录音技术基础知识

录音技术基础知识
录音技术基础知识

录音技术基础知识

基本录音/多轨录音

无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。

做此工作,录音工程师采用两个步骤:

1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。

2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播

放系统如CD播放机或磁带卡座等进行再制作。

录音基础/多轨录音

多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。

换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。

按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。

关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。

录音基础/多轨缩混

缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。

按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。

在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如:

-调节乐器的频率内容,一般称为EQ。

-给乐器增加效果,如混响,回声或合唱。

-调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。

如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。

一般连接端子

输入端子

在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注

意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可以找到),XLR(一般用于话筒)和1/4inch(一般用于乐器)。

主输出

这些输入一般连接到录音棚的监听上(或者是它们的功放上,如果监听不带放大系统的话),或者是接到卡带或者是DAT机的输入上。

监听输出

监听输出和主输出一般的功能类似,但是有些时候是作为从调音台发送不同混音输出的作用。通常的情况是,主输出连接到盒式卡座或数码录音机,用于录制混音;监听音箱直接与功放音箱或者是音频监听音箱连接。

数字输出

数字输出都专用于将信号传送到另一个数字设备。一般用于将你所使用的主设备混音信号以数字形式送入另一台数字设备。

辅助发送

辅助发送一般用于发送来自调音台的数据,通过效果处理器来进行处理。您还可以使用辅助发送将混音的信号送到其它设备,同使用主输出或监听音箱输出,或作为各自音轨输出将自己的音轨内容传送到其它录音机。

辅助返回

辅助返回可以将效果处理器的信号返送回来。但是也可以用于只输出立体声源如CD播放机的信号送入您的调音台。

耳机输出

将一副耳机接至调音台。

平衡与不平衡接口

涉及到前文讨论的各种接口时,有两个问题需要考虑:阻抗和平衡。这些概念对理解如何发挥设备效用时具有非常重要的作用。

阻抗

阻抗也叫电阻,即电子器件本身对交流电源的阻力。换句话说,所有电子线路对电的自然流动都有一种固有的阻力,就好象跑步时感受到风的阻力一样。低阻抗音频信号比高阻抗信号跟强,因为它所受到阻力小。

在实际应用中各种器材的阻抗都应该相符。如果连接一个输出时,是从高阻抗输入到低阻抗输入,就有可能出现问题。因为传送的电流过大。举个例子,一个低阻抗话筒应该输入到低阻抗调音台的输入端子。如果需要连接两个不同阻抗的设备,应该使用匹配的变压器,改变其中的一个设备的阻抗,使两者相符。

阻抗类型

高阻抗:阻抗率为1,000欧姆以上的电路

低阻抗:阻抗率为600欧姆以下的电路

平衡与不平衡

概括的说,音频设备的输入端和输出端或是平衡,或是不平衡。平衡电缆用辅助线作屏蔽阻止由于线长所造成电阻中的噪音。一般的大二芯电缆和莲花型电缆是不平衡型的;卡侬或立体声大三芯电缆是平衡型(有三个连接脚,不是两个)。

每件器材都有平衡或不平衡输入输出口。如果您将平衡输出连接到平衡输入端,应该用平衡电缆。

-不平衡输入输出连接到不平衡输入输出,可以使用不平衡电缆;如果使用平衡电缆不会造成什么损害,只是不能使用辅加线,也不会有任何收益。

-不平衡输入/输出连接至平衡输入输出,同上

-平衡输入/输出连接至平衡输入输出,应使用平衡电缆,如果使用不平衡电缆的话,则容易引起连线噪音,特别是长度在3-5米或长的电缆中更容易产生噪音。

需要注意的是,平衡与不平衡插头不完全与阻抗有关。如卡侬电缆几乎都是低阻抗的,而1/4inch电缆可以是平衡也可以是不平衡,可以是低阻抗也可以是高阻抗。

而且,如果您用一根很长的电缆(3-5米以上)将平衡输出端连接到不平衡输入端。那么整个电缆使用平衡电缆,并在连接不平衡输入之前使用接线盒或匹配的变压器,都是好办法。这样可以利用平衡电缆的很强的防止噪音的特点。

平衡线路

音频线路有三种线:高、低以及一个接地屏蔽。高频线路和低频线路接到地面时的电压相同。这种设计有助于防止较长电缆中的噪音干扰。

不平衡线路

音频线路有两种线:高和低。高频线传载信号,低频线接地。地面导体对其它导体起着屏蔽作用。由于高频线路和低频线路到地面的电压不同,所以叫作不平衡。

话筒

将信号送到调音台在将其录入多轨录音机,总体来说方法有两种。第一种方法很简单:直接线路输入。直接线路输入与接线有关。从电子乐器输出端子到调音台输入端,通常用普通吉他型号1/4’’电缆。这是输入键盘、鼓机、音源、吉他或贝司音箱(从音箱后面直接输出或线路输出)的信号的常用方法。如果您的调音台没有1/4’’线路输入口,您可以使用接线盒将这些线路输出转接到调音台的话筒输入口。

信号送入调音台的第二种方法是将话筒直接与调音台的话筒输入端连接。话筒的主要用途是录入人声、所有传统乐器声音,如传统钢琴或吉他,也常录入吉他音箱和贝司音箱的声音。录入不同乐器应使用什么类型的话筒,也许是录音工程师面临的最严峻的难点。不同的话筒发声有所不同。怎么样匹配,怎样放置,放置的角度以及离乐器的距离,这些都是很重要的因素。关于话筒技术问题,如果向十个工程师咨询,会得到十个不同的回答。虽然教授话筒技术不是在本文的技术范围,但是搞清楚话筒之间的基本区别还是很有必要的。使您在实践之前了解一些知识,录音师们就是通过这种方法来学习话筒技术的。

话筒类型

话筒就象扬声器一样,就是传送器。传送器是将一种能量转换成另一种能量的装置。话筒能将声波能量转换为电磁能。转换的方式取决于话筒的类型。

最常见的话筒的类型是动态(也有叫动圈)话筒。动圈话筒是用线圈缠绕在磁铁上,当声音冲击附在磁铁上的薄膜时,线圈振动,结果导致类似于音频波形的电压波形进入话筒。这样,你所使用的录音机就能录制这些电压。

动圈话筒一般都很结实,相对比较便宜,而且能够处理高电平声音。

因此,这种话筒在录音室中作为“大功率话筒”起着非常重要的作用。适用于鼓演奏、背景人声、吉他和贝司音箱等几乎所有场合。然而,动圈话筒往往不带频率响应,而在主音人声、吊镲或高架鼓等重要环节都需要频率响应。而这时电容话筒就出现了。

带振话筒是一种少见的话筒。它使用带状物而不是线圈悬挂在磁场中。带式话筒比动圈话筒的高端频率响应要强,但在使用方面和声压电平方面易受损坏。因此常用在有较高频率但声音不很响的乐器,如管弦乐等。

电容话筒只使用两个板,其中一块由于声音冲击而发生振动,两个板之间产生磁场。电容话筒的特点是具有很宽的频率响应,能传送很逼真的穿透力很强的声音。但是,电容话筒需要单独的电源,而且价格也不菲。因此多数小型录音棚只购买一两只这种话筒,在关键时刻使用,如主音人声、房间扩音等。

极性方向图

各种话筒都有不同的极性方向图,也叫传感方向图。它限定了话筒可以接收到声音的区域范围。只有搞清楚您的的话筒的极性方向,才能懂得怎样有效的放置话筒。例如您的话筒只传感正前方的声音,您就要将话筒直接放在乐器的前面。

