数列极限的概念[1][1].1
数学分析讲义 - CH02(数列极限)

第二章 数列极限 §1 数列极限概念一、数列极限的定义()函数:,f N n f +→R n 称为数列。
()f n 通常记作12,,,,n a a a或简单地记作,其中称为该数列的通项。
}{n a n a 例如:11{}:1,,,,2n a n ,通项1n a n=。
如何描述一个数列“随着的无限增大,无限地接近某一常数”。
下面给出数列极限的精确定义。
n n a 定义1 设为数列,a 为定数.若对任给的正数}{n a ε,总存在正整数,使得当时,有N n N >n a a ε-<则称数列收敛于,定数称为数列的极限,并记作}{n a a a }{n a a a n n =∞→lim ,或)(∞→→n a a n读作“当n 趋于无穷大时,{}n a 的极限等于或趋于”. a n a a 若数列没有极限,则称不收敛,或称为发散数列. }{n a }{n a }{n a 【注】该定义通常称为数列极限的“N ε-定义”。
例1 设(常数),证明n a c =lim n n a c →∞=.证 对0ε∀>,因为0n a c c c ε-=-=<恒成立,因此,只要取,当n 时,便有1N =N >n a c ε-<这就证得li .m n c c →∞=例2 1lim0n n→∞=(0)α>. 证 对0ε∀>,要110n nε-=< 只要1n ε>只要取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >110n nε-=< 这就证得1lim0n n→∞=。
例3 lim 11n nn →∞=+.证 因为11111n n n n-=<++ 对0ε∀>,取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >11111n n n nε-=<<++ 这就证得lim 11n nn →∞=+。
关于数列极限的“N ε-定义”,作以下几点说明: 【1】定义中不一定取正整数,可换成某个正实数。
§2.1数列极限

华北科技学院理学院
2017年11月29日星期三
8
《数学分析》(1)
§2.1 数列极限概念
引例②截丈问题
战国时代哲学家庄周著的《庄子· 天下 篇》引用过一句话:
一尺之棰 日取其半 万世不竭. 1 第一天截下后的杖长为 X1 ; 2 1 第二天截下后的杖长为 X2 2 ; 2
1 第n天 截 下 后 的 杖 长 为 Xn n ; 2 1 0 Xn n
2
……
9
华北科技学院理学院
2017年11月29日星期三
《数学分析》(1)
§2.1 数列极限概念
两个引例共同点是出现了无限接近思想,这正是 极限概念的原始面貌. 极限概念是由于求某些问题的 精确答案而产生的, 割圆术和杖棰问题使用的都是极 限的方法. 第一个是把一个固定不变的量看作是一系 列变化着的多边形面积的趋向,从而确定出面积的 大小. 第二个是杖棰剩余问题,看作一系列变化着的 剩余趋向于一个确定量的问题. 无论是内接正多边形的面积 ,还是杖棰的剩余长 度,都可以看作是关于 n 的一个数列{ an },而这个数 列中的项随着 n 增加产生一个什么样的变化过程则是 人们最关心的,极限就是讨论这一类问题的数学模型.
16
《数学分析》(1)
§2.1 数列极限概念
(4) 对 0, 2 , , 2 , M ( M正常数 )等, 虽与 在 形式上有差异 , 但在本质上都与 起着同样的作用 .
lim a n a 0, N N , 当n N时, 有 a n a M .
2017年11月29日星期三
12
《数学分析》(1)
§2.1 数列极限概念
下面给出数列极限严格的数学定义. ( N定义)
数列极限

定理3 定理
函数极限与数列极限关系(1) 函数极限与数列极限关系
对于数列 {a n },若存在定义域包含 [1, + ∞ ) 的一个
函数 f ( x ), 成立 f (n) = an, 并且 lim f ( x) = a,则必有
x →+∞
lim a n = a.
n→ ∞
π 1 【例3】计算极限 lim tan + . 】 n→ ∞ 4 n
x x x lim cos cos L cos n n→ ∞ 2 4 2 x x x a n = cos cos L cos n 【解】设 2 4 2 x x 1 x 由 cos n sin n = sin n − 1 得 2 2 2 2 1 x 1 x x 1 a n sin n = a n −1 sin n −1 = 2 a n − 2 sin n − 2 = L = n sin x 2 2 2 2 2 2 sin x sin x ; 当x=0, a n = 1 → 1. → 当x≠0, a n = = x x 2 n sin n 2 (2)
k
注意
(1)子列的下标 n1,n2, ,nk, 依从小到大的顺序 L L 排列 ;
显然, 数列 { a n }中却是第 nk 项,显然, nk ≥ k .
L L 例如: 例如: a 3,a7,a8, ,a79,
( 2)一般项 a nk 是子列 a nk 中的第 k 项,而 a nk 在原
{ }
定理1 若数列{a 定理 若数列 n} 收敛于a,则{an} 的任一子列 均收敛于a. 均收敛于 注意
⋅ sin ( i − 1) = n n π
π
1
∫
π
0
高等数学_第一讲__极限与连续

