八年级数学全册全套试卷测试卷(含答案解析)

八年级数学全册全套试卷测试卷(含答案解析)
八年级数学全册全套试卷测试卷(含答案解析)

八年级数学全册全套试卷测试卷(含答案解析)

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

∴P(2,﹣2).

综上述,P点坐标为(4,2),(2,﹣2).

【点睛】

本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.

2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.

【解析】

【分析】

(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得

△ABC≌△ADE;

(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得

∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;

(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得

AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.

【详解】

(1)∵∠BAD=∠CAE=90°,

∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,

∴∠BAC=∠DAE,

在△BAC和△DAE中,

AB AD

BAC DAE

AC AE

=

?

?

∠=∠

?

?=

?

∴△BAC≌△DAE(SAS);

(2)∵∠CAE=90°,AC=AE,

∴∠E=45°,

由(1)知△BAC ≌△DAE , ∴∠BCA=∠E=45°, ∵AF ⊥BC , ∴∠CFA=90°, ∴∠CAF=45°,

∴∠FAE=∠FAC+∠CAE=45°+90°=135°; (3)延长BF 到G ,使得FG=FB , ∵AF ⊥BG , ∴∠AFG=∠AFB=90°, 在△AFB 和△AFG 中,

BF F AFB AFG AF AF G =??

∠=∠??=?

, ∴△AFB ≌△AFG (SAS ), ∴AB=AG ,∠ABF=∠G , ∵△BAC ≌△DAE ,

∴AB=AD ,∠CBA=∠EDA ,CB=ED , ∴AG=AD ,∠ABF=∠CDA , ∴∠G=∠CDA , 在△CGA 和△CDA 中,

GCA DCA CGA CDA AG AD ∠=∠??

∠=∠??=?

, ∴△CGA ≌△CDA , ∴CG=CD ,

∵CG=CB+BF+FG=CB+2BF=DE+2BF , ∴CD=2BF+DE .

【点睛】

本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.

3.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.

(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;

(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.

【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或

3

2

(3)9s 【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出

∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.

(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.

【详解】

(1)当t=1时,AP=BQ=3,BP=AC=9,

又∵∠A=∠B=90°,

在△ACP与△BPQ中,

AP BQ

A B

AC BP

=

?

?

∠=∠

?

?=

?

∴△ACP≌△BPQ(SAS),

∴∠ACP=∠BPQ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°,

∠CPQ=90°,

则线段PC与线段PQ垂直.

(2)设点Q的运动速度x,

①若△ACP≌△BPQ,则AC=BP,AP=BQ,

912

t

t xt =-??

=?

, 解得3

1t x =??=?

, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,

912xt

t t

=??

=-? 解得632t x =???=??

综上所述,存在31t x =??=?或6

32t x =??

?=

??

使得△ACP 与△BPQ 全等.

(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,

∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =

3

2

时, 依题意得3x=3

2

x+2×9, 解得x=12.

故经过9秒或12秒时P 与Q 第一次相遇. 【点睛】

本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.

4.已知:平面直角坐标系中,点A (a ,b )的坐标满足|a ﹣b|+b 2

﹣8b+16=0.

(1)如图1,求证:OA 是第一象限的角平分线;

(2)如图2,过A 作OA 的垂线,交x 轴正半轴于点B ,点M 、N 分别从O 、A 两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O 和点A ),过A 作AE⊥BM 交x 轴于点E ,连BM 、NE ,猜想∠ONE 与∠NEA 之间有何确定的数量关系,并证明你的猜想; (3)如图3,F 是y 轴正半轴上一个动点,连接FA ,过点A 作AE⊥AF 交x 轴正半轴于点E ,连接EF ,过点F 点作∠OFE 的角平分线交OA 于点H ,过点H 作HK⊥x 轴于点K ,求2HK+EF 的值.

【答案】(1)证明见解析 (2)答案见解析 (3)8 【解析】 【分析】

(1)过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM, 根据非负数的性质求出a 、b 的值即可得结论;

(2)如图2,过A 作AH 平分∠OAB ,交BM 于点H ,则△AOE ≌△BAH ,可得AH =OE ,由已知条件可知ON=AM ,∠MOE =∠MAH ,可得△ONE ≌△AMH ,∠ABH =∠OAE ,设BM 与NE 交于K ,则∠MKN =180°﹣2∠ONE =90°﹣∠NEA ,即2∠ONE ﹣∠NEA =90°; (3)如图3,过H 作HM ⊥OF ,HN ⊥EF 于M 、N ,可证△FMH ≌△FNH ,则FM =FN ,同理:NE =EK ,先得出OE+OF ﹣EF =2HK ,再由△APF ≌△AQE 得PF =EQ ,即可得OE+OF =2OP =8,等量代换即可得2HK+EF 的值. 【详解】

解:(1)∵|a ﹣b|+b 2﹣8b+16=0 ∴|a ﹣b|+(b ﹣4)2=0 ∵|a ﹣b|≥0,(b ﹣4)2≥0 ∴|a ﹣b|=0,(b ﹣4)2=0 ∴a =b =4

过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM ∴OA 平分∠MON

即OA 是第一象限的角平分线

(2)过A 作AH 平分∠OAB ,交BM 于点H ∴∠OAH =∠HAB =45° ∵BM ⊥AE ∴∠ABH =∠OAE

在△AOE 与△BAH 中

OAE ABH

OA AB AOE BAH ==∠∠??=??∠∠?