多数话筒都有一个心型传感方向图。即话筒直接传感前方的声音,两侧扩展范围较小。

超心型话筒可接收前方较远范围的声音,但两侧的声音接收的很少。

特心型话筒可接收前方更大范围的声音,但两侧的声音接收不到。

这些话筒,也叫定向性话筒。最适于防止泄露声。泄露即除用话筒拾取的声音之外,不需要拾取的乐器声音。例如,将定向性话筒放在您的小鼓上以避免拾取高帽衩的声音。

其它话筒,叫非定向性话筒。这类话筒拾取各方向的声音,最适于拾取房间的环境效果。如鼓上方话筒拾取,录制整个弦乐声部或合唱。

另一种花筒叫作双向性话筒。这种话筒拾取两测的声音。而不是前方或者后方的声音。典型的用途是放在两个乐器之间,以供两种声音录在一起,又保留了两者的独立性。

话筒前置放大和幻象电源

前置放大器是许多调音台的输入部分所带的一种放大器类型,也是一种独立性处置器材。前

置放大的作用是将话筒电平信号增益到线性电平信号。大多数调音台使用这种信号。前置放大有助于控制信号电平,还能对可能引起信号路径噪音的外界干扰起一定的隔离作用。前置放大器通常有一个输出口或前置放大微调钮,用于调整输出电平。如果前置放大器输出过高,可以加入失真、噪音,还可以为声音润色。当录音链中的所有设备都设置为最恰当的电平,而信号电平仍然过低时,应该使用前置放大器。

而且,多数电容话筒都内置前置放大器,需要电源进行正常运作。这种电源叫作幻象电源。通常由内部电池或调音台供电。调音台通过音频线传送电压(通常为+48伏直流)进行供电。在多数话筒前置放大器中和调音台输入部分都有个ON/OFF开关,用于确定是否传送幻象电源,并供给电容话筒所需要的电压,以提供足够强的信号。

基本话筒技术

对于话筒技术,关键要明白做任何事情在方法上没有明确的正确和错误之分。扩音技术,如话筒部分,带有很强的主观性,而个人技术也是长期积累的过程。而且,扩音技术随音乐风格的不同以及发展和变化的趋向而变化。因此,本文只介绍一些基本知识和建议,可以作为个人实践的一些提示。

话筒技术大致可以分为四类:近距离拾音,远距离拾音、重点拾音以及环境拾音。

近距离拾音

近距离拾音是录音室中最常用的拾音类型。近距离拾音是将话筒放置在离声音源很近的地方,一般在2.5-60厘米远。近拾音可以使要录制的声音源相对避免外界噪音(泄露),如其它乐器声等。近拾音还能提供紧贴的“面前”的声音。在多乐器乐曲中最常用。

一般来说,近拾音使用定向话筒,如心型、超心型或特心型,将话筒略微带点儿角度地放在发声点附近。例如,吉他音箱的近拾音,是将话筒放在距音箱架约2.5厘米远的位置,使话筒在喇叭边缘与中心之间,稍想中心倾斜。小号拾音就是将话筒放在距喇叭7.6厘米的地方,这是典型的近拾音。

但是,每次要一边在声音源周围移动话筒,一边试听。以检测话筒位放置位置。

远距离拾音

远距离拾音是将一个或多个话筒放在距离声音源60-90厘米的位置。远距离拾音常用在一次录制多种乐器的时候,如一个弦乐部分或合唱团的合唱等。远距离拾音可以使这几个组作为一个整体录音,不需要单个话筒就能达到全面自然音色的平衡。远距离录音还可以录入房间(环境)的声音,最好在音响效果好的房间如录音室或教堂。

需要通过实际操作找到最佳的话筒位置。一般来说,用一个话筒时,就要将其放在中间。如放在一组歌手的前边约1.5米的位置。用两个话筒时,将话筒放在距离中央相等的位置,相隔约1.2米,然而,在远距离拾音时,要一边放置一边试听效果,从而找到最佳点。这样做尤为重要。

重点拾音

重点拾音与远距离拾音结合使用。对于一组乐器的特殊部分进行附加拾音。例如,您可能要

在管弦乐中的独奏者前面放置一个话筒。然而,您一定要将话筒放在能拾取独奏声音的足够近的地方,又不能过近。当独奏演员停止演奏时,不会影响乐队的声音平衡,通常,重点拾音的话筒放置稍远一些。当然,还是要通过实际操作最后确定放置距离。

重点拾音也可以在单个乐器拾音中使用。例如,将一个话筒放在音孔的底部,另一个话筒放在音品板上,您可能得到最佳的传统吉他的声音效果。也可以考虑在拨弦处前面直接放置第三个话筒,用以混入一点点拨弦噪声,增加录音的真实效果,尤其在只录音一种吉他乐器的时候效果更好。

环境拾音

环境拾音的主要功能是保存自然混响和特殊录音环境的室内音响。除此之外,它与远距离拾音类似。在现场录音中用环境拾音尤为重要。因为这几个话筒拾取的环境效果可使您的听众体验现场表演的感觉。

环境拾音通常是放置一对话筒。用心型或非定向型,将话筒放置在舞台前方的两侧,靠近音板的位置。

总线

信号怎样输入调音台或录音设备?又怎样通过调音台到达最终目的地。初学者对这个概念往往搞不清楚。信号流动的重要环节是总线的概念。简言之,总线就是信号流动的路径;从音轨到音轨,从音轨或输入端到效果处理器等。

当“总线|信号从一个地方传送到另一个地方时,信号正穿过一种布线矩阵。布线矩阵是加法放大器的又一种叫法;一种在保持各自音量电平和声象位置的同时组合多种信号的放大器。对于录音总线最恰当的比喻,就好比自来水的控制。水通常从一个位置进入目标地,通过几个管子进入房间的不同位置,开关水龙头,就能控制水流的路径。

调音台普遍都有“立体声总线”,用来将信号引导到一处或两处位置。例如,录音总线通常成对设置,如:1轨和2轨(或A和B),3轨和4轨(或C和D)等。送到立体声总线每一边的信号量由声象位置控制。如果您将信号设置在录音总线的1轨和2轨,并将声象信号都设在左边,那么所有信号将录入1轨,而2轨中未录入任何信号。如果将声象设在右侧,将得到相反效果。如果将声象位置设在,信号将均等地录在1轨和2轨中。可以将立体声总线想象为一条两车道的公路。声象好比方向盘,能控制走哪个车道。请看下图:

推子前和推子后

推子前和推子后的概念是由推子控制得来的。顾名思义,推子前是指到达推子前前的音频信

号;推子后是指到达推子后的音频信号。

当音频不受推子控制的时候,常用推子前。不必用推子改变电平就可以听到音频信号的原电平。这种设置对录音总监听输入电平十分重要。当传送独立耳机混音而不改变调音台设置时,最好使用推子前设置。在这里使用推子前可以调高耳机中各种乐器的音量,而不影响主调音。还能用推子前降低主音人声的推子电平,同时保留了主音人声的混响。请看下图:

推子后设置因提供推子控制而被广泛使用。推子后可以使您监听输出电平并控制每轨各自的电平。在使用推子后效果时,能控制更多的效果。可以全面控制返回特定轨的效果数和原始音频信号的电平。

获得正确输入电平

优质的录音工作的关键,首先是正确的输入电平。电平过高或过低,会毁坏一个本来很优秀的演奏。如果输入的电平过低,在缩混中提高电平时,很可能会造成混音中夹杂不必要的噪音。另一方面,如果输入电平过高,常常导致音轨失真。

动态范围

当录音时,可能注意到由于演奏和音乐风格的不同,电平的变化很大。例如,在一首民谣中,鼓手在某一节中演奏小军鼓击边音,在合唱中又改为重击小军鼓。这种电平的变化叫做动态范围。动态范围与音量不同。音量是指在任意时间的振幅,动态范围是振幅的变化量。请看下图解释

模拟与数码

在设置电平时,模拟录音与数码录音之间区别很大。用模拟录音,可以录制0dB 以上的输入电平,而不会失真。有时录制0dB 以上的输入电平有助于使磁带得到较热或较温暖的信号。较高电平也能防止磁带录音机中容易出现的噪音(磁带咝咝声)。

在数字区域内,输入电平不能超过0dB 。而且绝对不能高。事实上,多数数码录音机在0dB 以上不会有任何显示。如果输入电平超过0dB ,录音中有可能出现失真。这种失真通常 “数字失真”。这对录音十分不利。要想在数码录音中得到最佳效果,录音输入电平应该在-12至-4dB 之间。这样不仅能使您获得均等的好的模拟录音电平,也会为录入轨的缩混留下一些自由空间。数码录音机不存在模拟录音机上常带的噪音床的问题。能够录制较低电平而不会加入噪音。如果没有把握,就以较低电平录音。但录入过低电平的音轨往往就固定不变了,要从录音中去除噪音是不可能的。