如果 x 只能取正值(或取负值)趋于无穷,则有下 面的定义: 定义 2 如果当 x >0 且无限增大时,函数 f ( x) 无
限接近于一个确定的常数 A , 则称常数 A 为函数 f ( x) 当
x 趋向于正无穷(记为 x )时的极限,记为
lim f ( x) A (或当 x 时, f ( x) A ).
x x0
x x0
x x0
lim f ( x) A .
x 1, x 0 2 例 1 试求函数 f ( x) x , 0 x 1 在 x 0和 1, x 1
x 1处的极限.
解析: 因为 lim f ( x) lim ( x 1) 1,而
; ( 2 ) lim
3n 2 2n 1
2
; ( 3 ) lim
2n 1
2
;
【解析】 ( 1 ) lim
2
( 1) n n
n
0;
(2) lim
3n 2n 1 n 1
2
n
lim
3
2 n
1 n2
1 n2
n
1
3;
( 3 ) lim
n
2
2n 1 n 1
注意:上面的极限中省略了自变量的变化趋势,下同.
推论 1 常数可以提到极限号前,即
lim Cf ( x) C lim f ( x) CA .
推论 2 若 m 为正整数,则lim[ f ( x)]m =[lim f ( x)]m = Am .
结论: 一般地, 多项式函数在 x0 处的极限等于该函数在 x0 处 的函数值,即 lim(an x n an1 x n1
数列的极限函数的极限概念09[1].09.22
![数列的极限函数的极限概念09[1].09.22](https://img.taocdn.com/s3/m/49fd1d0a581b6bd97f19ea1e.png)
xn 1 变得任意小”
“要使 xn 1 任意小,只要n充分大” “任意大”与“任意小”并非彼此无关.
( 1)n1 1 xn 1 n n
1 1 1 给定 ,要使 xn 1 , 只要 n 100 100 n 100
1 1 1 给定 , 要使 xn 1 , 只要 n 1000 1000 n 1000
x2 1 例9 证明 lim 2 x 1 x 1
证
f ( x) A f ( x ) A , x 1 且 x 1
时 , 必有
( x 1)
ε 0 , 要使
只要
故取 δ ε , 当
x2 1 因此 lim 2. x 1 x 1
x2 1 2 ε x 1
xn ( 1)
n 1
(2) 数列极限的定义 定义2.1 设有数列{ xn }, 如果当n无限增大时, x n
无限趋近于某个确定的常数a , 则称a为数列{ xn } 的极限, 记作
n
lim xn a , 或 xn a ( n ).
这时,也称数列{ xn } 收敛于a. 否则, 称数列{ xn }
n
否则,若 lim b( n) b0 0, 则 b(n)就不可能任意小. 小结: 用定义证明数列极限存在时, 关键是任意 给定 > 0, 寻找 N, 但不必求最小的N.
二、函数的极限
自变量的变化过程有六种形式:
1. x 时函数 f (x)的极限
(1) 定义2.3 设函数
当
(M为某一正数)
发散.
例如,
1 2 3 n , , , , , 2 3 4 n1
n 1 (n ) xn n1
数列极限的精确定义