, ∴△AOE ≌△BAH (ASA ) ∴AH =OE

在△ONE 和△AMH 中

OE AH NOE MAH ON AM =??

∠∠??=?

=, ∴△ONE ≌△AMH (SAS ) ∴∠AMH =∠ONE 设BM 与NE 交于K

∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA ∴2∠ONE ﹣∠NEA =90° (3)过H 作HM ⊥OF ,HN ⊥EF 于

M 、N

可证:△FMH ≌△FNH (SAS ) ∴FM =FN 同理:NE =EK

∴OE+OF ﹣EF =2HK

过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q 可证:△APF ≌△AQE (SAS ) ∴PF =EQ ∴OE+OF =2OP =8 ∴2HK+EF =OE+OF =8 【点睛】

本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.

5.操作发现:如图,已知△ABC 和△ADE 均为等腰三角形,AB =AC ,AD =AE ,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .

(1)如图1,若∠ABC =∠ACB =∠ADE =∠AED =55°,求证:△BAD ≌△CAE ;

(2)在(1)的条件下,求∠BEC的度数;

拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.

【答案】(1)见解析;(2)70°;(3)2

【解析】

【分析】

(1)根据SAS证明△BAD≌△CAE即可.

(2)利用全等三角形的性质解决问题即可.

(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.

【详解】

(1)证明:如图1中,

∵∠ABC=∠ACB=∠ADE=∠AED,

∴∠EAD=∠CAB,

∴∠EAC=∠DAB,

∵AE=AD,AC=AB,

∴△BAD≌△CAE(SAS).

(2)解:如图1中,设AC交BE于O.

∵∠ABC=∠ACB=55°,

∴∠BAC=180°﹣110°=70°,

∵△BAD≌△CAE,

∴∠ABO=∠ECO,

∵∠EOC=∠AOB,

∴∠CEO=∠BAO=70°,

即∠BEC=70°.

(3)解:如图2中,

∵∠CAB=∠EAD=120°,

∴∠BAD=∠CAE,

∵AB=AC,AD=AE,

∴△BAD≌△CAE(SAS),

∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,

∵CF⊥EF,

∴∠F=90°,

∴∠FCE=30°,

∴EF=1

2

EC=2.

【点睛】

本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

二、八年级数学轴对称解答题压轴题(难)

6.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:

(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;

(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.

(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.

【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°

【解析】

【分析】

(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;

(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;

(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.

【详解】

解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,

∴∠ABD=∠BAD,

∴△ABD为等腰三角形,

∴∠BDC=72°=∠C,

∴△BCD为等腰三角形;

(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:

(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:

①当分割的直线过顶点B时,

【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点

此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;

【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点

此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;

【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,

∴∠ABD=72°,最大角的值为72°;

△BCD以C为顶点:∠A=36°,∠D=54°,

∴∠ABD=90°,最大角的值为90°;

△BCD以D为顶点:∠A=36°,∠D=36°

∴∠ABD=108°,最大角的值为108°;

②当分割三角形的直线过点D时情况和过点B一样的;

③当分割三角形的直线过点A时,

此时∠A=36°,∠D=12°,∠B=132°,

最大角的值为132°;

综上所述:最大角的可能值为72°,90°,108°,126°,132°.

【点睛】

本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.

7.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且

AD=AE,连接DE.

⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;

⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;

⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.

【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.

【解析】

【分析】

(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设

∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.

【详解】

解: (1)∵∠B=∠C=35°,

∴∠BAC=110°,

∵∠BAD=80°,

∴∠DAE=30°,

∵AD=AE,

∴∠ADE=∠AED=75°,

∴∠CDE=∠AED-∠C=75°?35°=40°;

(2)∵∠ACB=75°,∠CDE=18°,

∴∠E=75°?18°=57°,

∴∠ADE=∠AED=57°,

∴∠ADC=39°,

∵∠ABC=∠ADB+∠DAB=75°,

∴∠BAD=36°.

(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β

①如图1,当点D在点B的左侧时,∠ADC=x°﹣α

y x

y x

α

αβ

=+

?

?

=-+

?

-②得,2α﹣β=0,

∴2α=β;

②如图2,当点D在线段BC上时,∠ADC=y°+α

+

y x

y x

α

αβ

=+

?

?

=+

?

-①得,α=β﹣α,

∴2α=β;

③如图3,当点D在点C右侧时,∠ADC=y°﹣α

180

180

y x

y x

αβ

α

-++=

?

?

++=

?