前置电平与后置电平

为保证能以适当的电平录音,重要一点就是弄懂调音台上的表的运行原理。在多数调音台的表上可以看到两个设置中的其中一个:前置电平和后置电平。

推子前电平的设置显示通过推子之前被送往调音台的信号电平。

这是信号电平输入调音台时最大电平标称“0dB ”电平噪音床 态范

最准确的显示。录音时,建议将推子改置在0dB,将表设为前置电平,并使用输入微调,设置最好的录音电平。

推子后电平设置显示通过推子以后的信号电平。这是为观察录音轨电平而最常做的设置。信号通过推子后,常常到达混音总线或主输出端。因此后置电平改置成为最适合于观察缩混的设置。

监听效果

效果处理是改变、加大或修改音频信号的过程。当音频信号加入效果时,被称为湿音。当一个音频信号未使用效果时,被称为干音。

那么,什么时候录制湿音,什么时候又该录制干音呢?录制湿音信号的长处是您不必再用效果器来制作需要的效果。该效果是录音内容的一部分,可以将效果处理器省出来用于另一个轨或制作其它效果。录制干音信号的长处是能保留以后改变效果的灵活性。如果没有确定使用哪种效果,就要使用此种办法。

另一个常用的录音技巧是将信号干音录在一个轨上。再将信号湿音录在另一轨上,这样,可以制作干音信号和带效果信号的混合提。这在混响和延时等效果中特别有用。而且,如果保留了干音轨,将来就可以按需要改变效果。如果有许多轨,或者如果你的录音机上有虚拟轨的话,可以使用此技巧。

效果编辑/插入与循环

在音频录音中有两种常用的效果路径:插入或循环(也有叫返回的)。当插入一效果时,即将效果置于源信号(通常为输入端或前面录制的轨)与信号目标(通常为混音或录音总线)之间。插入效果将改变源信号的物理特性。一般都是以插入形式使用效果,包括压缩、失真、嗡音消除器、话筒模拟器以及吉他放大模拟器等。请看下图;

当以插入形式编辑效果时,就是将效果处理器用在了您要传送的源信号中。这意味着当用此方法编辑效果时,不能将效果处理器用于其它输入端或轨上。

当在循环(或返回)中使用效果时,要将信号目标与效果处理器之间的源信号分开。这样,就有了独立的干音信号(原始源信号)和湿音信号(效果处理器的返回)。您可以控制干音信号和效果信号的混音。使用“loop”这个术语是因为源信号通常由调音台的输入部分传送到效果处理器,再送回输入部分,从而形成一个源信号的“loop”。常用于循环方式的效果有:混响、延时、合唱和镶边。

多数调音台为您提供两种选择:信号到达推子之前送至效果处理器(推子前)还是通过推子以后送至效果处理器(推子后)。用推子前,可以在不改变效果传送电平的情况下,控制音轨或输入电平。例如,制作一种声音环绕的幻觉,好象声音由悬崖坠下,可以使用推子前传送至混响效果。这样,就能用推子降低干音音量,而混响电平保持不变。在保持混响电平的同时,降低干音信号,所产生的效果犹如声音来自远处。另一方面,用推子后可以控制音轨或输入电平,以及从同一个推子送出的效果。在大部分效果应用中可能会用到推子后路径。请看下图所示:

压缩器

压缩器是一种效果处理器用于对经过压缩器的各种信号的动态范围进行压缩。主要用于使响亮的声音变柔和,使柔和声音变响亮。压缩器的主要任务是降低信号响亮部分的振幅。此过程就叫增益降低。随着响亮信号振幅的降低,用少量放大来增加低电平信号。这几项操作合在一起就使信号的动态范围变窄。

下面是压缩器常用的几个参数:

门限

门限控制用于设置压缩器开始作用的振幅电平。输入电平在门限值以上时压缩器开始作用。

比率

比率控制用于决定输入电平到输出电平量。例如:4:1的比率即在门限设置以上每进入压缩器4dB,将有1dB输出。实际上,此控制就是表示压缩器的压限量,即增益减量。

起音时间

起音时间设置用于控制从输入信号到达门限电平以上到压缩器开始衰减信号的时间。换言之,即从信号超过门限到压缩器开始作用的时间的时间量。

释放时间

释放时间用于控制输入信号降至门限电平以下后,压缩器使信号保持在门限电平的时间。换言之,即信号降至门限电平以下,压缩器保持的时间量。

输出增益

输出增益用于调整已压缩信号的输出电平。用输出增益,可以为压缩器的所有输出电平做最佳设置。

均衡器基本知识

EQ简称“均衡”,是调整某个频率幅度的过程。汽车立体声的音量控制是最早的EQ控制。通常可以用一个EQ增加或截断一组以上的频率或频段。有高、中、低频控制的EQ叫做三段均衡。

EQ的用途

最常见的有:

修正EQ,多用于补偿声音品质低或录音质量不好的乐器或人声。例如,在缩混中,如果认为吊镲声音沉闷,可以用EQ在吊镲中加入一些高音,使声音发出哧哧响声。另一个例子,比如您正在录一个人声,这时发现经过话筒的声音有点鼻音。用截断一些高中频率的方法,就可获得歌手温和的声音。但此处要注意,EQ不能替代低质录音技术。当您选好适当的话筒并放置到位后,除个别时候使用外,很少需要修正EQ。

创作EQ是专为创作而调整频率的过程。例如也许你喜欢声音听起来犹如收音机唱出来的效果。严格限制人声频率的波段宽度,就能获得此效果。

混合,专业工程师能够通过对某种乐器设定一定频率范围的方法,使这些范围不互相重叠地排列在一起,以覆盖整个频谱,从而建起一道声音之墙。

EQ也可用于录音过程,而且多用于缩混。用EQ录制您的音轨时要谨慎,因为以后不能修改。还要记住,加入均衡常常导致噪音的加入。因此,使用时要慎重(主要用于模拟均衡,不用于数字式均衡)。

EQ的类型

从独立机架型EQ到调音台内置EQ控制器,形状大小不同,种类很多。下列是一些最常见的EQ类型:

图式均衡

最常见的均衡类型是图式均衡。图式均衡是对一系列预选频率进行增益/截断控制,涉及的频率范围很宽。图式均衡很容易辨认,因为控制钮都是一些互相排列的推子,本身就提供了全部的均衡曲线的图式显示。这些均衡常用于调整调音台的总声音,并因您所在房间的频率特性不同而有所不同。

参数均衡

参数均衡可供您选择需要增益或截断的特定频率。例如,调音台上的EQ部分可能每段有两个控制钮:一个用于选择频率,另一个用于增加或截断选择的频率。请注意尽管您常听到全参数均衡的名字,但它实际上就是弧形或半参数均衡,不是全参数均衡。全参数均衡每段有一个附加的控制钮:Q值调整钮,改钮用于确定频段的宽窄。当EQ增加或截断一个已选的频率时,实际上会影响选定频率周围的一组频率(频段),搞明白这点是很有意义的。Q值调整钮确定频段宽度。半参数和全参数均衡通常用于对特定频率的调整,不会影响总声音。倾斜均衡

调音台中的另一种典型的均衡叫做倾斜均衡。这种均衡只有一个增益/截断钮用于控制高或低频段。增加/截断高频段或低频段,就是在增加或截断某个固定频率(一般高频段为10kHz 或12kHz,低频段为80Hz或100Hz)或所有高于或低于该频段的频率。倾斜均衡用于增加某个音轨的亮度或“底部结束点”。

并轨

将前次录制的数据混到一个单轨或一对立体声轨上。这是常需要做的工作。这个过程叫做并轨。关键要明白,并轨是一个录音过程。不是将现场乐器或人声录制在一个或多轨上,而是将前次录制的音轨内容录制在其它轨上。

工程师做并轨的原因:将几个单轨上的音频组合为较少的轨;用均衡设置录制已录过的音轨内容;将效果与源轨一起复制在一个轨上。并轨有很多好处。例如,如果您将8个独立的鼓音轨并到一对立体声轨上,最后得到一对立体声鼓的混音,声音与原8个轨一样,但仅仅用了两个轨。您可以使用原来那8个轨录制其它乐器。另外,有时可能需要在歌曲中加入比您的音频设备中的效果还要多的效果。在这种情况下,你可以将一轨或多轨并到已使用效果的其它轨上。源轨内容及各自效果都录进去。效果录入后,效果器就可以用在其它轨上了。

并轨时,一定要在并轨前将电平、均衡、效果等设置调整好。各轨一旦被并轨,源轨被覆盖,您只能调整这些轨的混合版。例如,如果您将8个鼓音轨并到一组立体声轨上,就无法将混响只加在大鼓上,而其余鼓上不加。如果您需要并轨,就可能想用一种能让您在并轨后仍保留源轨内容的录音机。您可以有空余轨用于并轨录音,同时又能保留对源轨的个别控制。这个概念通常称为“虚拟轨”,下章我们将详细介绍虚拟轨。

虚拟轨

什么是虚拟轨?

