImage进行解压,发生在bootm解压之后。 下面通过cmd_bootm.c文件中对bootm命令进行解析以及执行的过程来分析,这三种不同地址的区别: ulong load_addr = CFG_LOAD_ADDR; /* Default Load Address */ int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { ...... if (argc < 2) { addr = load_addr;//当bootm命令后面不带地址参数时,将默认的加载地址赋值给addr } else { addr = simple_strtoul(argv[1], NULL, 16); //如果bootm命令后面带了加载地址,则将该地址赋值给addr,所以最终有用的地址还是bootm命令后附带的地址 } ...... //

uboot调试指南

Uboot调试参考指南 一、调试目的 Uboot的调试旨在通过观察uboot运行时状态来测试硬件问题。 二、调试步骤 1.修改代码 在uboot代码路径下,编辑uboot代码,需要做以下修改; a.修改config.mk文件,添加以下两行内容: AFLAGS += -Wa,-gdwarf2 CFLAGS += -g2 -gdwarf-2 b.修改. /arch/powerpc/lib/board.c文件 debug("Now running in RAM - U-Boot at: %08lx\n", dest_addr); printf("Now running in RAM - U-Boot at: %08lx\n", dest_addr); 将debug改为printf,如上所示。 2.编译uboot 执行make BSC9131RDB_SYSCLK100_NAND,编译uboot 3.将编译好的u-boot-nand.bin(uboot image格式)及u-boot(elf格式文件)文件拷 贝出来 4.烧录uboot 将步骤3中保存的u-boot-nand.bin烧录到目标板中,烧录过程略。 5.建立工程 a.在cw界面,点击file->import, 选择code warrior -> Power architecture ELF executable,如图1所示: 图1 建立elf工程 b.选择步骤3中保存的u-boot(elf格式文件),toolchain选择bareboard application, target OS选择none,工程名字请根据需要设置,比如我的机器上设置为example, 点击next,如图2所示:

uboot_freescale_imx51_start.s_详解

/* * *Purpose: the document is used to learn detailed information aboutimx51 cpu start.S, *referring to some documents on websites. *file address: U-boot-2009.08/Cpu/Arm_cortexa8/start.S * * writer: xfhai 2011.7.22 * *Instruction: *1.@xxxx : indicates annotation *2./***** *** *****/ : stand for code in my files *3.instructions refers to code not included in my file * */ Section 1: uboot overview 大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。 1、Stage1 start.S代码结构 u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:==> (1)定义入口。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。 ==>(2)设置异常向量(Exception Vector)。 ==>(3)设置CPU的速度、时钟频率及终端控制寄存器。 ==>(4)初始化内存控制器。 ==>(5)将ROM中的程序复制到RAM中。 ==>(6)初始化堆栈。 ==>(7)转到RAM中执行,该工作可使用指令ldr pc来完成。 2、Stage2 C语言代码部分 lib_arm/board.c中的start arm boot是C语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作: ==>(1)调用一系列的初始化函数。 ==>(2)初始化Flash设备。 ==>(3)初始化系统内存分配函数。 ==>(4)如果目标系统拥有NAND设备,则初始化NAND设备。 ==>(5)如果目标系统有显示设备,则初始化该类设备。 ==>(6)初始化相关网络设备,填写IP、MAC地址等。 ==>(7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。

Ubuntu下配置并使用LXR查看Uboot代码(原创)

Ubuntu下配置并使用LXR查看Uboot代码(原创) 之前买了个mini6410觉得查看uboot的源代码太麻烦,上网查到,利用lxr查看源代码比较方便,使用到的有:apache2,glimpse-4.18.6,lxr,u-boot-mini6410(查看的目标文件夹),我使用的Ubuntu9.10,在ylmf3下面也验证成功。 下面就正式开始搭建我们自己的lxr. 建议下面的所有的操作都使用root权限操作: sudo su 输入当前用户的使用密码即可就变成“root@XXXXXXX:” 一、安装apach2: sudo apt-get install apache2 二、安装glimpse: 先去网站下载最新的源代码glimpse-4.18.6.tar.gz,然后解压到当前目录下 tar -xvgf glimpse-4.18.6.tar.gz 再接着进入解压后的目录下,比如我的是: cd glimpse-4.18.6/ 在编译之前,首先看看你的机器上是否已经安装了flex,因为编译glimpse的时候需要这个软件。如果没有的话,那么进行安装: sudo apt-get install flex 接着进行编译: ./configure make sudo make install 执行完上面的步骤后,将生成的glimpse glimpseindex 拷贝到/bin目录下: cd /bin sudo cp glimpse glimpseindex /bin 三、安装lxr sudo apt-get install lxr 新建/usr/share/lxr/http/.htaccess文件 在里面增加如下内容: SetHandler cgi-script 四、复制U-boot源代码

uboot启动代码详解

·1 引言 在专用的嵌入式板子运行GNU/Linux 系统已经变得越来越流行。一个嵌入式Linux 系统从软件的角度看通常可以分为四个层次: 1. 引导加载程序。固化在固件(firmware)中的boot 代码,也就是Boot Loader,它的启动通常分为两个阶段。 2. Linux 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 3. 文件系统。包括根文件系统和建立于Flash 内存设备之上文件系统,root fs。 4. 用户应用程序。特定于用户的应用程序。有时在用户应用程序和内核层之间可能还会包括一个嵌入式图形用户界面。常用的嵌入式GUI 有:MicroWindows 和MiniGUI 等。 引导加载程序是系统加电后运行的第一段软件代码。回忆一下PC 的体系结构我们可以知道,PC 机中的引导加载程序由BIOS(其本质就是一段固件程序)和位于硬盘MBR 中的OS Boot Loader(比如,LILO 和GRUB 等)一起组成。BIOS 在完成硬件检测和资源分配后,将硬盘MBR 中的Boot Loader 读到系统的RAM 中,然后将控制权交给OS Boot Loader。Boot Loader 的主要运行任务就是将内核映象从硬盘上读到RAM 中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像BIOS 那样的固件程序(注,有的嵌入式CPU 也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由Boot Loader 来完成。比如在一个基于ARM7TDMI core 的嵌入式系统中,系统在上电或复位时通常都从地址 0x00000000 处开始执行,而在这个地址处安排的通常就是系统的Boot Loader 程序。·2 bootloader简介 简单地说,Boot Loader (引导加载程序)就是在操作系统内核运行之前运行的一段小程序,它的作用就是加载操作系统, 实现硬件的初始化,建立内存空间的映射图,为操作系统内核准备好硬件环境并引导内核的启动。如上图所示的那样在设备的启动过程中bootloader位于最底层,首先被运行来引导操作系统运行,很容易可以看出bootloader是底层程序所以它的实现严重地依赖于硬件,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的BootLoader几乎是不可能的。尽管如此,一些功能强大、支持硬件环境较多的BootLoader也被广大的使用者和爱好者所支持,从而形成了一些被广泛认可的、较为通用的的bootloader实现。 2.1 Boot Loader 所支持的CPU 和嵌入式板 每种不同的CPU 体系结构都有不同的Boot Loader。有些Boot Loader 也支持多种体系结构的CPU,比如U-Boot 就同时支持ARM 体系结构和MIPS 体系结构。除了依赖于CPU 的体系结构外,Boot Loader 实际上也依赖于具体的嵌入式板级设备的配置。这也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种CPU 而构建的,要想让运行在一块板子上的Boot Loader 程序也能运行在另一块板子上,通常也都需要修改Boot Loader 的源程序。 2.2 Boot Loader 的安装媒介(Installation Medium)

相关文档
最新文档