例1 证明 lim C C, (C为常数) x x0
证 0, d 0, 当 0 x x0 d 时,
f ( x) A C C 0 成立,
lim C C. x x0
例2
证明
lim
x x0
x
x0 .
证 f ( x) A x x0 , 0, 取d ,
ba 2
,
因此同时有
xn
b 2
a
及
xn
ba 2
,
这是不可能的. 所以只能有a=b. 11
例4. 证明数列
是发散的.
证明: 用反证法.
假设数列 xn 收敛 , 则有唯一极限 a 存在 .
取
1 2
, 则存在 N ,
使当 n
>N
时,有
a
1 2
xn
a
1 2
但因 xn交替取值 1 与-1 , 而此二数不可能同时落在
x0 x0 d x 20
注
1) d 语言表述
当 时, 有 2) 0 x x0 表示 x x0 , x x0时 f ( x) 有 无极限 与 f ( x0 )有无定义没有关系.
3) 任意给定后,才能找到d , d 依赖于 ,一般的 越小,d 越小.
4) d 不唯一,也不必找最大的,只要存在即可.
n1
| xn a | ,
或 n 1 1,
只要
9
例3 设|q|<1, 证明等比数列 1, q , q2, , qn-1,
的极限是0.
数列极限的定义与计算方法
数列极限的定义与计算方法数列极限是高中数学中非常重要的一个概念,它涉及到数学分析、微积分和实分析等方面。
在这篇文章中,我们将讨论数列极限的定义及其计算方法。
一、数列极限的定义数列极限是指当数列中的数越来越接近某个值时,这个值就被称为该数列的极限。
具体而言,对于一个数列{an},若有一个实数A,对于任意正数ε,都存在正整数N,使得当n>N时,|an -A|<ε成立,则称A为该数列的极限,记作A = lim(an)或an→A。
其中,ε表示误差的大小,N表示误差所在项数的下标,|an -A|表示数列中某一项与极限之间的距离,即两者之差的绝对值。
当数列的极限存在时,我们称其为收敛数列;反之,若其不存在,则称其为发散数列。
二、数列极限的计算方法1. 通项公式法若数列an的通项公式为an = f(n)(n∈N*),则可通过该公式来计算数列的极限。
具体而言,只需将n带入f(n)中,便可得到数列中的每一项。
若该通项公式关于n的极限存在,则该极限就是数列的极限。
2. 常用数列极限公式在计算数列极限时,还可以利用以下常用数列极限公式:(1) limn→∞ (1 + 1/n)n = e(2) limn→∞ (1 + x/n)n = ex(3) limn→∞ (1 - x/n)n = e-x(4) limn→∞ (1/2)n = 0(5) limn→∞ (1/n) = 0(6) limn→∞ (n1/n) = 1(7) limn→∞ (nlogn/n) = ∞(8) limn→∞ (∑i=1n1/i - ln n) = γ其中,e为自然对数的底数,x为任意实数,γ为欧拉常数,其值约为0.57721。
3. 夹逼法当数列的通项公式比较复杂或难以求出时,可以采用夹逼法(或夹挤法)来判断其极限。
夹逼法是指找到两个数列{bn}和{cn},它们分别比数列{an}小和大,并且它们的极限相等。
具体而言,若对于所有n>N,均有bn≤an≤cn成立,则数列{an}的极限等于{bn}和{cn}的极限(即它们的共同极限)。
第二章 数列极限
⑸ 迫敛性定理:设收敛数列 {a n } , {bn } 都以 a 为极限,数列 {cn } 满足:存在正数 N 0 , 当 n > N 0 时有 a n ≤ c n ≤ bn ,则数列 {cn } 收敛,且 lim c n = a 。
n→∞
2. 数列极限的判定定理 ⑴ 数列 {a n } 收敛的充要条件是: {a n } 的任何非平凡子列都收敛。
1⎞ 1 ⎛ 1⎞ ⎛1 1⎞ ⎛ 1 = 1 + 1 + ⎜1 − ⎟ + ⎜ − ⎟ + L + ⎜ − ⎟ = 1 + 1 + 1 − < 3. ⇒ x n 有界. n ⎝ 2⎠ ⎝ 2 3⎠ ⎝ n −1 n ⎠
综上, 数列{ x n }单调有界. 证法二: ( 利用 Bernoulli 不等式 ) 注意到 Bernoulli 不等式 (1 + x) ≥ 1 + nx,
n(n − 1) 2 n(n − 1)(n − 2 ) 3 ⋅3 + ⋅ 3 + L + 3n 2! 3!
证明: 因为
4 n = (1 + 3) = 1 + n ⋅ 3 +
n
>
n(n − 1)(n − 2 ) 3 ⋅3 ,n ≥ 3 . 3!
注意到对任何正整数 k , n > 2k 时有 n − k >
n 就有 2
0<
n > 4 6n ⋅ 4 n2 6n 2 6n 24 1 1 < = < = ⋅ < n 2 27n(n − 1)(n − 2 ) 27(n − 1)(n − 2) 27n 27 n n 4
于是,对 ∀ε > 0 ,取 N = max ⎨4, ⎢ ⎥ ⎬, L . ε 例 4 试证: lim n a = 1, a > 1 。
第一节数列极限
恒有 xn − a < ε .
其中 ∀ : 对任意的 ; 几何解释: 几何解释:
∃ : 至少有一个或存在 .
a−ε
x 2 x1 x N + 1
2ε
a
a+ε
x N + 2 x3
x
当n > N时, 所有的点 x n 都落在 (a − ε , a + ε )内, 只有有限个 (至多只有 N个 ) 落在其外.
注意: 数列对应着数轴上一个点列.可看作一 注意: 数列对应着数轴上一个点列 可看作一 1.数列对应着数轴上一个点列 动点在数轴上依次取 x1 , x 2 ,⋯ , x n ,⋯ .
x3
x1
x2 x4
xn
2.数列是整标函数 x n = f (n). 数列是整标函数
( −1)n−1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n 问题: 无限增大时, 问题 当 n 无限增大时 x n是否无限接近于某一 确定的数值?如果是 如何确定? 如果是,如何确定 确定的数值 如果是 如何确定 ( −1)n−1 当 n 无限增大时 , xn = 1 + 无限接近于 1. n
lim xn = a, 或 xn → a (n → ∞).
n→∞
如果数列没有极限,就说数列是发散的 如果数列没有极限 就说数列是发散的. 就说数列是发散的 注意: 注意:.不等式 x n − a < ε刻划了 x n与a的无限接近 ; 1
2 . N = N ( ε ).
“ε − N”定义:
lim xn = a ⇐⇒ ∀ε > 0, ∃N > 0, 使当n > N时,
例如
2 , 4 , 8 , ⋯ , 2 n , ⋯;
数学分析数列极限分析解析
第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。
教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。
教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。
2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。
”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。
例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。
记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。