过去,大部分专辑的录制都是在录音室用昂贵的多轨磁带录音机来完成的。为了保留几种不同版本的主音或吉他独奏,艺术家通常需要许多轨。有时他们要在不同轨上留下几个背景人声用于后期的混音。他们需要大量的音轨的原因是不想扔掉他们录制的任何乐段。我们前面提及的并轨,可以腾出空轨来录制其它内容内容。但是为了录制附加轨,只有覆盖源声轨。然而现在,对“我的音轨总不够用”这个难题有了新的解决办法,这就是虚拟轨。

虚拟轨使您能够在并轨后仍然能保留源轨,以备将来对比、编辑或混音用。

虚拟轨的工作原理

就象电脑里的文件夹一样,它也是一层层地向上叠落,下面也有几层。虚拟轨的工作方式与之相同。每轨都有一个选择的虚拟轨。可以听录在该轨上的内容或在该轨上录制新的乐段。在一个虚拟轨上录音不会抹掉在其它虚拟轨上的内容。

您可以选择任何虚拟轨来进行播放。实际上,甚至可以将多个虚拟轨缩混为一个单轨。最适合制作音响较丰富的弦乐声部或加厚人声音轨。虚拟轨最适用于新的灵感的尝试。

下面是在录音过程中,虚拟轨的几种用法:

用虚拟轨录制吉他独奏

录制吉他独奏时,试着在吉他轨中的不同虚拟轨上录入独奏的不同乐段。不必删除上一个乐

段,也不必删除其它轨,只是改变虚拟轨以录制每个乐段。这种过程有助于保留录制中的创作意识流。其后,您可以决定选用哪个独奏(或独奏声部)。

用虚拟轨录制背景人声

在一个播放轨之内的不同虚拟轨上录入背景人声的几个乐段。录音后,将这些虚拟轨暂时指定到不同的播放轨。使您能同时听到所有轨。将一轨开至录音状态,然后按需要调整其它各轨的电平,再将其并到准备录音的轨上。由此,在一个音轨上为您提供了所有背景人声乐段的“混合版”。现在,您可以调出用新背景人声轨播放的源虚拟轨的内容。如果您需要调整原始乐段,不用担心,它仍安全地保存在虚拟轨上。

用虚拟轨同时录制干声和处理后的吉他声

试着分离您的吉他信号,以便将吉他输出接到一个输入端,再将效果处理器的输出输出连接到另一个输入端。然后,将吉他声部录入两个不同的轨。录音完成后,将“干声”和“湿声”随意混合,再并到一个空的虚拟轨上。这样,如果将来您想体验不同的吉他效果,可以调出“干声”吉他轨,将新效果加进去。

音轨管理

用出色的音轨录音设施录音,通常将每种乐器或人声分别录在单轨上,以便为各轨加入不同的均衡、效果、声像和音量。这种工作大多是在缩混中完成的。目的是将所有乐器混在一起,制作立体声母带录音,达到理想的声音效果。

对于录音工程师来说,他们没有完美的多轨录音设施。尽管现在确实有64轨甚至是128轨录音设施,但一般在大型专业录音中才可以看到。而且费用在每小时400美圆以上。因此我们多数日呢使用的录音系统音轨数还是有限。但是,这并不意味着我们制作不出具专业音响水平的丰富的多层式录音制品,只是我们要提前做好计划。为各乐器和人声制作音轨计划的过程称为音轨管理。如果您不提前做此工作,就可能出现音轨不够用或没有足够的选择余地来完成您的曲子。

并轨

您最有用的工具之一就是“并轨”的过程。并轨实际上就是录音过程中的小型缩混工作。例如,您在单轨上录入鼓演奏时,占用了16轨录音机中的8个轨,您可以将这8个轨的内容并为一组立体声轨。由此,又腾出6个空轨。但并轨时您必须谨慎,因为在源轨上覆盖录音后,总缩混时将无法选择单个音轨。

当然,在数码录音机上并轨比在模拟录音机上更好,因为数字式并轨不会损失声音品质。而且,一些数码录音机便于您录制新轨而不会删除前一次录入的音轨内容。此概念一般称为“虚拟轨”。它可为您提供丰富的并轨,而不会失去对独立轨的控制。如果你使用模拟录音系统,就要明白,每次并轨都损失一定的音频质量。一般来说,对某一个轨做二、三次并轨后会造成噪音过大而失去其使用价值。

叠加音轨

另一个有用的技巧是在某个特定轨上录入一种以上的乐器,称为“叠加音轨”。例如,在您的曲子前奏中有一段钢琴独奏。在淡出时有一段吉他独奏。您可以将上述两种独奏录在一个轨上。因为两者不会覆盖。

叠加音轨时,记住要使用不怎么需要效果处理的乐器。或顶多使用处理类型相似的乐器,

以便在缩混时您不必担心变化太大。如果您在一个音轨中需要多一些效果处理,就要考虑随音轨一起录入效果处理,而不必在缩混时加入处理。另外,要选择在曲子中尽可能隔得远的乐器,以便您有足够的时间在各乐器之间做需要的变化。

音轨表

至此,我们就会明白,这些复杂的音轨管理手段是应该提前想到的。多数工程师都使用音轨表。在这一张表格上,每轨各对应一个格,可以列出设定在该轨的乐器以及其它轨的注释。您可以利用音轨表,事先订出使用各轨计划。如果您没有音轨表,就要在做设定之前画一张表。在整个工作开始之前投入这一点时间,会使您在录音过程中节省大量时间,并避免许多麻烦。

非线性编辑

在模拟录音编辑中,编辑磁带上的音频的唯一方法只有用刀切断磁带。这确实不是最有效率的编辑方法。万一记错了磁带的位置,或接合不妥,这小小的失误会使您多少小时的工作毁于一旦。

数码硬盘录音技术的使用,使上述问题迎刃而解。硬盘录音机使用硬盘存入录音内容,不使用磁带。当您在硬盘上编辑音频时,实际上您是在暂存缓冲器中进行编辑,并没有改变原始录音内容。这种编辑叫做无损编辑。这好比您在电脑的文字处理程序中做了一个备忘录,几天后您对备忘录做了些改动。改动内容不会长期保留,除非您指示文字处理器将改动内容存入文件。无损编辑工作的方式与其相似,您可以做自己的编辑,听其效果,然后决定保留编辑的版本还是恢复原版本。有些硬盘录音机有多级还原功能(UNDO)。即使您保留了新版本,也能保留原版,比其它录音机又先进了一步。

设置编辑点

数码编辑听起来简单,但如果不懂基本要领,也会遇到一些麻烦。几乎所有编辑都需要一个其始点和一个结束点。例如,如果您想删除某一轨的部分内容,需要确认您想删除的位置。在下面的例子中,其始点放在了人声轨上,此处人声进入过早。结束点放在错误段之后。当您进行删除时,起始点和结束点之间区域的内容被删除。而时值保持不变。

起始点结束点

人声音轨

人声音轨

编辑之后

起始点和结束点

除了起始点和结束点外,有的编辑还需要附加编辑点。这些点通常叫做出发点和目的点(FROM和TO)。出发点和目的点与起始点和结束点一起使用。将音频移动或复制到其它轨或其它时段的这类编辑,大多需要一个出发点和一个目的点。

做此类编辑时,起始点(Start)和结束点(End)用于选择被移动或复制的音轨部分。而出发点(From)和目的点(To)用于确定音轨部分移动的方式和地点。换言之,To点就是Start点和End点之间的内容移动的目标。From点就是编辑后用To点连接的Start和End 点之间的位置。在多数编辑中,出发点From就是起始点Start。