-①得,2α﹣β=0,

∴2α=β.

综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.

【点睛】

本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.

8.如图,ABC中,A

ABC CB

=∠

∠,点D在BC所在的直线上,点E在射线AC 上,且AD AE

=,连接DE.

(1)如图①,若35

B C

∠=∠=?,80

BAD

∠=?,求CDE

∠的度数;

(2)如图②,若75

ABC ACB

∠=∠=?,18

CDE

∠=?,求BAD

∠的度数;

(3)当点D在直线BC上(不与点B、C重合)运动时,试探究BAD

∠与CDE

∠的数量关系,并说明理由.

【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.

【解析】

【分析】

(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;

(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;

(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,

∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.

【详解】

(1)∵∠B=∠C=35°,

∴∠BAC=110°,

∵∠BAD=80°,

∴∠DAE=30°,

∵AD=AE,

∴∠ADE=∠AED=75°,

∴∠CDE=∠AED-∠C=75°?35°=40°;

(2)∵∠ACB=75°,∠CDE=18°,

∴∠E=75°?18°=57°,

∴∠ADE=∠AED=57°,

∴∠ADC=39°,

∵∠ABC=∠ADB+∠DAB=75°,

∴∠BAD=36°.

(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β

①如图1,当点D在点B的左侧时,∠ADC=x°﹣α

y x a

y x aβ

?=+

?

=-+

?

,①-②得,2α﹣β=0,

∴2α=β;

②如图2,当点D在线段BC上时,∠ADC=y°+α

y x a

y a xβ

?=+

?

+=+

?

,②-①得,α=β﹣α,

∴2α=β;

③如图3,当点D在点C右侧时,∠ADC=y°﹣α

180

180

y a x

x y a

β?

?

?-++=

?

++=

?

,②-①得,2α﹣β=0

∴2α=β.

综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.

【点睛】

考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.

9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段

....叫做这个三角形的三分线.

(1)图①是顶角为36?的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36?的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);

(2)图③是顶角为45?的等腰三角形,请你在图③中画出顶角为45?的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.

(3)ABC中,30

B

∠=?,AD和DE是ABC的三分线,点D在BC边上,点E在AC边上,且AD BD

=,DE CE

=,设c x

∠=?,则x所有可能的值为_________.

【答案】(1)见详解;(2)见详解;(3)20或40. 【解析】 【分析】

(1)作底角的平分线,再作底边的平行线,即可得到三分线;

(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.

(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】 (1)如图所示:

(2)如图所示:

(3)①当AD=AE 时,如图4, ∵DE CE =,c x ∠=?, ∴∠EDB=x °, ∴∠ADE=∠AED=2x °, ∵AD BD =, ∴∠BAD=∠B=30°, ∴30+30=2x+x , 解得:x=20;

②当AD=DE 时,如图5, ∵DE CE =,c x ∠=?, ∴∠EDB=x °,

∴∠DAE=∠AED=2x°,∵AD BD

=,

∴∠BAD=∠B=30°,

∴30+30+2x+x=180,

解得:x=40.

③当AE=DE时,则∠EAD=∠EDA=1802

(90)

2

x

x

-

=-,

∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°

又∵∠ADC=30+30=60°,

∴这种情况不存在.

∴x所有可能的值为20或40.

故答案是:20或40

图4 图5

【点睛】

本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.

10.如图,在等边ABC

?中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边CDE

?,连结BE.

(1)求CAM

∠的度数;

(2)若点D在线段AM上时,求证:ADC BEC

???;

(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB

∠是否为定值?并说明理由.

【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=?. 【解析】 【分析】

(1)根据等边三角形的性质可以直接得出结论;

(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,

60ACB DCE ∠=∠=?,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ???;

(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ???,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ???而有

30CBE CAD ∠=∠=?而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ???同样可以得出结论. 【详解】

(1)ABC ?是等边三角形, 60BAC ∴∠=?.

线段AM 为BC 边上的中线,

1

2CAM BAC ∴∠=∠,

30CAM ∴∠=?.

(2)

ABC ?与DEC ?都是等边三角形,

AC BC ∴=,CD CE =,60ACB DCE ∠=∠=?, ACD DCB DCB BCE ∴∠+∠=∠+∠, ACD BCE ∠∠∴=. 在ADC ?和BEC ?中 AC BC ACD BCE CD CE =??

∠=∠??=?

, ()ACD BCE SAS ∴???;

(3)AOB ∠是定值,60AOB ∠=?, 理由如下:

①当点D 在线段AM 上时,如图1,

由(2)可知ACD BCE ???,则30CBE CAD ∠=∠=?, 又60ABC ∠=?,

603090CBE ABC ∴∠+∠=?+?=?,

ABC ?是等边三角形,线段AM 为BC 边上的中线

AM ∴平分BAC ∠,即11

603022

BAM BAC ∠=∠=??=?

903060BOA ∴∠=?-?=?.

②当点D 在线段AM 的延长线上时,如图2,

相关文档
最新文档