如果您有一个主要参照点(例如,一个小节的Downbeat,一个声音效果等)不在您要编辑内容的开头。您可以根据需要的时间用出发点与参照点连接。假如,您想将领唱人声从第一个合唱复制到第二个合唱中,但领唱比合唱实际开始的时间提前了一点。下面的例子说明怎样有效地使用出发点From和目的点To,以获得恰当的编辑。

人声音轨

拾取

出发点目的点

编辑之前

起始点结束点

人声音轨

拾取

出发点目的点

编辑之后

还原

现在许多硬盘录音机都有一个叫做还原(UNDO)的功能,此功能可使您取消前一次的操作(一般仅局限于音轨的录音或音轨编辑功能)并使您的曲子回到原状态。

有些硬盘录音机带有多级还原功能,可以使您录音工作“及时返回”。当一个轨被意外覆盖或被编辑掉,或一个轨录制的电平过低或过高时,还原功能就派上用场。假如您录制一个吉他声部。然后在音轨中间“插入”一些新吉他演奏。如果您觉得插入得过早,可以使用还原功能。

用还原(UNDO)功能消除“插入”的吉他编辑,回到录制原吉他音轨的位置和时间段。

录音技术基础知识

录音技术基础知识

录音技术基础知识 基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一

个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上

音频、视频技术基础习题3

《音频、视频技术基础》习题3 一、单项选择题 1.压缩编码技术,就是指用某种方法使数字化信息的()降低的技术。 A、采样率 B、传输速率 C、数据量 D、编码率 2.()决定了声音的动态范围。 A、声音大小 B、量化位数大小 C、采样频率 D、压缩技术 3.人类听觉的声音频率是()。 A、0~20Hz B、20Hz~20KHz C、20Hz~340Hz D、20KHz以上 4.人类接受的信息约70%来自于()。 A、阅读 B、听觉 C、视觉 D、触觉 5.Premiere Pro中输出视频的快捷键是()。 A、ctrl+Alt+M B、Shift+M C、ctrl+shift+M D、ctrl+M 6.构成视频信息的基本单元是()。 A、帧

B、画面 C、幅 D、像素 7.关于声音数字化技术中的量化位数叙述正确的是()。 A、量化位数是指一秒种内对声波模拟信号采样的次数 B、量化位数是指每个采样点十进制数据的位数 C、量化位数是指每个采样点十六进制数据的位数 D、量化位数是指每个采样点二进制数据的位数 8.一般来说,要求声音的质量越高,则()。 A、量化级数越低采样频率越高 B、量化级数越低采样频率越低 C、量化级数越高采样频率越低 D、量化级数越高采样频率越高 9.波形文件是采集各种声音的机械振动而得到的数字文件,其后缀是()。 A、wav B、mpga C、mp3 D、voc 10.超声波的频率范围是()。 A、高于20KHz B、低于20Hz C、低于20KHz D、高于20Hz,低于20KHz 11.以下软件中不是声音编辑软件的是()。 A、Windows“录音机” B、Winamp C、SoundForge D、Cool Edit Pro 12.用()软件可以将自己需要的VCD片段从VCD光盘中截取出来。 A、超级解霸

数字音频基础知识

第一章数字音频基础知识 主要内容 ?声音基础知识 ?认识数字音频 ?数字音频专业知识 第1节声音基础知识 1.1 声音的产生 ?声音是由振动产生的。物体振动停止,发声也停止。当振动波传到人耳时,人便听到了声音。 ?人能听到的声音,包括语音、音乐和其它声音(环境声、音效声、自然声等),可以分为乐音和噪音。 ?乐音是由规则的振动产生的,只包含有限的某些特定频率,具有确定的波形。 ?噪音是由不规则的振动产生的,它包含有一定范围内的各种音频的声振动,没有确定的波形。 1.2 声音的传播 ?声音靠介质传播,真空不能传声。 ?介质:能够传播声音的物质。 ?声音在所有介质中都以声波形式传播。 ?音速 ?声音在每秒内传播的距离叫音速。 ?声音在固体、液体中比在气体中传播得快。 ?15oC 时空气中的声速为340m/s 。 1.3 声音的感知 ?外界传来的声音引起鼓膜振动经听小骨及其他组织传给听觉神经,听觉神经再把信号传给大脑,这样人就听到了声音。 ?双耳效应的应用:立体声 ?人耳能感受到(听觉)的频率范围约为20Hz~ 20kHz,称此频率范围内的声音为可听声(audible sound)或音频(audio),频率<20Hz声音为次声,频率>20kHz声音为超声。 ?人的发音器官发出的声音(人声)的频率大约是80Hz~3400Hz。人说话的声音(话音voice / 语音speech)的频率通常为300Hz~3000 Hz(带宽约3kHz)。 ?传统乐器的发声范围为16Hz (C2)~7kHz(a5),如钢琴的为27.5Hz (A2)~4186Hz(c5)。 1.4 声音的三要素 ?声音具有三个要素: 音调、响度(音量/音强)和音色 ?人们就是根据声音的三要素来区分声音。 音调(pitch ) ?音调:声音的高低(高音、低音),由―频率‖(frequency)决定,频率越高音调越高。 ?声音的频率是指每秒中声音信号变化的次数,用Hz 表示。例如,20Hz 表示声音信号在1 秒钟内周期性地变化20 次。?高音:音色强劲有力,富于英雄气概。擅于表现强烈的感情。 ?低音:音色深沉浑厚,擅于表现庄严雄伟和苍劲沉着的感情。 响度(loudness ) ?响度:又称音量、音强,指人主观上感觉声音的大小,由―振幅‖(amplitude)和人离声源的距离决定,振幅越大响度越大,人和声源的距离越小,响度越大。(单位:分贝dB) 音色(music quality) ?音色:又称音品,由发声物体本身材料、结构决定。 ?每个人讲话的声音以及钢琴、提琴、笛子等各种乐器所发出的不同声音,都是由音色不同造成的。 1.5 声道

录音技术基础知识

录音技术基础知识基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各 自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可 以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代

录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可

音频后期之常用人声后期处理知识

音频后期之常用人声后期处理知识 人声闷: 调节EQ,适当衰减低频增益高频。 人声太远想调近: 1:调节EQ,适当增益中高频。 2:使用BBE适当激励中高频。但是此法容易产生大的噪音。 3:使用WAVES的RVOX加大压缩。(据说此法很好,不过我还米试过)用WAVESL1也可以。4:可以减小混响,或者降低早期反射声的时间,或者缩小房间尺寸。 调节人声的左右: 1:Surrounded(调节环绕声或者声音移动的感觉都可以用) 2:直接调声像 对人声常用的音频处理一般包括以下几个方面(注意顺序,很重要): 1.EQ:也就是均衡,因为话筒的拾音频响曲线差异的以及歌手嗓音特征差异,一般根据录出的人声实际效果作适当处理,比如有的声音太尖,有的听起来很闷,有的鼻音很重,有的唇齿音很重,这些都是由于声音各频段的强弱不均衡造成的听觉差异。可以通过EQ对各频段的声音信号均衡(增减)处理,能起到改善作用。 2.激励器:也叫谐波发生器,能将声音在某些频段增加一些随机的谐波,合适的激励会给声音带来美化的成分,激励器和EQ的区别是:EQ只是调整某些频段的信号强弱,激励器是在某些频段增加新的声波成分。不合适的激励对声音有破坏作用,使声音听起来很“脏”。所以很多人常常不做激励处理。 3.压缩(压限)器:自动调整声音电平的动态范围。说通俗简单点你明白得更快:就是自动将时间轨上所有的声音信号做以下处理:当声音小的时候,按预调整的参数提升音量,当声音大超过某个界限的时候,开始按预先设置参数的比例压缩减小音量,最后的结果是改变整个声音轨的动态范围(最大音量和最小音量的差值),通常压限器的作用是减小动态范围。经过压限的声音听起来更饱满、有力,声音小的地方听起来不费劲,声音很大的地方也不震耳。 4.混响器:美化声音,让声音听起来有空间感,声音圆润通透。 除噪常用的方法有以下几种: 1.噪声门:设定一个电平的门限值,低于这个门限的信号电平全部过滤掉,高于门限值的信号电平全部通过(这里信号电平指的是信号和噪音电平总和的电平),这种方法能很有效地除去演唱间歇的背景底噪,并且对原始声音无破坏作用),缺点是当人声出来的

音频基础知识

音频,英文是AUDIO,也许你会在录像机或VCD的背板上看到过AUDIO输出或输入口。这样我们可以很通俗地解释音频,只要是我们听得见的声音,就可以作为音频信号进行传输。有关音频的物理属性由于过于专业,请大家参考其他资料。自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。PCM通过采样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。 一、音频基本概念 1、什么是采样率和采样大小(位/bit)。 声音其实是一种能量波,因此也有频率和振幅的特征,频率对应于时间轴线,振幅对应于电平轴线。波是无限光滑的,弦线可以看成由无数点组成,由于存储空间是相对有限的,数字编码过程中,必须对弦线的点进行采样。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。光有频率信息是不够的,我们还必须获得该频率的能量值并量化,用于表示信号强度。量化电平数为2的整数次幂,我们常见的CD位16bit的采样大小,即2的16次方。采样大小相对采样率更难理解,因为要显得抽象点,举个简单例子:假设对一个波进行8次采样,采样点分别对应的能量值分别为A1-A8,但我们只使用2bit的采样大小,结果我们只能保留A1-A8中4个点的值而舍弃另外4个。如果我们进行3bit的采样大小,则刚好记录下8个点的所有信息。采样率和采样大小的值越大,记录的波形更接近原始信号。 2、有损和无损 根据采样率和采样大小可以得知,相对自然界的信号,音频编码最多只能做到无限接近,至少目前的技术只能这样了,相对自然界的信号,任何数字音频编码方案都是有损的,因为无法完全还原。在计算机应用中,能够达到最高保真水平的就是PCM编码,被广泛用于素材保存及音乐欣赏,CD、DVD以及我们常见的WAV文件中均有应用。因此,PCM约定俗成了无损编码,因为PCM代表了数字音频中最佳的保真水准,并不意味着PCM就能够确保信号绝对保真,PCM也只能做到最大程度的无限接近。我们而习惯性的把MP3列入有损音频编码范畴,是相对PCM编码的。强调编码的相对性的有损和无损,是为了告诉大家,要做到真正的无损是困难的,就像用数字去表达圆周率,不管精度多高,也只是无限接近,而不是真正等于圆周率的值。 3、为什么要使用音频压缩技术 要算一个PCM音频流的码率是一件很轻松的事情,采样率值×采样大小值×声道数bps。一个采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的WAV文件,它的数据速率则为44.1K×16×2 =1411.2 Kbps。我们常说128K的MP3,对应的WAV的参数,就是这个1411.2 Kbps,这个参数也被称为数据带宽,它和ADSL中的带宽是一个概念。将码率除以8,就可以得到这个WAV的数据速率,即176.4KB/s。这表示存储一秒钟采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的音频信号,需要176.4KB的空间,1分钟则约为10.34M,这对大部分用户是不可接受的,尤其是喜欢在电脑上听音乐的朋友,要降低磁盘占用,只有

音视频技术基本知识一

https://www.360docs.net/doc/de14328381.html, 音视频技术基本知识一 网易视频云是网易倾力打造的一款基于云计算的分布式多媒体处理集群和专业音视频技术,为客户提供稳定流畅、低时延、高并发的视频直播、录制、存储、转码及点播等音视频的PaaS服务。在线教育、远程医疗、娱乐秀场、在线金融等各行业及企业用户只需经过简单的开发即可打造在线音视频平台。现在,网易视频云总结网络上的知识,与大家分享一下音视频技术基本知识。 与画质、音质等有关的术语 这些术语术语包括帧大小、帧速率、比特率及采样率等。 1、帧 一般来说,帧是影像常用的最小单位,简单的说就是组成一段视频的一幅幅图片。电影的播放连续的帧播放所产生的,现在大多数视频也类似,下面说说帧速率和帧大小。 帧速率,有的转换器也叫帧率,或者是每秒帧数一类的,这可以理解为每一秒的播放中有多少张图片,一般来说,我们的眼睛在看到东西时,那些东西的影像会在眼睛中停留大约十六分之一秒,也就是视频中只要每秒超过15帧,人眼就会认为画面是连续不断的,事实上早期的手绘动画就是每秒播放15张以上的图片做出来的。但这只是一般情况,当视频中有较快的动作时,帧速率过小,动作的画面跳跃感就会很严重,有明显的失真感。因此帧速率最好在24帧及以上,这24帧是电影的帧速率。 帧大小,有的转换器也叫画面大小或屏幕大小等,是组成视频的每一帧的大小,直观表现为转换出来的视频的分辨率的大小。一般来说,软件都会预置几个分辨率,一般为320×240、480×320、640×360、800×480、960×540、1280×720及1920×1080等,当然很多转换器提供自定义选项,这里,不得改变视频长宽比例。一般根据所需要想要在什么设备上播放来选择分辨率,如果是转换到普通手机、PSP等设备上,视频分辨率选择与设备分辨率相同,否则某些设备可能会播放不流畅,设备分辨率的大小一般都可以在中关村在线上查到。 2、比特率 比特率,又叫码率或数据速率,是指每秒传输的视频数据量的大小,音视频中的比特率,是指由模拟信号转换为数字信号的采样率;采样率越高,还原后的音质和画质就越好;音视频文件的体积就越大,对系统配置的要求也越高。 在音频中,1M以上比特率的音乐一般只能在正版CD中找到,500K到1M的是以APE、FLAC等为扩展名的无损压缩的音频格式,一般的MP3是在96K到320K之间。目前,对大多数人而言,对一般人而言192K就足够了。 在视频中,蓝光高清的比特率一般在40M以上,DVD一般在5M以上,VCD一般是在1M 以上。(这些均是指正版原盘,即未经视频压缩的版本)。常见的视频文件中,1080P的码率一般在2到5M之间,720P的一般在1到3M,其他分辨率的多在一M一下。 视频文件的比特率与帧大小、帧速率直接相关,一般帧越大、速率越高,比特率也就越大。当然某些转换器也可以强制调低比特率,但这样一般都会导致画面失真,如产生色块、色位不正、出现锯齿等情况。

录音技术基础知识

录音技术基础知识 基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播 放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注

音频基本知识

音频基本知识 第一部分 模拟声音-数字声音原理 第二部分 音频压缩编码 第三部分 和弦铃声格式 第四部分 单声道、立体声和环绕声 第五部分 3D环绕声技术 第六部分数字音频格式和数字音频接口 第一部分 模拟声音-数字声音原理 一、模拟声音数字化原理 声音是通过空气传播的一种连续的波,叫声波。声音的强弱体现在声波压力的大小上,音调的高低体现在声音的频率上。声音用电表示时,声音信号在时间和幅度上都是连续的模拟信号。 图1 模拟声音数字化的过程 声音进入计算机的第一步就是数字化,数字化实际上就是采样和量化。连续时间的离散

化通过采样来实现。 声音数字化需要回答两个问题:①每秒钟需要采集多少个声音样本,也就是采样频率(f s)是多少,②每个声音样本的位数(bit per sample,bps)应该是多少,也就是量化精度。 ?采样频率 采样频率的高低是根据奈奎斯特理论(Nyquist theory)和声音信号本身的最高频率决定的。奈奎斯特理论指出,采样频率不应低于声音信号最高频率的两倍,这样才能把以数字表达的声音还原成原来的声音。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k 次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。电话话音的信号频率约为3.4 kHz,采样频率就选为8 kHz。 ?量化精度 光有频率信息是不够的,我们还必须纪录声音的幅度。量化位数越高,能表示的幅度的等级数越多。例如,每个声音样本用3bit表示,测得的声音样本值是在0~8的范围里。我们常见的CD位16bit的采样精度,即音量等级有2的16次方个。样本位数的大小影响到声音的质量,位数越多,声音的质量越高,而需要的存储空间也越多。 ?压缩编码 经过采样、量化得到的PCM数据就是数字音频信号了,可直接在计算机中传输和存储。但是这些数据的体积太庞大了!为了便于存储和传输,就需要进一步压缩,就出现了各种压缩算法,将PCM转换为MP3,AAC,WMA等格式。 常见的用于语音(Voice)的编码有:EVRC (Enhanced Variable Rate Coder) 增强型可变速率编码,AMR、ADPCM、G.723.1、G.729等。常见的用于音频(Audio)的编码有:MP3、AAC、AAC+、WMA等 二、问题 1、为什么要使用音频压缩技术? 我们可以拿一个未压缩的CD文件(PCM音频流)和一个MP3文件作一下对比: PCM音频:一个采样率为44.1KHz,采样大小为16bit,双声道的PCM编码CD文件,它的数据速率则为 44.1K×16×2 =1411.2 Kbps,这个参数也被称为数据带宽。将码率除以8 bit,就可以得到这个CD的数据速率,即176.4KB/s。这表示存储一秒钟PCM编码的音频信号,需要176.4KB的空间。 MP3音频:将这个WAV文件压缩成普通的MP3,44.1KHz,128Kbps的码率,它的数据速率为128Kbps/8=16KB/s。如下表所示: 比特率 存1秒音频数据所占空间 CD(线性PCM) 1411.2 Kbps 176.4KB MP3 128Kbps 16KB AAC 96Kbps 12KB mp3PRO 64Kbps 8KB 表1 相同音质下各种音乐大小对比 2、频率与采样率的关系 采样率表示了每秒对原始信号采样的次数,我们常见到的音频文件采样率多为44.1KHz,这意味着什么呢?假设我们有2段正弦波信号,分别为20Hz和20KHz,长度均为一秒钟,以对应我们能听到的最低频和最高频,分别对这两段信号进行40KHz的采样,我们可以得到一个什么样的结果呢?结果是:20Hz的信号每次振动被采样了40K/20=2000次,而20K的信号每次振动只有2次采样。显然,在相同的采样率下,记录低频的信息远比高频

(完整版)音频基础知识及编码原理

一、基本概念 1 比特率:表示经过编码(压缩)后的音频数据每秒钟需要用多少个比特来表示,单位常为kbps。 2 响度和强度:声音的主观属性响度表示的是一个声音听来有多响的程度。响度主要随声音的强度而变化,但也受频率的影响。总的说,中频纯音听来比低频和高频纯音响一些。 3 采样和采样率:采样是把连续的时间信号,变成离散的数字信号。采样率是指每秒钟采集多少个样本。 Nyquist采样定律:采样率大于或等于连续信号最高频率分量的2倍时,采样信号可以用来完美重构原始连续信号。 二、常见音频格式 1. WAV格式,是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持,压缩率低。 2. MIDI是Musical Instrument Digital Interface的缩写,又称作乐器数字接口,是数字音乐/电子合成乐器的统一国际标准。它定义了计算机音乐程序、数字合成器及其它电子设备交换音乐信号的方式,规定了不同厂家的电子乐器与计算机连接的电缆和硬件及设备间数据传

输的协议,可以模拟多种乐器的声音。MIDI文件就是MIDI格式的文件,在MIDI文件中存储的是一些指令。把这些指令发送给声卡,由声卡按照指令将声音合成出来。 3. MP3全称是MPEG-1 Audio Layer 3,它在1992年合并至MPEG规范中。MP3能够以高音质、低采样率对数字音频文件进行压缩。应用最普遍。 4. MP3Pro是由瑞典Coding科技公司开发的,其中包含了两大技术:一是来自于Coding 科技公司所特有的解码技术,二是由MP3的专利持有者法国汤姆森多媒体公司和德国Fraunhofer集成电路协会共同研究的一项译码技术。MP3Pro可以在基本不改变文件大小的情况下改善原先的MP3音乐音质。它能够在用较低的比特率压缩音频文件的情况下,最大程度地保持压缩前的音质。 5. MP3Pro是由瑞典Coding科技公司开发的,其中包含了两大技术:一是来自于Coding 科技公司所特有的解码技术,二是由MP3的专利持有者法国汤姆森多媒体公司和德国Fraunhofer集成电路协会共同研究的一项译码技术。MP3Pro可以在基本不改变文件大小的情况下改善原先的MP3音乐音质。它能够在用较低的比特率压缩音频文件的情况下,最大程度地保持压缩前的音质。 6. WMA (Windows Media Audio)是微软在互联网音频、视频领域的力作。WMA格式是以减少数据流量但保持音质的方法来达到更高的压缩率目的,其压缩率一般可以达到1:18。此外,WMA还可以通过DRM(Digital Rights Management)保护版权。 7. RealAudio是由Real Networks公司推出的一种文件格式,最大的特点就是可以实时传输音频信息,尤其是在网速较慢的情况下,仍然可以较为流畅地传送数据,因此RealAudio 主要适用于网络上的在线播放。现在的RealAudio文件格式主要有RA(RealAudio)、RM (RealMedia,RealAudio G2)、RMX(RealAudio Secured)等三种,这些文件的共同性在于随着网络带宽的不同而改变声音的质量,在保证大多数人听到流畅声音的前提下,令带宽较宽敞的听众获得较好的音质。 8. Audible拥有四种不同的格式:Audible1、2、3、4。https://www.360docs.net/doc/de14328381.html,网站主要是在互联网上贩卖有声书籍,并对它们所销售商品、文件通过四种https://www.360docs.net/doc/de14328381.html, 专用音频格式中的一种提供保护。每一种格式主要考虑音频源以及所使用的收听的设备。格式1、2和3采用不同级别的语音压缩,而格式4采用更低的采样率和MP3相同的解码方式,所得到语音吐辞更清楚,而且可以更有效地从网上进行下载。Audible 所采用的是他们自己的桌面播放工具,这就是Audible Manager,使用这种播放器就可以播放存放在PC或者是传输到便携式播放器上的Audible格式文件

音频基础知识

一般认为20Hz-20kHz是人耳听觉频带,称为“声频”。这个频段的声音称为“可闻声”,高于20kHz的称为“超声”,低于20Hz的称为“次声“。(《广播播控与电声技术》p3) 所谓声音的质量,是指经传输、处理后音频信号的保真度。目前,业界公认的声音质量标准分为4级,即数字激光唱盘CD-DA质量,其信号带宽为10Hz~20kHz;调频广播FM质量,其信号带宽为20Hz~15kHz;调幅广播AM质量,其信号带宽为50Hz~7kHz;电话的话音质量,其信号带宽为200Hz~3400Hz。可见,数字激光唱盘的声音质量最高,电话的话音质量最低。除了频率范围外,人们往往还用其它方法和指标来进一步描述不同用途的音质标准。由于电子平衡与变压器平衡的区别,所以二者的接线方法是不一样的,应引起注意。 声学的基本概念音频频率范围一般可以分为四个频段,即低频段(30 ̄150Hz);中低频段(30 ̄150Hz);中低频(150 ̄500Hz);中高频段(500 ̄5000Hz);高频段(5000 ̄20000Hz)。30 ̄150Hz频段:能够表现音乐的低频成分,使欣赏者感受到强劲有力的动感。150 ̄500Hz频段:能够表现单个打击乐器在音乐中的表现力,是低频中表达力度的部分。500 ̄5000Hz频段:主要表达演唱者或语言的清淅度及弦乐的表现力。5000 ̄20000Hz频段:主要表达音乐的明亮度,但过多会使声音发破。音频频率范围一般可以分为四个频段,即低频段(30 ̄150Hz);中低频段(30 ̄150Hz);中低频(150 ̄500Hz);中高频段(500 ̄5000Hz);高频段(5000 ̄20000Hz)。30 ̄150Hz频段:能够表现音乐的低频成分,使欣赏者感受到强劲有力的动感。150 ̄500Hz频段:能够表现单个打击乐器在音乐中的表现力,是低频中表达力度的部分。500 ̄5000Hz频段:主要表达演唱者或语言的清淅度及弦乐的表现力。5000 ̄20000Hz频段:主要表达音乐的明亮度,但过多会使声音发破。所谓声音的质量,是指经传输、处理后音频信号的保真度。目前,业界公认的声音质量标准分为4级,即数字激光唱盘CD-DA质量,其信号带宽为10Hz~20kHz;调频广播FM质量,其信号带宽为20Hz~15kHz;调幅广播AM质量,其信号带宽为50Hz~7kHz;电话的话音质量,其信号带宽为200Hz~3400Hz。可见,数字激光唱盘的声音质量最高,电话的话音质量最低。除了频率范围外,人们往往还用其它方法和指标来进一步描述不同用途的音质标准。音质评价方法评价再现声音的质量有主观评价和客观评价两种方法。例如: 1.语音音质评定语音编码质量的方法为主观评定和客观评定。目前常用的是主观评定,即以主观打分(MOS)来度量,它分为以下五级:5(优),不察觉失真;4(良),刚察觉失真,但不讨厌;3(中),察觉失真,稍微讨厌;2(差),讨厌,但不令人反感;

专业音频中的十个知识点

专业音频中的十个知识点 1.如果音乐家们在舞台上能够听到他们所需要的声音,那他们会感觉非常舒适,在舞台上的表现往往也会更好。 当然,那些经验丰富的监听技术人员还有录音技术人员肯定是知道这一点的。 但是对那些经验不足的人来说,了解这一点是非常重要的。这并不是一个关于需要使用多大的功率的问题,也不是一个关于需要使用什么样的楔形返听音箱的问题。这其实是一个关于心理学的问题。 而且我认为,如果您了解了舞台监听的技术,并且知道如何取悦舞台上的音乐家们,那么您就已经达到了成为一名优秀的混音工程师90%的条件。 当然,最后的那10%可能要靠天赋,运气等等其他因素,但是如果没有之前的那90%的基础,无论您有多好的天赋和运气都没有用。 2.在海拔高度为海平面高度,温度为68华氏度,相对湿度为4%的条件下,声音的传播速度是每秒1,130英尺。 这是非常重要的信息,因为如果您对声音传播的方式有着足够的了解,那么在工作中,您会对麦克风的架设,延迟塔的设置,以及平衡前后延迟这类问题拥有更深入的了解。不仅如此,您还应该知道,声音的传播速度是会随着空气的温度,湿度和海拔高度的变化而变化。(如果您对此还不了解,那么请尽快学习一下相关的知识。)

3.反平方定律。 如果距离声源的距离每增加一倍,那么声功率就会减少为原来的四分之一,我想这一点很多人都是知道的。这一定律几乎可以适用于所有的地方,无论是麦克风还是扬声器阵列。了解这一定律,对于我们确定功率放大器所需的功率十分重要。 例如,如果您通常所使用的扬声器阵列所能覆盖的观众席区域是从20英尺到60英尺,而在某一个演出当中,观众席的区域是在40到100英尺之间,那么您需要使用多大的功率才能在观众席内维持相同的声功率?答案是:大约四倍的功率! 反平 方定律,如上图所示 4.人类听觉系统的等响度曲线(等响曲线)。 早在20世纪30年代,Harvey Fletcher和他在贝尔实验室领导的团队就通过了一系列试验,获得了如下这张等响曲线图。从图中我们可以看出人类的耳朵对于中高频率信号最为敏感,而对于频率非常低和频率非常高的声音信号,最不敏感。 换句话说,如果我们想让100 Hz的音调与3.5 kHz的音调听起来一样大,100 Hz时的声音必须比3.5 kHz时的声音大上15 dB!(这里我们假设3.5 kHz的音调为85 dB SPL)

现代录音基础知识

现代录音基础知识(上) 快速录音基础知识入门连载(一) 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 什么是叠加? 假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。传统录音方式 录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 这些处理过程将在后文的详细介绍中解释。

录音技术基础知识

录音技术基础知识 Prepared on 22 November 2020

录音技术基础知识基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音 轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种 播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节

奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可以找到),XLR(一般用于话筒)和1/4inch(一般用于乐器)。

(完整word版)现代录音基础知识

现代录音基础知识 近年来音频录音领域已经发生了戏剧性的变化。现在具备大量优秀数字设备已经相当便宜。技术的进步已经将崭新的令人激动的特性带给越来越多的用户群。 低成本和高科技意味着许多人可以直接跳到复杂的录音设备来进行第一次录音体验。而其它一些人则转移到数码音序器——一种不需要准备太多音频录音问题的非常不同的录音体验。二者都需要对现代录音设备的一些最基本的概念有一定了解。 本文的目的就是以简单形式来专门介绍现代录音的基本知识。使音乐家能够快速地开始录音操作。 你可以仔细得阅读一遍本文,也可以按找你自己的需要跳到一定的章节来进行阅读。如果你对录音领域来说还是体验非常少时,我们推荐你仔细阅读本文。另外,你还要阅读一下文后的词汇表,这样可使你对将要使用的术语变得更熟悉一些。 基础录音/多轨录音——————————————————————————基础录音/多轨缩混——————————————————————————一般连接端子———————————————————————————————平衡与非平衡连接———————————————————————————话筒————————————————————————————————话筒前置和幻像电源——————————————————————————基本话筒技术————————————————————————————总线——————————————————————————————————推前和推后——————————————————————————————获得正确的输入电平——————————————————————————监听效果———————————————————————————————效果布线/插入和循环——————————————————————————压缩器————————————————————————————————EQ 的基本知识—————————————————————————————并轨——————————————————————————————————虚拟轨—————————————————————————————————轨道管理————————————————————————————————非线性编辑———————————————————————————————还原——————————————————————————————————母带制作————————————————————————————————备份——————————————————————————————————录音概览————————————————————————————————总概括—————————————————————————————————词汇表————————————————————————————————— 基本录音/多轨录音无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音” ),可以用某种播 放系统如CD 播放机或磁带卡座等进行再制作。 录音基础/多轨录音多轨录音指多种乐器或人声的互相“叠加” ,以便在播放任意一种音色时,同时听到其它

录音技术入门基础教程

录音之基础教程 目录: 第一章:关于录音时电平标准的阐述 第二章:录音的基本概念以及技术流程。 第三章:拾音技巧 第四章:话筒放大器的使用 第五章:话筒放大器使用的高级技巧(一) 第六章:话筒放大器使用的高级技巧(二) 第七章:前期录音要注意的一些问题 第七点五章:关于前期录音分轨的一些补充 第八章:缩混过程简介 九:缩混--EQ(一) 十:缩混--EQ(二、声音的润色) 十一:缩混--EQ(三、一些常用频点的作用) 十二:缩混--关于乐器的摆位和混响的初步使用(part 1) 十三:缩混--关于乐器的摆位和混响的初步使用(part 2) 第一章:关于录音时电平标准的阐述 众所周知,录音时的电平非常重要,录大了会破,录小了,又会给后期缩混增加不必要的麻烦,更会由于提升原有的电平而产生噪声。 那么,什么是好的录音电平呢? 在这里,我从两个角度来说: 1、经过调音台录入电脑或多轨机: 在这种情况下,要注意的是两个问题。 第一,是调音台电平的问题。 调音台作为信号输入的初始设备,要使其做到在电平不过载的前提下,电平尽量的大。 要做到这一点,首先要调整调音台上信号输入轨的增益电平,挑选所输入信号强度最大的一段作为测试,要使输入电平的峰值接近但不突破0db。 然后就是输出电平的调整。由于输入电平的调整,输出电平衰减器(也就是信号输入那一轨的推子)保持在刻度0的位置即可(注意!0不是最低,而是使输出电平和输入电平保持一致。最低是-oo,负无穷大) 第二,是调音台与电脑声卡或多轨机之间的电平关系。 如果是多轨机,则大可不必担心,因为其各轨的电平是厂家调校过的。或者是数字调音台与数字多轨机以ADAT或T-DIF相链接,那就更不用担心音量的问题了,肯定是和调音台上保持一致的。那么,要注意的就是调音台与电脑声卡之间的链接。 首先,如果是数字调音台连接声卡的ADAT、SPDIF等数字接口,则无需调校,数字信号的传输是一定能够保持原有电平的。 最需要注意的就是调音台的模拟接口与声卡的模拟接口的连接。如果是数字调音台的模拟接口与声卡的模拟接口连接,则需要在调音台上的电平与声卡的电平读数一致,也就是说,用标准1khz进行测试的时候,当数字调音台的输出电平读数为0db的时候,计算机中录音软件的录入

相关文档
最新文档